1 /* SPDX-License-Identifier: GPL-2.0 */ 2 #ifndef _ASM_X86_PGTABLE_H 3 #define _ASM_X86_PGTABLE_H 4 5 #include <linux/mem_encrypt.h> 6 #include <asm/page.h> 7 #include <asm/pgtable_types.h> 8 9 /* 10 * Macro to mark a page protection value as UC- 11 */ 12 #define pgprot_noncached(prot) \ 13 ((boot_cpu_data.x86 > 3) \ 14 ? (__pgprot(pgprot_val(prot) | \ 15 cachemode2protval(_PAGE_CACHE_MODE_UC_MINUS))) \ 16 : (prot)) 17 18 /* 19 * Macros to add or remove encryption attribute 20 */ 21 #define pgprot_encrypted(prot) __pgprot(__sme_set(pgprot_val(prot))) 22 #define pgprot_decrypted(prot) __pgprot(__sme_clr(pgprot_val(prot))) 23 24 #ifndef __ASSEMBLY__ 25 #include <asm/x86_init.h> 26 27 extern pgd_t early_top_pgt[PTRS_PER_PGD]; 28 int __init __early_make_pgtable(unsigned long address, pmdval_t pmd); 29 30 void ptdump_walk_pgd_level(struct seq_file *m, pgd_t *pgd); 31 void ptdump_walk_pgd_level_debugfs(struct seq_file *m, pgd_t *pgd, bool user); 32 void ptdump_walk_pgd_level_checkwx(void); 33 34 #ifdef CONFIG_DEBUG_WX 35 #define debug_checkwx() ptdump_walk_pgd_level_checkwx() 36 #else 37 #define debug_checkwx() do { } while (0) 38 #endif 39 40 /* 41 * ZERO_PAGE is a global shared page that is always zero: used 42 * for zero-mapped memory areas etc.. 43 */ 44 extern unsigned long empty_zero_page[PAGE_SIZE / sizeof(unsigned long)] 45 __visible; 46 #define ZERO_PAGE(vaddr) (virt_to_page(empty_zero_page)) 47 48 extern spinlock_t pgd_lock; 49 extern struct list_head pgd_list; 50 51 extern struct mm_struct *pgd_page_get_mm(struct page *page); 52 53 extern pmdval_t early_pmd_flags; 54 55 #ifdef CONFIG_PARAVIRT 56 #include <asm/paravirt.h> 57 #else /* !CONFIG_PARAVIRT */ 58 #define set_pte(ptep, pte) native_set_pte(ptep, pte) 59 #define set_pte_at(mm, addr, ptep, pte) native_set_pte_at(mm, addr, ptep, pte) 60 61 #define set_pte_atomic(ptep, pte) \ 62 native_set_pte_atomic(ptep, pte) 63 64 #define set_pmd(pmdp, pmd) native_set_pmd(pmdp, pmd) 65 66 #ifndef __PAGETABLE_P4D_FOLDED 67 #define set_pgd(pgdp, pgd) native_set_pgd(pgdp, pgd) 68 #define pgd_clear(pgd) native_pgd_clear(pgd) 69 #endif 70 71 #ifndef set_p4d 72 # define set_p4d(p4dp, p4d) native_set_p4d(p4dp, p4d) 73 #endif 74 75 #ifndef __PAGETABLE_PUD_FOLDED 76 #define p4d_clear(p4d) native_p4d_clear(p4d) 77 #endif 78 79 #ifndef set_pud 80 # define set_pud(pudp, pud) native_set_pud(pudp, pud) 81 #endif 82 83 #ifndef __PAGETABLE_PUD_FOLDED 84 #define pud_clear(pud) native_pud_clear(pud) 85 #endif 86 87 #define pte_clear(mm, addr, ptep) native_pte_clear(mm, addr, ptep) 88 #define pmd_clear(pmd) native_pmd_clear(pmd) 89 90 #define pgd_val(x) native_pgd_val(x) 91 #define __pgd(x) native_make_pgd(x) 92 93 #ifndef __PAGETABLE_P4D_FOLDED 94 #define p4d_val(x) native_p4d_val(x) 95 #define __p4d(x) native_make_p4d(x) 96 #endif 97 98 #ifndef __PAGETABLE_PUD_FOLDED 99 #define pud_val(x) native_pud_val(x) 100 #define __pud(x) native_make_pud(x) 101 #endif 102 103 #ifndef __PAGETABLE_PMD_FOLDED 104 #define pmd_val(x) native_pmd_val(x) 105 #define __pmd(x) native_make_pmd(x) 106 #endif 107 108 #define pte_val(x) native_pte_val(x) 109 #define __pte(x) native_make_pte(x) 110 111 #define arch_end_context_switch(prev) do {} while(0) 112 113 #endif /* CONFIG_PARAVIRT */ 114 115 /* 116 * The following only work if pte_present() is true. 117 * Undefined behaviour if not.. 118 */ 119 static inline int pte_dirty(pte_t pte) 120 { 121 return pte_flags(pte) & _PAGE_DIRTY; 122 } 123 124 125 static inline u32 read_pkru(void) 126 { 127 if (boot_cpu_has(X86_FEATURE_OSPKE)) 128 return __read_pkru(); 129 return 0; 130 } 131 132 static inline void write_pkru(u32 pkru) 133 { 134 if (boot_cpu_has(X86_FEATURE_OSPKE)) 135 __write_pkru(pkru); 136 } 137 138 static inline int pte_young(pte_t pte) 139 { 140 return pte_flags(pte) & _PAGE_ACCESSED; 141 } 142 143 static inline int pmd_dirty(pmd_t pmd) 144 { 145 return pmd_flags(pmd) & _PAGE_DIRTY; 146 } 147 148 static inline int pmd_young(pmd_t pmd) 149 { 150 return pmd_flags(pmd) & _PAGE_ACCESSED; 151 } 152 153 static inline int pud_dirty(pud_t pud) 154 { 155 return pud_flags(pud) & _PAGE_DIRTY; 156 } 157 158 static inline int pud_young(pud_t pud) 159 { 160 return pud_flags(pud) & _PAGE_ACCESSED; 161 } 162 163 static inline int pte_write(pte_t pte) 164 { 165 return pte_flags(pte) & _PAGE_RW; 166 } 167 168 static inline int pte_huge(pte_t pte) 169 { 170 return pte_flags(pte) & _PAGE_PSE; 171 } 172 173 static inline int pte_global(pte_t pte) 174 { 175 return pte_flags(pte) & _PAGE_GLOBAL; 176 } 177 178 static inline int pte_exec(pte_t pte) 179 { 180 return !(pte_flags(pte) & _PAGE_NX); 181 } 182 183 static inline int pte_special(pte_t pte) 184 { 185 return pte_flags(pte) & _PAGE_SPECIAL; 186 } 187 188 static inline unsigned long pte_pfn(pte_t pte) 189 { 190 return (pte_val(pte) & PTE_PFN_MASK) >> PAGE_SHIFT; 191 } 192 193 static inline unsigned long pmd_pfn(pmd_t pmd) 194 { 195 return (pmd_val(pmd) & pmd_pfn_mask(pmd)) >> PAGE_SHIFT; 196 } 197 198 static inline unsigned long pud_pfn(pud_t pud) 199 { 200 return (pud_val(pud) & pud_pfn_mask(pud)) >> PAGE_SHIFT; 201 } 202 203 static inline unsigned long p4d_pfn(p4d_t p4d) 204 { 205 return (p4d_val(p4d) & p4d_pfn_mask(p4d)) >> PAGE_SHIFT; 206 } 207 208 static inline unsigned long pgd_pfn(pgd_t pgd) 209 { 210 return (pgd_val(pgd) & PTE_PFN_MASK) >> PAGE_SHIFT; 211 } 212 213 static inline int p4d_large(p4d_t p4d) 214 { 215 /* No 512 GiB pages yet */ 216 return 0; 217 } 218 219 #define pte_page(pte) pfn_to_page(pte_pfn(pte)) 220 221 static inline int pmd_large(pmd_t pte) 222 { 223 return pmd_flags(pte) & _PAGE_PSE; 224 } 225 226 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 227 static inline int pmd_trans_huge(pmd_t pmd) 228 { 229 return (pmd_val(pmd) & (_PAGE_PSE|_PAGE_DEVMAP)) == _PAGE_PSE; 230 } 231 232 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD 233 static inline int pud_trans_huge(pud_t pud) 234 { 235 return (pud_val(pud) & (_PAGE_PSE|_PAGE_DEVMAP)) == _PAGE_PSE; 236 } 237 #endif 238 239 #define has_transparent_hugepage has_transparent_hugepage 240 static inline int has_transparent_hugepage(void) 241 { 242 return boot_cpu_has(X86_FEATURE_PSE); 243 } 244 245 #ifdef __HAVE_ARCH_PTE_DEVMAP 246 static inline int pmd_devmap(pmd_t pmd) 247 { 248 return !!(pmd_val(pmd) & _PAGE_DEVMAP); 249 } 250 251 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD 252 static inline int pud_devmap(pud_t pud) 253 { 254 return !!(pud_val(pud) & _PAGE_DEVMAP); 255 } 256 #else 257 static inline int pud_devmap(pud_t pud) 258 { 259 return 0; 260 } 261 #endif 262 263 static inline int pgd_devmap(pgd_t pgd) 264 { 265 return 0; 266 } 267 #endif 268 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 269 270 static inline pte_t pte_set_flags(pte_t pte, pteval_t set) 271 { 272 pteval_t v = native_pte_val(pte); 273 274 return native_make_pte(v | set); 275 } 276 277 static inline pte_t pte_clear_flags(pte_t pte, pteval_t clear) 278 { 279 pteval_t v = native_pte_val(pte); 280 281 return native_make_pte(v & ~clear); 282 } 283 284 static inline pte_t pte_mkclean(pte_t pte) 285 { 286 return pte_clear_flags(pte, _PAGE_DIRTY); 287 } 288 289 static inline pte_t pte_mkold(pte_t pte) 290 { 291 return pte_clear_flags(pte, _PAGE_ACCESSED); 292 } 293 294 static inline pte_t pte_wrprotect(pte_t pte) 295 { 296 return pte_clear_flags(pte, _PAGE_RW); 297 } 298 299 static inline pte_t pte_mkexec(pte_t pte) 300 { 301 return pte_clear_flags(pte, _PAGE_NX); 302 } 303 304 static inline pte_t pte_mkdirty(pte_t pte) 305 { 306 return pte_set_flags(pte, _PAGE_DIRTY | _PAGE_SOFT_DIRTY); 307 } 308 309 static inline pte_t pte_mkyoung(pte_t pte) 310 { 311 return pte_set_flags(pte, _PAGE_ACCESSED); 312 } 313 314 static inline pte_t pte_mkwrite(pte_t pte) 315 { 316 return pte_set_flags(pte, _PAGE_RW); 317 } 318 319 static inline pte_t pte_mkhuge(pte_t pte) 320 { 321 return pte_set_flags(pte, _PAGE_PSE); 322 } 323 324 static inline pte_t pte_clrhuge(pte_t pte) 325 { 326 return pte_clear_flags(pte, _PAGE_PSE); 327 } 328 329 static inline pte_t pte_mkglobal(pte_t pte) 330 { 331 return pte_set_flags(pte, _PAGE_GLOBAL); 332 } 333 334 static inline pte_t pte_clrglobal(pte_t pte) 335 { 336 return pte_clear_flags(pte, _PAGE_GLOBAL); 337 } 338 339 static inline pte_t pte_mkspecial(pte_t pte) 340 { 341 return pte_set_flags(pte, _PAGE_SPECIAL); 342 } 343 344 static inline pte_t pte_mkdevmap(pte_t pte) 345 { 346 return pte_set_flags(pte, _PAGE_SPECIAL|_PAGE_DEVMAP); 347 } 348 349 static inline pmd_t pmd_set_flags(pmd_t pmd, pmdval_t set) 350 { 351 pmdval_t v = native_pmd_val(pmd); 352 353 return native_make_pmd(v | set); 354 } 355 356 static inline pmd_t pmd_clear_flags(pmd_t pmd, pmdval_t clear) 357 { 358 pmdval_t v = native_pmd_val(pmd); 359 360 return native_make_pmd(v & ~clear); 361 } 362 363 static inline pmd_t pmd_mkold(pmd_t pmd) 364 { 365 return pmd_clear_flags(pmd, _PAGE_ACCESSED); 366 } 367 368 static inline pmd_t pmd_mkclean(pmd_t pmd) 369 { 370 return pmd_clear_flags(pmd, _PAGE_DIRTY); 371 } 372 373 static inline pmd_t pmd_wrprotect(pmd_t pmd) 374 { 375 return pmd_clear_flags(pmd, _PAGE_RW); 376 } 377 378 static inline pmd_t pmd_mkdirty(pmd_t pmd) 379 { 380 return pmd_set_flags(pmd, _PAGE_DIRTY | _PAGE_SOFT_DIRTY); 381 } 382 383 static inline pmd_t pmd_mkdevmap(pmd_t pmd) 384 { 385 return pmd_set_flags(pmd, _PAGE_DEVMAP); 386 } 387 388 static inline pmd_t pmd_mkhuge(pmd_t pmd) 389 { 390 return pmd_set_flags(pmd, _PAGE_PSE); 391 } 392 393 static inline pmd_t pmd_mkyoung(pmd_t pmd) 394 { 395 return pmd_set_flags(pmd, _PAGE_ACCESSED); 396 } 397 398 static inline pmd_t pmd_mkwrite(pmd_t pmd) 399 { 400 return pmd_set_flags(pmd, _PAGE_RW); 401 } 402 403 static inline pmd_t pmd_mknotpresent(pmd_t pmd) 404 { 405 return pmd_clear_flags(pmd, _PAGE_PRESENT | _PAGE_PROTNONE); 406 } 407 408 static inline pud_t pud_set_flags(pud_t pud, pudval_t set) 409 { 410 pudval_t v = native_pud_val(pud); 411 412 return native_make_pud(v | set); 413 } 414 415 static inline pud_t pud_clear_flags(pud_t pud, pudval_t clear) 416 { 417 pudval_t v = native_pud_val(pud); 418 419 return native_make_pud(v & ~clear); 420 } 421 422 static inline pud_t pud_mkold(pud_t pud) 423 { 424 return pud_clear_flags(pud, _PAGE_ACCESSED); 425 } 426 427 static inline pud_t pud_mkclean(pud_t pud) 428 { 429 return pud_clear_flags(pud, _PAGE_DIRTY); 430 } 431 432 static inline pud_t pud_wrprotect(pud_t pud) 433 { 434 return pud_clear_flags(pud, _PAGE_RW); 435 } 436 437 static inline pud_t pud_mkdirty(pud_t pud) 438 { 439 return pud_set_flags(pud, _PAGE_DIRTY | _PAGE_SOFT_DIRTY); 440 } 441 442 static inline pud_t pud_mkdevmap(pud_t pud) 443 { 444 return pud_set_flags(pud, _PAGE_DEVMAP); 445 } 446 447 static inline pud_t pud_mkhuge(pud_t pud) 448 { 449 return pud_set_flags(pud, _PAGE_PSE); 450 } 451 452 static inline pud_t pud_mkyoung(pud_t pud) 453 { 454 return pud_set_flags(pud, _PAGE_ACCESSED); 455 } 456 457 static inline pud_t pud_mkwrite(pud_t pud) 458 { 459 return pud_set_flags(pud, _PAGE_RW); 460 } 461 462 static inline pud_t pud_mknotpresent(pud_t pud) 463 { 464 return pud_clear_flags(pud, _PAGE_PRESENT | _PAGE_PROTNONE); 465 } 466 467 #ifdef CONFIG_HAVE_ARCH_SOFT_DIRTY 468 static inline int pte_soft_dirty(pte_t pte) 469 { 470 return pte_flags(pte) & _PAGE_SOFT_DIRTY; 471 } 472 473 static inline int pmd_soft_dirty(pmd_t pmd) 474 { 475 return pmd_flags(pmd) & _PAGE_SOFT_DIRTY; 476 } 477 478 static inline int pud_soft_dirty(pud_t pud) 479 { 480 return pud_flags(pud) & _PAGE_SOFT_DIRTY; 481 } 482 483 static inline pte_t pte_mksoft_dirty(pte_t pte) 484 { 485 return pte_set_flags(pte, _PAGE_SOFT_DIRTY); 486 } 487 488 static inline pmd_t pmd_mksoft_dirty(pmd_t pmd) 489 { 490 return pmd_set_flags(pmd, _PAGE_SOFT_DIRTY); 491 } 492 493 static inline pud_t pud_mksoft_dirty(pud_t pud) 494 { 495 return pud_set_flags(pud, _PAGE_SOFT_DIRTY); 496 } 497 498 static inline pte_t pte_clear_soft_dirty(pte_t pte) 499 { 500 return pte_clear_flags(pte, _PAGE_SOFT_DIRTY); 501 } 502 503 static inline pmd_t pmd_clear_soft_dirty(pmd_t pmd) 504 { 505 return pmd_clear_flags(pmd, _PAGE_SOFT_DIRTY); 506 } 507 508 static inline pud_t pud_clear_soft_dirty(pud_t pud) 509 { 510 return pud_clear_flags(pud, _PAGE_SOFT_DIRTY); 511 } 512 513 #endif /* CONFIG_HAVE_ARCH_SOFT_DIRTY */ 514 515 /* 516 * Mask out unsupported bits in a present pgprot. Non-present pgprots 517 * can use those bits for other purposes, so leave them be. 518 */ 519 static inline pgprotval_t massage_pgprot(pgprot_t pgprot) 520 { 521 pgprotval_t protval = pgprot_val(pgprot); 522 523 if (protval & _PAGE_PRESENT) 524 protval &= __supported_pte_mask; 525 526 return protval; 527 } 528 529 static inline pte_t pfn_pte(unsigned long page_nr, pgprot_t pgprot) 530 { 531 return __pte(((phys_addr_t)page_nr << PAGE_SHIFT) | 532 massage_pgprot(pgprot)); 533 } 534 535 static inline pmd_t pfn_pmd(unsigned long page_nr, pgprot_t pgprot) 536 { 537 return __pmd(((phys_addr_t)page_nr << PAGE_SHIFT) | 538 massage_pgprot(pgprot)); 539 } 540 541 static inline pud_t pfn_pud(unsigned long page_nr, pgprot_t pgprot) 542 { 543 return __pud(((phys_addr_t)page_nr << PAGE_SHIFT) | 544 massage_pgprot(pgprot)); 545 } 546 547 static inline pte_t pte_modify(pte_t pte, pgprot_t newprot) 548 { 549 pteval_t val = pte_val(pte); 550 551 /* 552 * Chop off the NX bit (if present), and add the NX portion of 553 * the newprot (if present): 554 */ 555 val &= _PAGE_CHG_MASK; 556 val |= massage_pgprot(newprot) & ~_PAGE_CHG_MASK; 557 558 return __pte(val); 559 } 560 561 static inline pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot) 562 { 563 pmdval_t val = pmd_val(pmd); 564 565 val &= _HPAGE_CHG_MASK; 566 val |= massage_pgprot(newprot) & ~_HPAGE_CHG_MASK; 567 568 return __pmd(val); 569 } 570 571 /* mprotect needs to preserve PAT bits when updating vm_page_prot */ 572 #define pgprot_modify pgprot_modify 573 static inline pgprot_t pgprot_modify(pgprot_t oldprot, pgprot_t newprot) 574 { 575 pgprotval_t preservebits = pgprot_val(oldprot) & _PAGE_CHG_MASK; 576 pgprotval_t addbits = pgprot_val(newprot); 577 return __pgprot(preservebits | addbits); 578 } 579 580 #define pte_pgprot(x) __pgprot(pte_flags(x)) 581 #define pmd_pgprot(x) __pgprot(pmd_flags(x)) 582 #define pud_pgprot(x) __pgprot(pud_flags(x)) 583 #define p4d_pgprot(x) __pgprot(p4d_flags(x)) 584 585 #define canon_pgprot(p) __pgprot(massage_pgprot(p)) 586 587 static inline int is_new_memtype_allowed(u64 paddr, unsigned long size, 588 enum page_cache_mode pcm, 589 enum page_cache_mode new_pcm) 590 { 591 /* 592 * PAT type is always WB for untracked ranges, so no need to check. 593 */ 594 if (x86_platform.is_untracked_pat_range(paddr, paddr + size)) 595 return 1; 596 597 /* 598 * Certain new memtypes are not allowed with certain 599 * requested memtype: 600 * - request is uncached, return cannot be write-back 601 * - request is write-combine, return cannot be write-back 602 * - request is write-through, return cannot be write-back 603 * - request is write-through, return cannot be write-combine 604 */ 605 if ((pcm == _PAGE_CACHE_MODE_UC_MINUS && 606 new_pcm == _PAGE_CACHE_MODE_WB) || 607 (pcm == _PAGE_CACHE_MODE_WC && 608 new_pcm == _PAGE_CACHE_MODE_WB) || 609 (pcm == _PAGE_CACHE_MODE_WT && 610 new_pcm == _PAGE_CACHE_MODE_WB) || 611 (pcm == _PAGE_CACHE_MODE_WT && 612 new_pcm == _PAGE_CACHE_MODE_WC)) { 613 return 0; 614 } 615 616 return 1; 617 } 618 619 pmd_t *populate_extra_pmd(unsigned long vaddr); 620 pte_t *populate_extra_pte(unsigned long vaddr); 621 #endif /* __ASSEMBLY__ */ 622 623 #ifdef CONFIG_X86_32 624 # include <asm/pgtable_32.h> 625 #else 626 # include <asm/pgtable_64.h> 627 #endif 628 629 #ifndef __ASSEMBLY__ 630 #include <linux/mm_types.h> 631 #include <linux/mmdebug.h> 632 #include <linux/log2.h> 633 #include <asm/fixmap.h> 634 635 static inline int pte_none(pte_t pte) 636 { 637 return !(pte.pte & ~(_PAGE_KNL_ERRATUM_MASK)); 638 } 639 640 #define __HAVE_ARCH_PTE_SAME 641 static inline int pte_same(pte_t a, pte_t b) 642 { 643 return a.pte == b.pte; 644 } 645 646 static inline int pte_present(pte_t a) 647 { 648 return pte_flags(a) & (_PAGE_PRESENT | _PAGE_PROTNONE); 649 } 650 651 #ifdef __HAVE_ARCH_PTE_DEVMAP 652 static inline int pte_devmap(pte_t a) 653 { 654 return (pte_flags(a) & _PAGE_DEVMAP) == _PAGE_DEVMAP; 655 } 656 #endif 657 658 #define pte_accessible pte_accessible 659 static inline bool pte_accessible(struct mm_struct *mm, pte_t a) 660 { 661 if (pte_flags(a) & _PAGE_PRESENT) 662 return true; 663 664 if ((pte_flags(a) & _PAGE_PROTNONE) && 665 mm_tlb_flush_pending(mm)) 666 return true; 667 668 return false; 669 } 670 671 static inline int pmd_present(pmd_t pmd) 672 { 673 /* 674 * Checking for _PAGE_PSE is needed too because 675 * split_huge_page will temporarily clear the present bit (but 676 * the _PAGE_PSE flag will remain set at all times while the 677 * _PAGE_PRESENT bit is clear). 678 */ 679 return pmd_flags(pmd) & (_PAGE_PRESENT | _PAGE_PROTNONE | _PAGE_PSE); 680 } 681 682 #ifdef CONFIG_NUMA_BALANCING 683 /* 684 * These work without NUMA balancing but the kernel does not care. See the 685 * comment in include/asm-generic/pgtable.h 686 */ 687 static inline int pte_protnone(pte_t pte) 688 { 689 return (pte_flags(pte) & (_PAGE_PROTNONE | _PAGE_PRESENT)) 690 == _PAGE_PROTNONE; 691 } 692 693 static inline int pmd_protnone(pmd_t pmd) 694 { 695 return (pmd_flags(pmd) & (_PAGE_PROTNONE | _PAGE_PRESENT)) 696 == _PAGE_PROTNONE; 697 } 698 #endif /* CONFIG_NUMA_BALANCING */ 699 700 static inline int pmd_none(pmd_t pmd) 701 { 702 /* Only check low word on 32-bit platforms, since it might be 703 out of sync with upper half. */ 704 unsigned long val = native_pmd_val(pmd); 705 return (val & ~_PAGE_KNL_ERRATUM_MASK) == 0; 706 } 707 708 static inline unsigned long pmd_page_vaddr(pmd_t pmd) 709 { 710 return (unsigned long)__va(pmd_val(pmd) & pmd_pfn_mask(pmd)); 711 } 712 713 /* 714 * Currently stuck as a macro due to indirect forward reference to 715 * linux/mmzone.h's __section_mem_map_addr() definition: 716 */ 717 #define pmd_page(pmd) pfn_to_page(pmd_pfn(pmd)) 718 719 /* 720 * the pmd page can be thought of an array like this: pmd_t[PTRS_PER_PMD] 721 * 722 * this macro returns the index of the entry in the pmd page which would 723 * control the given virtual address 724 */ 725 static inline unsigned long pmd_index(unsigned long address) 726 { 727 return (address >> PMD_SHIFT) & (PTRS_PER_PMD - 1); 728 } 729 730 /* 731 * Conversion functions: convert a page and protection to a page entry, 732 * and a page entry and page directory to the page they refer to. 733 * 734 * (Currently stuck as a macro because of indirect forward reference 735 * to linux/mm.h:page_to_nid()) 736 */ 737 #define mk_pte(page, pgprot) pfn_pte(page_to_pfn(page), (pgprot)) 738 739 /* 740 * the pte page can be thought of an array like this: pte_t[PTRS_PER_PTE] 741 * 742 * this function returns the index of the entry in the pte page which would 743 * control the given virtual address 744 */ 745 static inline unsigned long pte_index(unsigned long address) 746 { 747 return (address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1); 748 } 749 750 static inline pte_t *pte_offset_kernel(pmd_t *pmd, unsigned long address) 751 { 752 return (pte_t *)pmd_page_vaddr(*pmd) + pte_index(address); 753 } 754 755 static inline int pmd_bad(pmd_t pmd) 756 { 757 return (pmd_flags(pmd) & ~_PAGE_USER) != _KERNPG_TABLE; 758 } 759 760 static inline unsigned long pages_to_mb(unsigned long npg) 761 { 762 return npg >> (20 - PAGE_SHIFT); 763 } 764 765 #if CONFIG_PGTABLE_LEVELS > 2 766 static inline int pud_none(pud_t pud) 767 { 768 return (native_pud_val(pud) & ~(_PAGE_KNL_ERRATUM_MASK)) == 0; 769 } 770 771 static inline int pud_present(pud_t pud) 772 { 773 return pud_flags(pud) & _PAGE_PRESENT; 774 } 775 776 static inline unsigned long pud_page_vaddr(pud_t pud) 777 { 778 return (unsigned long)__va(pud_val(pud) & pud_pfn_mask(pud)); 779 } 780 781 /* 782 * Currently stuck as a macro due to indirect forward reference to 783 * linux/mmzone.h's __section_mem_map_addr() definition: 784 */ 785 #define pud_page(pud) pfn_to_page(pud_pfn(pud)) 786 787 /* Find an entry in the second-level page table.. */ 788 static inline pmd_t *pmd_offset(pud_t *pud, unsigned long address) 789 { 790 return (pmd_t *)pud_page_vaddr(*pud) + pmd_index(address); 791 } 792 793 static inline int pud_large(pud_t pud) 794 { 795 return (pud_val(pud) & (_PAGE_PSE | _PAGE_PRESENT)) == 796 (_PAGE_PSE | _PAGE_PRESENT); 797 } 798 799 static inline int pud_bad(pud_t pud) 800 { 801 return (pud_flags(pud) & ~(_KERNPG_TABLE | _PAGE_USER)) != 0; 802 } 803 #else 804 static inline int pud_large(pud_t pud) 805 { 806 return 0; 807 } 808 #endif /* CONFIG_PGTABLE_LEVELS > 2 */ 809 810 static inline unsigned long pud_index(unsigned long address) 811 { 812 return (address >> PUD_SHIFT) & (PTRS_PER_PUD - 1); 813 } 814 815 #if CONFIG_PGTABLE_LEVELS > 3 816 static inline int p4d_none(p4d_t p4d) 817 { 818 return (native_p4d_val(p4d) & ~(_PAGE_KNL_ERRATUM_MASK)) == 0; 819 } 820 821 static inline int p4d_present(p4d_t p4d) 822 { 823 return p4d_flags(p4d) & _PAGE_PRESENT; 824 } 825 826 static inline unsigned long p4d_page_vaddr(p4d_t p4d) 827 { 828 return (unsigned long)__va(p4d_val(p4d) & p4d_pfn_mask(p4d)); 829 } 830 831 /* 832 * Currently stuck as a macro due to indirect forward reference to 833 * linux/mmzone.h's __section_mem_map_addr() definition: 834 */ 835 #define p4d_page(p4d) pfn_to_page(p4d_pfn(p4d)) 836 837 /* Find an entry in the third-level page table.. */ 838 static inline pud_t *pud_offset(p4d_t *p4d, unsigned long address) 839 { 840 return (pud_t *)p4d_page_vaddr(*p4d) + pud_index(address); 841 } 842 843 static inline int p4d_bad(p4d_t p4d) 844 { 845 unsigned long ignore_flags = _KERNPG_TABLE | _PAGE_USER; 846 847 if (IS_ENABLED(CONFIG_PAGE_TABLE_ISOLATION)) 848 ignore_flags |= _PAGE_NX; 849 850 return (p4d_flags(p4d) & ~ignore_flags) != 0; 851 } 852 #endif /* CONFIG_PGTABLE_LEVELS > 3 */ 853 854 static inline unsigned long p4d_index(unsigned long address) 855 { 856 return (address >> P4D_SHIFT) & (PTRS_PER_P4D - 1); 857 } 858 859 #if CONFIG_PGTABLE_LEVELS > 4 860 static inline int pgd_present(pgd_t pgd) 861 { 862 return pgd_flags(pgd) & _PAGE_PRESENT; 863 } 864 865 static inline unsigned long pgd_page_vaddr(pgd_t pgd) 866 { 867 return (unsigned long)__va((unsigned long)pgd_val(pgd) & PTE_PFN_MASK); 868 } 869 870 /* 871 * Currently stuck as a macro due to indirect forward reference to 872 * linux/mmzone.h's __section_mem_map_addr() definition: 873 */ 874 #define pgd_page(pgd) pfn_to_page(pgd_pfn(pgd)) 875 876 /* to find an entry in a page-table-directory. */ 877 static inline p4d_t *p4d_offset(pgd_t *pgd, unsigned long address) 878 { 879 return (p4d_t *)pgd_page_vaddr(*pgd) + p4d_index(address); 880 } 881 882 static inline int pgd_bad(pgd_t pgd) 883 { 884 unsigned long ignore_flags = _PAGE_USER; 885 886 if (IS_ENABLED(CONFIG_PAGE_TABLE_ISOLATION)) 887 ignore_flags |= _PAGE_NX; 888 889 return (pgd_flags(pgd) & ~ignore_flags) != _KERNPG_TABLE; 890 } 891 892 static inline int pgd_none(pgd_t pgd) 893 { 894 /* 895 * There is no need to do a workaround for the KNL stray 896 * A/D bit erratum here. PGDs only point to page tables 897 * except on 32-bit non-PAE which is not supported on 898 * KNL. 899 */ 900 return !native_pgd_val(pgd); 901 } 902 #endif /* CONFIG_PGTABLE_LEVELS > 4 */ 903 904 #endif /* __ASSEMBLY__ */ 905 906 /* 907 * the pgd page can be thought of an array like this: pgd_t[PTRS_PER_PGD] 908 * 909 * this macro returns the index of the entry in the pgd page which would 910 * control the given virtual address 911 */ 912 #define pgd_index(address) (((address) >> PGDIR_SHIFT) & (PTRS_PER_PGD - 1)) 913 914 /* 915 * pgd_offset() returns a (pgd_t *) 916 * pgd_index() is used get the offset into the pgd page's array of pgd_t's; 917 */ 918 #define pgd_offset_pgd(pgd, address) (pgd + pgd_index((address))) 919 /* 920 * a shortcut to get a pgd_t in a given mm 921 */ 922 #define pgd_offset(mm, address) pgd_offset_pgd((mm)->pgd, (address)) 923 /* 924 * a shortcut which implies the use of the kernel's pgd, instead 925 * of a process's 926 */ 927 #define pgd_offset_k(address) pgd_offset(&init_mm, (address)) 928 929 930 #define KERNEL_PGD_BOUNDARY pgd_index(PAGE_OFFSET) 931 #define KERNEL_PGD_PTRS (PTRS_PER_PGD - KERNEL_PGD_BOUNDARY) 932 933 #ifndef __ASSEMBLY__ 934 935 extern int direct_gbpages; 936 void init_mem_mapping(void); 937 void early_alloc_pgt_buf(void); 938 extern void memblock_find_dma_reserve(void); 939 940 #ifdef CONFIG_X86_64 941 /* Realmode trampoline initialization. */ 942 extern pgd_t trampoline_pgd_entry; 943 static inline void __meminit init_trampoline_default(void) 944 { 945 /* Default trampoline pgd value */ 946 trampoline_pgd_entry = init_top_pgt[pgd_index(__PAGE_OFFSET)]; 947 } 948 # ifdef CONFIG_RANDOMIZE_MEMORY 949 void __meminit init_trampoline(void); 950 # else 951 # define init_trampoline init_trampoline_default 952 # endif 953 #else 954 static inline void init_trampoline(void) { } 955 #endif 956 957 /* local pte updates need not use xchg for locking */ 958 static inline pte_t native_local_ptep_get_and_clear(pte_t *ptep) 959 { 960 pte_t res = *ptep; 961 962 /* Pure native function needs no input for mm, addr */ 963 native_pte_clear(NULL, 0, ptep); 964 return res; 965 } 966 967 static inline pmd_t native_local_pmdp_get_and_clear(pmd_t *pmdp) 968 { 969 pmd_t res = *pmdp; 970 971 native_pmd_clear(pmdp); 972 return res; 973 } 974 975 static inline pud_t native_local_pudp_get_and_clear(pud_t *pudp) 976 { 977 pud_t res = *pudp; 978 979 native_pud_clear(pudp); 980 return res; 981 } 982 983 static inline void native_set_pte_at(struct mm_struct *mm, unsigned long addr, 984 pte_t *ptep , pte_t pte) 985 { 986 native_set_pte(ptep, pte); 987 } 988 989 static inline void set_pmd_at(struct mm_struct *mm, unsigned long addr, 990 pmd_t *pmdp, pmd_t pmd) 991 { 992 native_set_pmd(pmdp, pmd); 993 } 994 995 static inline void set_pud_at(struct mm_struct *mm, unsigned long addr, 996 pud_t *pudp, pud_t pud) 997 { 998 native_set_pud(pudp, pud); 999 } 1000 1001 /* 1002 * We only update the dirty/accessed state if we set 1003 * the dirty bit by hand in the kernel, since the hardware 1004 * will do the accessed bit for us, and we don't want to 1005 * race with other CPU's that might be updating the dirty 1006 * bit at the same time. 1007 */ 1008 struct vm_area_struct; 1009 1010 #define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS 1011 extern int ptep_set_access_flags(struct vm_area_struct *vma, 1012 unsigned long address, pte_t *ptep, 1013 pte_t entry, int dirty); 1014 1015 #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG 1016 extern int ptep_test_and_clear_young(struct vm_area_struct *vma, 1017 unsigned long addr, pte_t *ptep); 1018 1019 #define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH 1020 extern int ptep_clear_flush_young(struct vm_area_struct *vma, 1021 unsigned long address, pte_t *ptep); 1022 1023 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR 1024 static inline pte_t ptep_get_and_clear(struct mm_struct *mm, unsigned long addr, 1025 pte_t *ptep) 1026 { 1027 pte_t pte = native_ptep_get_and_clear(ptep); 1028 return pte; 1029 } 1030 1031 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL 1032 static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm, 1033 unsigned long addr, pte_t *ptep, 1034 int full) 1035 { 1036 pte_t pte; 1037 if (full) { 1038 /* 1039 * Full address destruction in progress; paravirt does not 1040 * care about updates and native needs no locking 1041 */ 1042 pte = native_local_ptep_get_and_clear(ptep); 1043 } else { 1044 pte = ptep_get_and_clear(mm, addr, ptep); 1045 } 1046 return pte; 1047 } 1048 1049 #define __HAVE_ARCH_PTEP_SET_WRPROTECT 1050 static inline void ptep_set_wrprotect(struct mm_struct *mm, 1051 unsigned long addr, pte_t *ptep) 1052 { 1053 clear_bit(_PAGE_BIT_RW, (unsigned long *)&ptep->pte); 1054 } 1055 1056 #define flush_tlb_fix_spurious_fault(vma, address) do { } while (0) 1057 1058 #define mk_pmd(page, pgprot) pfn_pmd(page_to_pfn(page), (pgprot)) 1059 1060 #define __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS 1061 extern int pmdp_set_access_flags(struct vm_area_struct *vma, 1062 unsigned long address, pmd_t *pmdp, 1063 pmd_t entry, int dirty); 1064 extern int pudp_set_access_flags(struct vm_area_struct *vma, 1065 unsigned long address, pud_t *pudp, 1066 pud_t entry, int dirty); 1067 1068 #define __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG 1069 extern int pmdp_test_and_clear_young(struct vm_area_struct *vma, 1070 unsigned long addr, pmd_t *pmdp); 1071 extern int pudp_test_and_clear_young(struct vm_area_struct *vma, 1072 unsigned long addr, pud_t *pudp); 1073 1074 #define __HAVE_ARCH_PMDP_CLEAR_YOUNG_FLUSH 1075 extern int pmdp_clear_flush_young(struct vm_area_struct *vma, 1076 unsigned long address, pmd_t *pmdp); 1077 1078 1079 #define pmd_write pmd_write 1080 static inline int pmd_write(pmd_t pmd) 1081 { 1082 return pmd_flags(pmd) & _PAGE_RW; 1083 } 1084 1085 #define __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR 1086 static inline pmd_t pmdp_huge_get_and_clear(struct mm_struct *mm, unsigned long addr, 1087 pmd_t *pmdp) 1088 { 1089 return native_pmdp_get_and_clear(pmdp); 1090 } 1091 1092 #define __HAVE_ARCH_PUDP_HUGE_GET_AND_CLEAR 1093 static inline pud_t pudp_huge_get_and_clear(struct mm_struct *mm, 1094 unsigned long addr, pud_t *pudp) 1095 { 1096 return native_pudp_get_and_clear(pudp); 1097 } 1098 1099 #define __HAVE_ARCH_PMDP_SET_WRPROTECT 1100 static inline void pmdp_set_wrprotect(struct mm_struct *mm, 1101 unsigned long addr, pmd_t *pmdp) 1102 { 1103 clear_bit(_PAGE_BIT_RW, (unsigned long *)pmdp); 1104 } 1105 1106 #define pud_write pud_write 1107 static inline int pud_write(pud_t pud) 1108 { 1109 return pud_flags(pud) & _PAGE_RW; 1110 } 1111 1112 #ifndef pmdp_establish 1113 #define pmdp_establish pmdp_establish 1114 static inline pmd_t pmdp_establish(struct vm_area_struct *vma, 1115 unsigned long address, pmd_t *pmdp, pmd_t pmd) 1116 { 1117 if (IS_ENABLED(CONFIG_SMP)) { 1118 return xchg(pmdp, pmd); 1119 } else { 1120 pmd_t old = *pmdp; 1121 *pmdp = pmd; 1122 return old; 1123 } 1124 } 1125 #endif 1126 1127 /* 1128 * clone_pgd_range(pgd_t *dst, pgd_t *src, int count); 1129 * 1130 * dst - pointer to pgd range anwhere on a pgd page 1131 * src - "" 1132 * count - the number of pgds to copy. 1133 * 1134 * dst and src can be on the same page, but the range must not overlap, 1135 * and must not cross a page boundary. 1136 */ 1137 static inline void clone_pgd_range(pgd_t *dst, pgd_t *src, int count) 1138 { 1139 memcpy(dst, src, count * sizeof(pgd_t)); 1140 #ifdef CONFIG_PAGE_TABLE_ISOLATION 1141 if (!static_cpu_has(X86_FEATURE_PTI)) 1142 return; 1143 /* Clone the user space pgd as well */ 1144 memcpy(kernel_to_user_pgdp(dst), kernel_to_user_pgdp(src), 1145 count * sizeof(pgd_t)); 1146 #endif 1147 } 1148 1149 #define PTE_SHIFT ilog2(PTRS_PER_PTE) 1150 static inline int page_level_shift(enum pg_level level) 1151 { 1152 return (PAGE_SHIFT - PTE_SHIFT) + level * PTE_SHIFT; 1153 } 1154 static inline unsigned long page_level_size(enum pg_level level) 1155 { 1156 return 1UL << page_level_shift(level); 1157 } 1158 static inline unsigned long page_level_mask(enum pg_level level) 1159 { 1160 return ~(page_level_size(level) - 1); 1161 } 1162 1163 /* 1164 * The x86 doesn't have any external MMU info: the kernel page 1165 * tables contain all the necessary information. 1166 */ 1167 static inline void update_mmu_cache(struct vm_area_struct *vma, 1168 unsigned long addr, pte_t *ptep) 1169 { 1170 } 1171 static inline void update_mmu_cache_pmd(struct vm_area_struct *vma, 1172 unsigned long addr, pmd_t *pmd) 1173 { 1174 } 1175 static inline void update_mmu_cache_pud(struct vm_area_struct *vma, 1176 unsigned long addr, pud_t *pud) 1177 { 1178 } 1179 1180 #ifdef CONFIG_HAVE_ARCH_SOFT_DIRTY 1181 static inline pte_t pte_swp_mksoft_dirty(pte_t pte) 1182 { 1183 return pte_set_flags(pte, _PAGE_SWP_SOFT_DIRTY); 1184 } 1185 1186 static inline int pte_swp_soft_dirty(pte_t pte) 1187 { 1188 return pte_flags(pte) & _PAGE_SWP_SOFT_DIRTY; 1189 } 1190 1191 static inline pte_t pte_swp_clear_soft_dirty(pte_t pte) 1192 { 1193 return pte_clear_flags(pte, _PAGE_SWP_SOFT_DIRTY); 1194 } 1195 1196 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION 1197 static inline pmd_t pmd_swp_mksoft_dirty(pmd_t pmd) 1198 { 1199 return pmd_set_flags(pmd, _PAGE_SWP_SOFT_DIRTY); 1200 } 1201 1202 static inline int pmd_swp_soft_dirty(pmd_t pmd) 1203 { 1204 return pmd_flags(pmd) & _PAGE_SWP_SOFT_DIRTY; 1205 } 1206 1207 static inline pmd_t pmd_swp_clear_soft_dirty(pmd_t pmd) 1208 { 1209 return pmd_clear_flags(pmd, _PAGE_SWP_SOFT_DIRTY); 1210 } 1211 #endif 1212 #endif 1213 1214 #define PKRU_AD_BIT 0x1 1215 #define PKRU_WD_BIT 0x2 1216 #define PKRU_BITS_PER_PKEY 2 1217 1218 static inline bool __pkru_allows_read(u32 pkru, u16 pkey) 1219 { 1220 int pkru_pkey_bits = pkey * PKRU_BITS_PER_PKEY; 1221 return !(pkru & (PKRU_AD_BIT << pkru_pkey_bits)); 1222 } 1223 1224 static inline bool __pkru_allows_write(u32 pkru, u16 pkey) 1225 { 1226 int pkru_pkey_bits = pkey * PKRU_BITS_PER_PKEY; 1227 /* 1228 * Access-disable disables writes too so we need to check 1229 * both bits here. 1230 */ 1231 return !(pkru & ((PKRU_AD_BIT|PKRU_WD_BIT) << pkru_pkey_bits)); 1232 } 1233 1234 static inline u16 pte_flags_pkey(unsigned long pte_flags) 1235 { 1236 #ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS 1237 /* ifdef to avoid doing 59-bit shift on 32-bit values */ 1238 return (pte_flags & _PAGE_PKEY_MASK) >> _PAGE_BIT_PKEY_BIT0; 1239 #else 1240 return 0; 1241 #endif 1242 } 1243 1244 static inline bool __pkru_allows_pkey(u16 pkey, bool write) 1245 { 1246 u32 pkru = read_pkru(); 1247 1248 if (!__pkru_allows_read(pkru, pkey)) 1249 return false; 1250 if (write && !__pkru_allows_write(pkru, pkey)) 1251 return false; 1252 1253 return true; 1254 } 1255 1256 /* 1257 * 'pteval' can come from a PTE, PMD or PUD. We only check 1258 * _PAGE_PRESENT, _PAGE_USER, and _PAGE_RW in here which are the 1259 * same value on all 3 types. 1260 */ 1261 static inline bool __pte_access_permitted(unsigned long pteval, bool write) 1262 { 1263 unsigned long need_pte_bits = _PAGE_PRESENT|_PAGE_USER; 1264 1265 if (write) 1266 need_pte_bits |= _PAGE_RW; 1267 1268 if ((pteval & need_pte_bits) != need_pte_bits) 1269 return 0; 1270 1271 return __pkru_allows_pkey(pte_flags_pkey(pteval), write); 1272 } 1273 1274 #define pte_access_permitted pte_access_permitted 1275 static inline bool pte_access_permitted(pte_t pte, bool write) 1276 { 1277 return __pte_access_permitted(pte_val(pte), write); 1278 } 1279 1280 #define pmd_access_permitted pmd_access_permitted 1281 static inline bool pmd_access_permitted(pmd_t pmd, bool write) 1282 { 1283 return __pte_access_permitted(pmd_val(pmd), write); 1284 } 1285 1286 #define pud_access_permitted pud_access_permitted 1287 static inline bool pud_access_permitted(pud_t pud, bool write) 1288 { 1289 return __pte_access_permitted(pud_val(pud), write); 1290 } 1291 1292 #include <asm-generic/pgtable.h> 1293 #endif /* __ASSEMBLY__ */ 1294 1295 #endif /* _ASM_X86_PGTABLE_H */ 1296