1 /* SPDX-License-Identifier: GPL-2.0 */ 2 #ifndef _ASM_X86_PGTABLE_H 3 #define _ASM_X86_PGTABLE_H 4 5 #include <linux/mem_encrypt.h> 6 #include <asm/page.h> 7 #include <asm/pgtable_types.h> 8 9 /* 10 * Macro to mark a page protection value as UC- 11 */ 12 #define pgprot_noncached(prot) \ 13 ((boot_cpu_data.x86 > 3) \ 14 ? (__pgprot(pgprot_val(prot) | \ 15 cachemode2protval(_PAGE_CACHE_MODE_UC_MINUS))) \ 16 : (prot)) 17 18 /* 19 * Macros to add or remove encryption attribute 20 */ 21 #define pgprot_encrypted(prot) __pgprot(__sme_set(pgprot_val(prot))) 22 #define pgprot_decrypted(prot) __pgprot(__sme_clr(pgprot_val(prot))) 23 24 #ifndef __ASSEMBLY__ 25 #include <asm/x86_init.h> 26 #include <asm/fpu/xstate.h> 27 #include <asm/fpu/api.h> 28 #include <asm-generic/pgtable_uffd.h> 29 30 extern pgd_t early_top_pgt[PTRS_PER_PGD]; 31 int __init __early_make_pgtable(unsigned long address, pmdval_t pmd); 32 33 void ptdump_walk_pgd_level(struct seq_file *m, struct mm_struct *mm); 34 void ptdump_walk_pgd_level_debugfs(struct seq_file *m, struct mm_struct *mm, 35 bool user); 36 void ptdump_walk_pgd_level_checkwx(void); 37 void ptdump_walk_user_pgd_level_checkwx(void); 38 39 #ifdef CONFIG_DEBUG_WX 40 #define debug_checkwx() ptdump_walk_pgd_level_checkwx() 41 #define debug_checkwx_user() ptdump_walk_user_pgd_level_checkwx() 42 #else 43 #define debug_checkwx() do { } while (0) 44 #define debug_checkwx_user() do { } while (0) 45 #endif 46 47 /* 48 * ZERO_PAGE is a global shared page that is always zero: used 49 * for zero-mapped memory areas etc.. 50 */ 51 extern unsigned long empty_zero_page[PAGE_SIZE / sizeof(unsigned long)] 52 __visible; 53 #define ZERO_PAGE(vaddr) ((void)(vaddr),virt_to_page(empty_zero_page)) 54 55 extern spinlock_t pgd_lock; 56 extern struct list_head pgd_list; 57 58 extern struct mm_struct *pgd_page_get_mm(struct page *page); 59 60 extern pmdval_t early_pmd_flags; 61 62 #ifdef CONFIG_PARAVIRT_XXL 63 #include <asm/paravirt.h> 64 #else /* !CONFIG_PARAVIRT_XXL */ 65 #define set_pte(ptep, pte) native_set_pte(ptep, pte) 66 #define set_pte_at(mm, addr, ptep, pte) native_set_pte_at(mm, addr, ptep, pte) 67 68 #define set_pte_atomic(ptep, pte) \ 69 native_set_pte_atomic(ptep, pte) 70 71 #define set_pmd(pmdp, pmd) native_set_pmd(pmdp, pmd) 72 73 #ifndef __PAGETABLE_P4D_FOLDED 74 #define set_pgd(pgdp, pgd) native_set_pgd(pgdp, pgd) 75 #define pgd_clear(pgd) (pgtable_l5_enabled() ? native_pgd_clear(pgd) : 0) 76 #endif 77 78 #ifndef set_p4d 79 # define set_p4d(p4dp, p4d) native_set_p4d(p4dp, p4d) 80 #endif 81 82 #ifndef __PAGETABLE_PUD_FOLDED 83 #define p4d_clear(p4d) native_p4d_clear(p4d) 84 #endif 85 86 #ifndef set_pud 87 # define set_pud(pudp, pud) native_set_pud(pudp, pud) 88 #endif 89 90 #ifndef __PAGETABLE_PUD_FOLDED 91 #define pud_clear(pud) native_pud_clear(pud) 92 #endif 93 94 #define pte_clear(mm, addr, ptep) native_pte_clear(mm, addr, ptep) 95 #define pmd_clear(pmd) native_pmd_clear(pmd) 96 97 #define pgd_val(x) native_pgd_val(x) 98 #define __pgd(x) native_make_pgd(x) 99 100 #ifndef __PAGETABLE_P4D_FOLDED 101 #define p4d_val(x) native_p4d_val(x) 102 #define __p4d(x) native_make_p4d(x) 103 #endif 104 105 #ifndef __PAGETABLE_PUD_FOLDED 106 #define pud_val(x) native_pud_val(x) 107 #define __pud(x) native_make_pud(x) 108 #endif 109 110 #ifndef __PAGETABLE_PMD_FOLDED 111 #define pmd_val(x) native_pmd_val(x) 112 #define __pmd(x) native_make_pmd(x) 113 #endif 114 115 #define pte_val(x) native_pte_val(x) 116 #define __pte(x) native_make_pte(x) 117 118 #define arch_end_context_switch(prev) do {} while(0) 119 #endif /* CONFIG_PARAVIRT_XXL */ 120 121 /* 122 * The following only work if pte_present() is true. 123 * Undefined behaviour if not.. 124 */ 125 static inline int pte_dirty(pte_t pte) 126 { 127 return pte_flags(pte) & _PAGE_DIRTY; 128 } 129 130 131 static inline u32 read_pkru(void) 132 { 133 if (boot_cpu_has(X86_FEATURE_OSPKE)) 134 return rdpkru(); 135 return 0; 136 } 137 138 static inline void write_pkru(u32 pkru) 139 { 140 struct pkru_state *pk; 141 142 if (!boot_cpu_has(X86_FEATURE_OSPKE)) 143 return; 144 145 pk = get_xsave_addr(¤t->thread.fpu.state.xsave, XFEATURE_PKRU); 146 147 /* 148 * The PKRU value in xstate needs to be in sync with the value that is 149 * written to the CPU. The FPU restore on return to userland would 150 * otherwise load the previous value again. 151 */ 152 fpregs_lock(); 153 if (pk) 154 pk->pkru = pkru; 155 __write_pkru(pkru); 156 fpregs_unlock(); 157 } 158 159 static inline int pte_young(pte_t pte) 160 { 161 return pte_flags(pte) & _PAGE_ACCESSED; 162 } 163 164 static inline int pmd_dirty(pmd_t pmd) 165 { 166 return pmd_flags(pmd) & _PAGE_DIRTY; 167 } 168 169 static inline int pmd_young(pmd_t pmd) 170 { 171 return pmd_flags(pmd) & _PAGE_ACCESSED; 172 } 173 174 static inline int pud_dirty(pud_t pud) 175 { 176 return pud_flags(pud) & _PAGE_DIRTY; 177 } 178 179 static inline int pud_young(pud_t pud) 180 { 181 return pud_flags(pud) & _PAGE_ACCESSED; 182 } 183 184 static inline int pte_write(pte_t pte) 185 { 186 return pte_flags(pte) & _PAGE_RW; 187 } 188 189 static inline int pte_huge(pte_t pte) 190 { 191 return pte_flags(pte) & _PAGE_PSE; 192 } 193 194 static inline int pte_global(pte_t pte) 195 { 196 return pte_flags(pte) & _PAGE_GLOBAL; 197 } 198 199 static inline int pte_exec(pte_t pte) 200 { 201 return !(pte_flags(pte) & _PAGE_NX); 202 } 203 204 static inline int pte_special(pte_t pte) 205 { 206 return pte_flags(pte) & _PAGE_SPECIAL; 207 } 208 209 /* Entries that were set to PROT_NONE are inverted */ 210 211 static inline u64 protnone_mask(u64 val); 212 213 static inline unsigned long pte_pfn(pte_t pte) 214 { 215 phys_addr_t pfn = pte_val(pte); 216 pfn ^= protnone_mask(pfn); 217 return (pfn & PTE_PFN_MASK) >> PAGE_SHIFT; 218 } 219 220 static inline unsigned long pmd_pfn(pmd_t pmd) 221 { 222 phys_addr_t pfn = pmd_val(pmd); 223 pfn ^= protnone_mask(pfn); 224 return (pfn & pmd_pfn_mask(pmd)) >> PAGE_SHIFT; 225 } 226 227 static inline unsigned long pud_pfn(pud_t pud) 228 { 229 phys_addr_t pfn = pud_val(pud); 230 pfn ^= protnone_mask(pfn); 231 return (pfn & pud_pfn_mask(pud)) >> PAGE_SHIFT; 232 } 233 234 static inline unsigned long p4d_pfn(p4d_t p4d) 235 { 236 return (p4d_val(p4d) & p4d_pfn_mask(p4d)) >> PAGE_SHIFT; 237 } 238 239 static inline unsigned long pgd_pfn(pgd_t pgd) 240 { 241 return (pgd_val(pgd) & PTE_PFN_MASK) >> PAGE_SHIFT; 242 } 243 244 #define p4d_leaf p4d_large 245 static inline int p4d_large(p4d_t p4d) 246 { 247 /* No 512 GiB pages yet */ 248 return 0; 249 } 250 251 #define pte_page(pte) pfn_to_page(pte_pfn(pte)) 252 253 #define pmd_leaf pmd_large 254 static inline int pmd_large(pmd_t pte) 255 { 256 return pmd_flags(pte) & _PAGE_PSE; 257 } 258 259 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 260 /* NOTE: when predicate huge page, consider also pmd_devmap, or use pmd_large */ 261 static inline int pmd_trans_huge(pmd_t pmd) 262 { 263 return (pmd_val(pmd) & (_PAGE_PSE|_PAGE_DEVMAP)) == _PAGE_PSE; 264 } 265 266 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD 267 static inline int pud_trans_huge(pud_t pud) 268 { 269 return (pud_val(pud) & (_PAGE_PSE|_PAGE_DEVMAP)) == _PAGE_PSE; 270 } 271 #endif 272 273 #define has_transparent_hugepage has_transparent_hugepage 274 static inline int has_transparent_hugepage(void) 275 { 276 return boot_cpu_has(X86_FEATURE_PSE); 277 } 278 279 #ifdef CONFIG_ARCH_HAS_PTE_DEVMAP 280 static inline int pmd_devmap(pmd_t pmd) 281 { 282 return !!(pmd_val(pmd) & _PAGE_DEVMAP); 283 } 284 285 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD 286 static inline int pud_devmap(pud_t pud) 287 { 288 return !!(pud_val(pud) & _PAGE_DEVMAP); 289 } 290 #else 291 static inline int pud_devmap(pud_t pud) 292 { 293 return 0; 294 } 295 #endif 296 297 static inline int pgd_devmap(pgd_t pgd) 298 { 299 return 0; 300 } 301 #endif 302 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 303 304 static inline pte_t pte_set_flags(pte_t pte, pteval_t set) 305 { 306 pteval_t v = native_pte_val(pte); 307 308 return native_make_pte(v | set); 309 } 310 311 static inline pte_t pte_clear_flags(pte_t pte, pteval_t clear) 312 { 313 pteval_t v = native_pte_val(pte); 314 315 return native_make_pte(v & ~clear); 316 } 317 318 #ifdef CONFIG_HAVE_ARCH_USERFAULTFD_WP 319 static inline int pte_uffd_wp(pte_t pte) 320 { 321 return pte_flags(pte) & _PAGE_UFFD_WP; 322 } 323 324 static inline pte_t pte_mkuffd_wp(pte_t pte) 325 { 326 return pte_set_flags(pte, _PAGE_UFFD_WP); 327 } 328 329 static inline pte_t pte_clear_uffd_wp(pte_t pte) 330 { 331 return pte_clear_flags(pte, _PAGE_UFFD_WP); 332 } 333 #endif /* CONFIG_HAVE_ARCH_USERFAULTFD_WP */ 334 335 static inline pte_t pte_mkclean(pte_t pte) 336 { 337 return pte_clear_flags(pte, _PAGE_DIRTY); 338 } 339 340 static inline pte_t pte_mkold(pte_t pte) 341 { 342 return pte_clear_flags(pte, _PAGE_ACCESSED); 343 } 344 345 static inline pte_t pte_wrprotect(pte_t pte) 346 { 347 return pte_clear_flags(pte, _PAGE_RW); 348 } 349 350 static inline pte_t pte_mkexec(pte_t pte) 351 { 352 return pte_clear_flags(pte, _PAGE_NX); 353 } 354 355 static inline pte_t pte_mkdirty(pte_t pte) 356 { 357 return pte_set_flags(pte, _PAGE_DIRTY | _PAGE_SOFT_DIRTY); 358 } 359 360 static inline pte_t pte_mkyoung(pte_t pte) 361 { 362 return pte_set_flags(pte, _PAGE_ACCESSED); 363 } 364 365 static inline pte_t pte_mkwrite(pte_t pte) 366 { 367 return pte_set_flags(pte, _PAGE_RW); 368 } 369 370 static inline pte_t pte_mkhuge(pte_t pte) 371 { 372 return pte_set_flags(pte, _PAGE_PSE); 373 } 374 375 static inline pte_t pte_clrhuge(pte_t pte) 376 { 377 return pte_clear_flags(pte, _PAGE_PSE); 378 } 379 380 static inline pte_t pte_mkglobal(pte_t pte) 381 { 382 return pte_set_flags(pte, _PAGE_GLOBAL); 383 } 384 385 static inline pte_t pte_clrglobal(pte_t pte) 386 { 387 return pte_clear_flags(pte, _PAGE_GLOBAL); 388 } 389 390 static inline pte_t pte_mkspecial(pte_t pte) 391 { 392 return pte_set_flags(pte, _PAGE_SPECIAL); 393 } 394 395 static inline pte_t pte_mkdevmap(pte_t pte) 396 { 397 return pte_set_flags(pte, _PAGE_SPECIAL|_PAGE_DEVMAP); 398 } 399 400 static inline pmd_t pmd_set_flags(pmd_t pmd, pmdval_t set) 401 { 402 pmdval_t v = native_pmd_val(pmd); 403 404 return native_make_pmd(v | set); 405 } 406 407 static inline pmd_t pmd_clear_flags(pmd_t pmd, pmdval_t clear) 408 { 409 pmdval_t v = native_pmd_val(pmd); 410 411 return native_make_pmd(v & ~clear); 412 } 413 414 #ifdef CONFIG_HAVE_ARCH_USERFAULTFD_WP 415 static inline int pmd_uffd_wp(pmd_t pmd) 416 { 417 return pmd_flags(pmd) & _PAGE_UFFD_WP; 418 } 419 420 static inline pmd_t pmd_mkuffd_wp(pmd_t pmd) 421 { 422 return pmd_set_flags(pmd, _PAGE_UFFD_WP); 423 } 424 425 static inline pmd_t pmd_clear_uffd_wp(pmd_t pmd) 426 { 427 return pmd_clear_flags(pmd, _PAGE_UFFD_WP); 428 } 429 #endif /* CONFIG_HAVE_ARCH_USERFAULTFD_WP */ 430 431 static inline pmd_t pmd_mkold(pmd_t pmd) 432 { 433 return pmd_clear_flags(pmd, _PAGE_ACCESSED); 434 } 435 436 static inline pmd_t pmd_mkclean(pmd_t pmd) 437 { 438 return pmd_clear_flags(pmd, _PAGE_DIRTY); 439 } 440 441 static inline pmd_t pmd_wrprotect(pmd_t pmd) 442 { 443 return pmd_clear_flags(pmd, _PAGE_RW); 444 } 445 446 static inline pmd_t pmd_mkdirty(pmd_t pmd) 447 { 448 return pmd_set_flags(pmd, _PAGE_DIRTY | _PAGE_SOFT_DIRTY); 449 } 450 451 static inline pmd_t pmd_mkdevmap(pmd_t pmd) 452 { 453 return pmd_set_flags(pmd, _PAGE_DEVMAP); 454 } 455 456 static inline pmd_t pmd_mkhuge(pmd_t pmd) 457 { 458 return pmd_set_flags(pmd, _PAGE_PSE); 459 } 460 461 static inline pmd_t pmd_mkyoung(pmd_t pmd) 462 { 463 return pmd_set_flags(pmd, _PAGE_ACCESSED); 464 } 465 466 static inline pmd_t pmd_mkwrite(pmd_t pmd) 467 { 468 return pmd_set_flags(pmd, _PAGE_RW); 469 } 470 471 static inline pud_t pud_set_flags(pud_t pud, pudval_t set) 472 { 473 pudval_t v = native_pud_val(pud); 474 475 return native_make_pud(v | set); 476 } 477 478 static inline pud_t pud_clear_flags(pud_t pud, pudval_t clear) 479 { 480 pudval_t v = native_pud_val(pud); 481 482 return native_make_pud(v & ~clear); 483 } 484 485 static inline pud_t pud_mkold(pud_t pud) 486 { 487 return pud_clear_flags(pud, _PAGE_ACCESSED); 488 } 489 490 static inline pud_t pud_mkclean(pud_t pud) 491 { 492 return pud_clear_flags(pud, _PAGE_DIRTY); 493 } 494 495 static inline pud_t pud_wrprotect(pud_t pud) 496 { 497 return pud_clear_flags(pud, _PAGE_RW); 498 } 499 500 static inline pud_t pud_mkdirty(pud_t pud) 501 { 502 return pud_set_flags(pud, _PAGE_DIRTY | _PAGE_SOFT_DIRTY); 503 } 504 505 static inline pud_t pud_mkdevmap(pud_t pud) 506 { 507 return pud_set_flags(pud, _PAGE_DEVMAP); 508 } 509 510 static inline pud_t pud_mkhuge(pud_t pud) 511 { 512 return pud_set_flags(pud, _PAGE_PSE); 513 } 514 515 static inline pud_t pud_mkyoung(pud_t pud) 516 { 517 return pud_set_flags(pud, _PAGE_ACCESSED); 518 } 519 520 static inline pud_t pud_mkwrite(pud_t pud) 521 { 522 return pud_set_flags(pud, _PAGE_RW); 523 } 524 525 #ifdef CONFIG_HAVE_ARCH_SOFT_DIRTY 526 static inline int pte_soft_dirty(pte_t pte) 527 { 528 return pte_flags(pte) & _PAGE_SOFT_DIRTY; 529 } 530 531 static inline int pmd_soft_dirty(pmd_t pmd) 532 { 533 return pmd_flags(pmd) & _PAGE_SOFT_DIRTY; 534 } 535 536 static inline int pud_soft_dirty(pud_t pud) 537 { 538 return pud_flags(pud) & _PAGE_SOFT_DIRTY; 539 } 540 541 static inline pte_t pte_mksoft_dirty(pte_t pte) 542 { 543 return pte_set_flags(pte, _PAGE_SOFT_DIRTY); 544 } 545 546 static inline pmd_t pmd_mksoft_dirty(pmd_t pmd) 547 { 548 return pmd_set_flags(pmd, _PAGE_SOFT_DIRTY); 549 } 550 551 static inline pud_t pud_mksoft_dirty(pud_t pud) 552 { 553 return pud_set_flags(pud, _PAGE_SOFT_DIRTY); 554 } 555 556 static inline pte_t pte_clear_soft_dirty(pte_t pte) 557 { 558 return pte_clear_flags(pte, _PAGE_SOFT_DIRTY); 559 } 560 561 static inline pmd_t pmd_clear_soft_dirty(pmd_t pmd) 562 { 563 return pmd_clear_flags(pmd, _PAGE_SOFT_DIRTY); 564 } 565 566 static inline pud_t pud_clear_soft_dirty(pud_t pud) 567 { 568 return pud_clear_flags(pud, _PAGE_SOFT_DIRTY); 569 } 570 571 #endif /* CONFIG_HAVE_ARCH_SOFT_DIRTY */ 572 573 /* 574 * Mask out unsupported bits in a present pgprot. Non-present pgprots 575 * can use those bits for other purposes, so leave them be. 576 */ 577 static inline pgprotval_t massage_pgprot(pgprot_t pgprot) 578 { 579 pgprotval_t protval = pgprot_val(pgprot); 580 581 if (protval & _PAGE_PRESENT) 582 protval &= __supported_pte_mask; 583 584 return protval; 585 } 586 587 static inline pgprotval_t check_pgprot(pgprot_t pgprot) 588 { 589 pgprotval_t massaged_val = massage_pgprot(pgprot); 590 591 /* mmdebug.h can not be included here because of dependencies */ 592 #ifdef CONFIG_DEBUG_VM 593 WARN_ONCE(pgprot_val(pgprot) != massaged_val, 594 "attempted to set unsupported pgprot: %016llx " 595 "bits: %016llx supported: %016llx\n", 596 (u64)pgprot_val(pgprot), 597 (u64)pgprot_val(pgprot) ^ massaged_val, 598 (u64)__supported_pte_mask); 599 #endif 600 601 return massaged_val; 602 } 603 604 static inline pte_t pfn_pte(unsigned long page_nr, pgprot_t pgprot) 605 { 606 phys_addr_t pfn = (phys_addr_t)page_nr << PAGE_SHIFT; 607 pfn ^= protnone_mask(pgprot_val(pgprot)); 608 pfn &= PTE_PFN_MASK; 609 return __pte(pfn | check_pgprot(pgprot)); 610 } 611 612 static inline pmd_t pfn_pmd(unsigned long page_nr, pgprot_t pgprot) 613 { 614 phys_addr_t pfn = (phys_addr_t)page_nr << PAGE_SHIFT; 615 pfn ^= protnone_mask(pgprot_val(pgprot)); 616 pfn &= PHYSICAL_PMD_PAGE_MASK; 617 return __pmd(pfn | check_pgprot(pgprot)); 618 } 619 620 static inline pud_t pfn_pud(unsigned long page_nr, pgprot_t pgprot) 621 { 622 phys_addr_t pfn = (phys_addr_t)page_nr << PAGE_SHIFT; 623 pfn ^= protnone_mask(pgprot_val(pgprot)); 624 pfn &= PHYSICAL_PUD_PAGE_MASK; 625 return __pud(pfn | check_pgprot(pgprot)); 626 } 627 628 static inline pmd_t pmd_mkinvalid(pmd_t pmd) 629 { 630 return pfn_pmd(pmd_pfn(pmd), 631 __pgprot(pmd_flags(pmd) & ~(_PAGE_PRESENT|_PAGE_PROTNONE))); 632 } 633 634 static inline u64 flip_protnone_guard(u64 oldval, u64 val, u64 mask); 635 636 static inline pte_t pte_modify(pte_t pte, pgprot_t newprot) 637 { 638 pteval_t val = pte_val(pte), oldval = val; 639 640 /* 641 * Chop off the NX bit (if present), and add the NX portion of 642 * the newprot (if present): 643 */ 644 val &= _PAGE_CHG_MASK; 645 val |= check_pgprot(newprot) & ~_PAGE_CHG_MASK; 646 val = flip_protnone_guard(oldval, val, PTE_PFN_MASK); 647 return __pte(val); 648 } 649 650 static inline pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot) 651 { 652 pmdval_t val = pmd_val(pmd), oldval = val; 653 654 val &= _HPAGE_CHG_MASK; 655 val |= check_pgprot(newprot) & ~_HPAGE_CHG_MASK; 656 val = flip_protnone_guard(oldval, val, PHYSICAL_PMD_PAGE_MASK); 657 return __pmd(val); 658 } 659 660 /* 661 * mprotect needs to preserve PAT and encryption bits when updating 662 * vm_page_prot 663 */ 664 #define pgprot_modify pgprot_modify 665 static inline pgprot_t pgprot_modify(pgprot_t oldprot, pgprot_t newprot) 666 { 667 pgprotval_t preservebits = pgprot_val(oldprot) & _PAGE_CHG_MASK; 668 pgprotval_t addbits = pgprot_val(newprot) & ~_PAGE_CHG_MASK; 669 return __pgprot(preservebits | addbits); 670 } 671 672 #define pte_pgprot(x) __pgprot(pte_flags(x)) 673 #define pmd_pgprot(x) __pgprot(pmd_flags(x)) 674 #define pud_pgprot(x) __pgprot(pud_flags(x)) 675 #define p4d_pgprot(x) __pgprot(p4d_flags(x)) 676 677 #define canon_pgprot(p) __pgprot(massage_pgprot(p)) 678 679 static inline pgprot_t arch_filter_pgprot(pgprot_t prot) 680 { 681 return canon_pgprot(prot); 682 } 683 684 static inline int is_new_memtype_allowed(u64 paddr, unsigned long size, 685 enum page_cache_mode pcm, 686 enum page_cache_mode new_pcm) 687 { 688 /* 689 * PAT type is always WB for untracked ranges, so no need to check. 690 */ 691 if (x86_platform.is_untracked_pat_range(paddr, paddr + size)) 692 return 1; 693 694 /* 695 * Certain new memtypes are not allowed with certain 696 * requested memtype: 697 * - request is uncached, return cannot be write-back 698 * - request is write-combine, return cannot be write-back 699 * - request is write-through, return cannot be write-back 700 * - request is write-through, return cannot be write-combine 701 */ 702 if ((pcm == _PAGE_CACHE_MODE_UC_MINUS && 703 new_pcm == _PAGE_CACHE_MODE_WB) || 704 (pcm == _PAGE_CACHE_MODE_WC && 705 new_pcm == _PAGE_CACHE_MODE_WB) || 706 (pcm == _PAGE_CACHE_MODE_WT && 707 new_pcm == _PAGE_CACHE_MODE_WB) || 708 (pcm == _PAGE_CACHE_MODE_WT && 709 new_pcm == _PAGE_CACHE_MODE_WC)) { 710 return 0; 711 } 712 713 return 1; 714 } 715 716 pmd_t *populate_extra_pmd(unsigned long vaddr); 717 pte_t *populate_extra_pte(unsigned long vaddr); 718 719 #ifdef CONFIG_PAGE_TABLE_ISOLATION 720 pgd_t __pti_set_user_pgtbl(pgd_t *pgdp, pgd_t pgd); 721 722 /* 723 * Take a PGD location (pgdp) and a pgd value that needs to be set there. 724 * Populates the user and returns the resulting PGD that must be set in 725 * the kernel copy of the page tables. 726 */ 727 static inline pgd_t pti_set_user_pgtbl(pgd_t *pgdp, pgd_t pgd) 728 { 729 if (!static_cpu_has(X86_FEATURE_PTI)) 730 return pgd; 731 return __pti_set_user_pgtbl(pgdp, pgd); 732 } 733 #else /* CONFIG_PAGE_TABLE_ISOLATION */ 734 static inline pgd_t pti_set_user_pgtbl(pgd_t *pgdp, pgd_t pgd) 735 { 736 return pgd; 737 } 738 #endif /* CONFIG_PAGE_TABLE_ISOLATION */ 739 740 #endif /* __ASSEMBLY__ */ 741 742 743 #ifdef CONFIG_X86_32 744 # include <asm/pgtable_32.h> 745 #else 746 # include <asm/pgtable_64.h> 747 #endif 748 749 #ifndef __ASSEMBLY__ 750 #include <linux/mm_types.h> 751 #include <linux/mmdebug.h> 752 #include <linux/log2.h> 753 #include <asm/fixmap.h> 754 755 static inline int pte_none(pte_t pte) 756 { 757 return !(pte.pte & ~(_PAGE_KNL_ERRATUM_MASK)); 758 } 759 760 #define __HAVE_ARCH_PTE_SAME 761 static inline int pte_same(pte_t a, pte_t b) 762 { 763 return a.pte == b.pte; 764 } 765 766 static inline int pte_present(pte_t a) 767 { 768 return pte_flags(a) & (_PAGE_PRESENT | _PAGE_PROTNONE); 769 } 770 771 #ifdef CONFIG_ARCH_HAS_PTE_DEVMAP 772 static inline int pte_devmap(pte_t a) 773 { 774 return (pte_flags(a) & _PAGE_DEVMAP) == _PAGE_DEVMAP; 775 } 776 #endif 777 778 #define pte_accessible pte_accessible 779 static inline bool pte_accessible(struct mm_struct *mm, pte_t a) 780 { 781 if (pte_flags(a) & _PAGE_PRESENT) 782 return true; 783 784 if ((pte_flags(a) & _PAGE_PROTNONE) && 785 mm_tlb_flush_pending(mm)) 786 return true; 787 788 return false; 789 } 790 791 static inline int pmd_present(pmd_t pmd) 792 { 793 /* 794 * Checking for _PAGE_PSE is needed too because 795 * split_huge_page will temporarily clear the present bit (but 796 * the _PAGE_PSE flag will remain set at all times while the 797 * _PAGE_PRESENT bit is clear). 798 */ 799 return pmd_flags(pmd) & (_PAGE_PRESENT | _PAGE_PROTNONE | _PAGE_PSE); 800 } 801 802 #ifdef CONFIG_NUMA_BALANCING 803 /* 804 * These work without NUMA balancing but the kernel does not care. See the 805 * comment in include/linux/pgtable.h 806 */ 807 static inline int pte_protnone(pte_t pte) 808 { 809 return (pte_flags(pte) & (_PAGE_PROTNONE | _PAGE_PRESENT)) 810 == _PAGE_PROTNONE; 811 } 812 813 static inline int pmd_protnone(pmd_t pmd) 814 { 815 return (pmd_flags(pmd) & (_PAGE_PROTNONE | _PAGE_PRESENT)) 816 == _PAGE_PROTNONE; 817 } 818 #endif /* CONFIG_NUMA_BALANCING */ 819 820 static inline int pmd_none(pmd_t pmd) 821 { 822 /* Only check low word on 32-bit platforms, since it might be 823 out of sync with upper half. */ 824 unsigned long val = native_pmd_val(pmd); 825 return (val & ~_PAGE_KNL_ERRATUM_MASK) == 0; 826 } 827 828 static inline unsigned long pmd_page_vaddr(pmd_t pmd) 829 { 830 return (unsigned long)__va(pmd_val(pmd) & pmd_pfn_mask(pmd)); 831 } 832 833 /* 834 * Currently stuck as a macro due to indirect forward reference to 835 * linux/mmzone.h's __section_mem_map_addr() definition: 836 */ 837 #define pmd_page(pmd) pfn_to_page(pmd_pfn(pmd)) 838 839 /* 840 * Conversion functions: convert a page and protection to a page entry, 841 * and a page entry and page directory to the page they refer to. 842 * 843 * (Currently stuck as a macro because of indirect forward reference 844 * to linux/mm.h:page_to_nid()) 845 */ 846 #define mk_pte(page, pgprot) pfn_pte(page_to_pfn(page), (pgprot)) 847 848 static inline int pmd_bad(pmd_t pmd) 849 { 850 return (pmd_flags(pmd) & ~_PAGE_USER) != _KERNPG_TABLE; 851 } 852 853 static inline unsigned long pages_to_mb(unsigned long npg) 854 { 855 return npg >> (20 - PAGE_SHIFT); 856 } 857 858 #if CONFIG_PGTABLE_LEVELS > 2 859 static inline int pud_none(pud_t pud) 860 { 861 return (native_pud_val(pud) & ~(_PAGE_KNL_ERRATUM_MASK)) == 0; 862 } 863 864 static inline int pud_present(pud_t pud) 865 { 866 return pud_flags(pud) & _PAGE_PRESENT; 867 } 868 869 static inline unsigned long pud_page_vaddr(pud_t pud) 870 { 871 return (unsigned long)__va(pud_val(pud) & pud_pfn_mask(pud)); 872 } 873 874 /* 875 * Currently stuck as a macro due to indirect forward reference to 876 * linux/mmzone.h's __section_mem_map_addr() definition: 877 */ 878 #define pud_page(pud) pfn_to_page(pud_pfn(pud)) 879 880 #define pud_leaf pud_large 881 static inline int pud_large(pud_t pud) 882 { 883 return (pud_val(pud) & (_PAGE_PSE | _PAGE_PRESENT)) == 884 (_PAGE_PSE | _PAGE_PRESENT); 885 } 886 887 static inline int pud_bad(pud_t pud) 888 { 889 return (pud_flags(pud) & ~(_KERNPG_TABLE | _PAGE_USER)) != 0; 890 } 891 #else 892 #define pud_leaf pud_large 893 static inline int pud_large(pud_t pud) 894 { 895 return 0; 896 } 897 #endif /* CONFIG_PGTABLE_LEVELS > 2 */ 898 899 #if CONFIG_PGTABLE_LEVELS > 3 900 static inline int p4d_none(p4d_t p4d) 901 { 902 return (native_p4d_val(p4d) & ~(_PAGE_KNL_ERRATUM_MASK)) == 0; 903 } 904 905 static inline int p4d_present(p4d_t p4d) 906 { 907 return p4d_flags(p4d) & _PAGE_PRESENT; 908 } 909 910 static inline unsigned long p4d_page_vaddr(p4d_t p4d) 911 { 912 return (unsigned long)__va(p4d_val(p4d) & p4d_pfn_mask(p4d)); 913 } 914 915 /* 916 * Currently stuck as a macro due to indirect forward reference to 917 * linux/mmzone.h's __section_mem_map_addr() definition: 918 */ 919 #define p4d_page(p4d) pfn_to_page(p4d_pfn(p4d)) 920 921 static inline int p4d_bad(p4d_t p4d) 922 { 923 unsigned long ignore_flags = _KERNPG_TABLE | _PAGE_USER; 924 925 if (IS_ENABLED(CONFIG_PAGE_TABLE_ISOLATION)) 926 ignore_flags |= _PAGE_NX; 927 928 return (p4d_flags(p4d) & ~ignore_flags) != 0; 929 } 930 #endif /* CONFIG_PGTABLE_LEVELS > 3 */ 931 932 static inline unsigned long p4d_index(unsigned long address) 933 { 934 return (address >> P4D_SHIFT) & (PTRS_PER_P4D - 1); 935 } 936 937 #if CONFIG_PGTABLE_LEVELS > 4 938 static inline int pgd_present(pgd_t pgd) 939 { 940 if (!pgtable_l5_enabled()) 941 return 1; 942 return pgd_flags(pgd) & _PAGE_PRESENT; 943 } 944 945 static inline unsigned long pgd_page_vaddr(pgd_t pgd) 946 { 947 return (unsigned long)__va((unsigned long)pgd_val(pgd) & PTE_PFN_MASK); 948 } 949 950 /* 951 * Currently stuck as a macro due to indirect forward reference to 952 * linux/mmzone.h's __section_mem_map_addr() definition: 953 */ 954 #define pgd_page(pgd) pfn_to_page(pgd_pfn(pgd)) 955 956 /* to find an entry in a page-table-directory. */ 957 static inline p4d_t *p4d_offset(pgd_t *pgd, unsigned long address) 958 { 959 if (!pgtable_l5_enabled()) 960 return (p4d_t *)pgd; 961 return (p4d_t *)pgd_page_vaddr(*pgd) + p4d_index(address); 962 } 963 964 static inline int pgd_bad(pgd_t pgd) 965 { 966 unsigned long ignore_flags = _PAGE_USER; 967 968 if (!pgtable_l5_enabled()) 969 return 0; 970 971 if (IS_ENABLED(CONFIG_PAGE_TABLE_ISOLATION)) 972 ignore_flags |= _PAGE_NX; 973 974 return (pgd_flags(pgd) & ~ignore_flags) != _KERNPG_TABLE; 975 } 976 977 static inline int pgd_none(pgd_t pgd) 978 { 979 if (!pgtable_l5_enabled()) 980 return 0; 981 /* 982 * There is no need to do a workaround for the KNL stray 983 * A/D bit erratum here. PGDs only point to page tables 984 * except on 32-bit non-PAE which is not supported on 985 * KNL. 986 */ 987 return !native_pgd_val(pgd); 988 } 989 #endif /* CONFIG_PGTABLE_LEVELS > 4 */ 990 991 #endif /* __ASSEMBLY__ */ 992 993 #define KERNEL_PGD_BOUNDARY pgd_index(PAGE_OFFSET) 994 #define KERNEL_PGD_PTRS (PTRS_PER_PGD - KERNEL_PGD_BOUNDARY) 995 996 #ifndef __ASSEMBLY__ 997 998 extern int direct_gbpages; 999 void init_mem_mapping(void); 1000 void early_alloc_pgt_buf(void); 1001 extern void memblock_find_dma_reserve(void); 1002 1003 1004 #ifdef CONFIG_X86_64 1005 extern pgd_t trampoline_pgd_entry; 1006 1007 void __init poking_init(void); 1008 1009 unsigned long init_memory_mapping(unsigned long start, 1010 unsigned long end, pgprot_t prot); 1011 #endif 1012 1013 /* local pte updates need not use xchg for locking */ 1014 static inline pte_t native_local_ptep_get_and_clear(pte_t *ptep) 1015 { 1016 pte_t res = *ptep; 1017 1018 /* Pure native function needs no input for mm, addr */ 1019 native_pte_clear(NULL, 0, ptep); 1020 return res; 1021 } 1022 1023 static inline pmd_t native_local_pmdp_get_and_clear(pmd_t *pmdp) 1024 { 1025 pmd_t res = *pmdp; 1026 1027 native_pmd_clear(pmdp); 1028 return res; 1029 } 1030 1031 static inline pud_t native_local_pudp_get_and_clear(pud_t *pudp) 1032 { 1033 pud_t res = *pudp; 1034 1035 native_pud_clear(pudp); 1036 return res; 1037 } 1038 1039 static inline void native_set_pte_at(struct mm_struct *mm, unsigned long addr, 1040 pte_t *ptep , pte_t pte) 1041 { 1042 native_set_pte(ptep, pte); 1043 } 1044 1045 static inline void set_pmd_at(struct mm_struct *mm, unsigned long addr, 1046 pmd_t *pmdp, pmd_t pmd) 1047 { 1048 set_pmd(pmdp, pmd); 1049 } 1050 1051 static inline void set_pud_at(struct mm_struct *mm, unsigned long addr, 1052 pud_t *pudp, pud_t pud) 1053 { 1054 native_set_pud(pudp, pud); 1055 } 1056 1057 /* 1058 * We only update the dirty/accessed state if we set 1059 * the dirty bit by hand in the kernel, since the hardware 1060 * will do the accessed bit for us, and we don't want to 1061 * race with other CPU's that might be updating the dirty 1062 * bit at the same time. 1063 */ 1064 struct vm_area_struct; 1065 1066 #define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS 1067 extern int ptep_set_access_flags(struct vm_area_struct *vma, 1068 unsigned long address, pte_t *ptep, 1069 pte_t entry, int dirty); 1070 1071 #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG 1072 extern int ptep_test_and_clear_young(struct vm_area_struct *vma, 1073 unsigned long addr, pte_t *ptep); 1074 1075 #define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH 1076 extern int ptep_clear_flush_young(struct vm_area_struct *vma, 1077 unsigned long address, pte_t *ptep); 1078 1079 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR 1080 static inline pte_t ptep_get_and_clear(struct mm_struct *mm, unsigned long addr, 1081 pte_t *ptep) 1082 { 1083 pte_t pte = native_ptep_get_and_clear(ptep); 1084 return pte; 1085 } 1086 1087 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL 1088 static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm, 1089 unsigned long addr, pte_t *ptep, 1090 int full) 1091 { 1092 pte_t pte; 1093 if (full) { 1094 /* 1095 * Full address destruction in progress; paravirt does not 1096 * care about updates and native needs no locking 1097 */ 1098 pte = native_local_ptep_get_and_clear(ptep); 1099 } else { 1100 pte = ptep_get_and_clear(mm, addr, ptep); 1101 } 1102 return pte; 1103 } 1104 1105 #define __HAVE_ARCH_PTEP_SET_WRPROTECT 1106 static inline void ptep_set_wrprotect(struct mm_struct *mm, 1107 unsigned long addr, pte_t *ptep) 1108 { 1109 clear_bit(_PAGE_BIT_RW, (unsigned long *)&ptep->pte); 1110 } 1111 1112 #define flush_tlb_fix_spurious_fault(vma, address) do { } while (0) 1113 1114 #define mk_pmd(page, pgprot) pfn_pmd(page_to_pfn(page), (pgprot)) 1115 1116 #define __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS 1117 extern int pmdp_set_access_flags(struct vm_area_struct *vma, 1118 unsigned long address, pmd_t *pmdp, 1119 pmd_t entry, int dirty); 1120 extern int pudp_set_access_flags(struct vm_area_struct *vma, 1121 unsigned long address, pud_t *pudp, 1122 pud_t entry, int dirty); 1123 1124 #define __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG 1125 extern int pmdp_test_and_clear_young(struct vm_area_struct *vma, 1126 unsigned long addr, pmd_t *pmdp); 1127 extern int pudp_test_and_clear_young(struct vm_area_struct *vma, 1128 unsigned long addr, pud_t *pudp); 1129 1130 #define __HAVE_ARCH_PMDP_CLEAR_YOUNG_FLUSH 1131 extern int pmdp_clear_flush_young(struct vm_area_struct *vma, 1132 unsigned long address, pmd_t *pmdp); 1133 1134 1135 #define pmd_write pmd_write 1136 static inline int pmd_write(pmd_t pmd) 1137 { 1138 return pmd_flags(pmd) & _PAGE_RW; 1139 } 1140 1141 #define __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR 1142 static inline pmd_t pmdp_huge_get_and_clear(struct mm_struct *mm, unsigned long addr, 1143 pmd_t *pmdp) 1144 { 1145 return native_pmdp_get_and_clear(pmdp); 1146 } 1147 1148 #define __HAVE_ARCH_PUDP_HUGE_GET_AND_CLEAR 1149 static inline pud_t pudp_huge_get_and_clear(struct mm_struct *mm, 1150 unsigned long addr, pud_t *pudp) 1151 { 1152 return native_pudp_get_and_clear(pudp); 1153 } 1154 1155 #define __HAVE_ARCH_PMDP_SET_WRPROTECT 1156 static inline void pmdp_set_wrprotect(struct mm_struct *mm, 1157 unsigned long addr, pmd_t *pmdp) 1158 { 1159 clear_bit(_PAGE_BIT_RW, (unsigned long *)pmdp); 1160 } 1161 1162 #define pud_write pud_write 1163 static inline int pud_write(pud_t pud) 1164 { 1165 return pud_flags(pud) & _PAGE_RW; 1166 } 1167 1168 #ifndef pmdp_establish 1169 #define pmdp_establish pmdp_establish 1170 static inline pmd_t pmdp_establish(struct vm_area_struct *vma, 1171 unsigned long address, pmd_t *pmdp, pmd_t pmd) 1172 { 1173 if (IS_ENABLED(CONFIG_SMP)) { 1174 return xchg(pmdp, pmd); 1175 } else { 1176 pmd_t old = *pmdp; 1177 WRITE_ONCE(*pmdp, pmd); 1178 return old; 1179 } 1180 } 1181 #endif 1182 /* 1183 * Page table pages are page-aligned. The lower half of the top 1184 * level is used for userspace and the top half for the kernel. 1185 * 1186 * Returns true for parts of the PGD that map userspace and 1187 * false for the parts that map the kernel. 1188 */ 1189 static inline bool pgdp_maps_userspace(void *__ptr) 1190 { 1191 unsigned long ptr = (unsigned long)__ptr; 1192 1193 return (((ptr & ~PAGE_MASK) / sizeof(pgd_t)) < PGD_KERNEL_START); 1194 } 1195 1196 #define pgd_leaf pgd_large 1197 static inline int pgd_large(pgd_t pgd) { return 0; } 1198 1199 #ifdef CONFIG_PAGE_TABLE_ISOLATION 1200 /* 1201 * All top-level PAGE_TABLE_ISOLATION page tables are order-1 pages 1202 * (8k-aligned and 8k in size). The kernel one is at the beginning 4k and 1203 * the user one is in the last 4k. To switch between them, you 1204 * just need to flip the 12th bit in their addresses. 1205 */ 1206 #define PTI_PGTABLE_SWITCH_BIT PAGE_SHIFT 1207 1208 /* 1209 * This generates better code than the inline assembly in 1210 * __set_bit(). 1211 */ 1212 static inline void *ptr_set_bit(void *ptr, int bit) 1213 { 1214 unsigned long __ptr = (unsigned long)ptr; 1215 1216 __ptr |= BIT(bit); 1217 return (void *)__ptr; 1218 } 1219 static inline void *ptr_clear_bit(void *ptr, int bit) 1220 { 1221 unsigned long __ptr = (unsigned long)ptr; 1222 1223 __ptr &= ~BIT(bit); 1224 return (void *)__ptr; 1225 } 1226 1227 static inline pgd_t *kernel_to_user_pgdp(pgd_t *pgdp) 1228 { 1229 return ptr_set_bit(pgdp, PTI_PGTABLE_SWITCH_BIT); 1230 } 1231 1232 static inline pgd_t *user_to_kernel_pgdp(pgd_t *pgdp) 1233 { 1234 return ptr_clear_bit(pgdp, PTI_PGTABLE_SWITCH_BIT); 1235 } 1236 1237 static inline p4d_t *kernel_to_user_p4dp(p4d_t *p4dp) 1238 { 1239 return ptr_set_bit(p4dp, PTI_PGTABLE_SWITCH_BIT); 1240 } 1241 1242 static inline p4d_t *user_to_kernel_p4dp(p4d_t *p4dp) 1243 { 1244 return ptr_clear_bit(p4dp, PTI_PGTABLE_SWITCH_BIT); 1245 } 1246 #endif /* CONFIG_PAGE_TABLE_ISOLATION */ 1247 1248 /* 1249 * clone_pgd_range(pgd_t *dst, pgd_t *src, int count); 1250 * 1251 * dst - pointer to pgd range anwhere on a pgd page 1252 * src - "" 1253 * count - the number of pgds to copy. 1254 * 1255 * dst and src can be on the same page, but the range must not overlap, 1256 * and must not cross a page boundary. 1257 */ 1258 static inline void clone_pgd_range(pgd_t *dst, pgd_t *src, int count) 1259 { 1260 memcpy(dst, src, count * sizeof(pgd_t)); 1261 #ifdef CONFIG_PAGE_TABLE_ISOLATION 1262 if (!static_cpu_has(X86_FEATURE_PTI)) 1263 return; 1264 /* Clone the user space pgd as well */ 1265 memcpy(kernel_to_user_pgdp(dst), kernel_to_user_pgdp(src), 1266 count * sizeof(pgd_t)); 1267 #endif 1268 } 1269 1270 #define PTE_SHIFT ilog2(PTRS_PER_PTE) 1271 static inline int page_level_shift(enum pg_level level) 1272 { 1273 return (PAGE_SHIFT - PTE_SHIFT) + level * PTE_SHIFT; 1274 } 1275 static inline unsigned long page_level_size(enum pg_level level) 1276 { 1277 return 1UL << page_level_shift(level); 1278 } 1279 static inline unsigned long page_level_mask(enum pg_level level) 1280 { 1281 return ~(page_level_size(level) - 1); 1282 } 1283 1284 /* 1285 * The x86 doesn't have any external MMU info: the kernel page 1286 * tables contain all the necessary information. 1287 */ 1288 static inline void update_mmu_cache(struct vm_area_struct *vma, 1289 unsigned long addr, pte_t *ptep) 1290 { 1291 } 1292 static inline void update_mmu_cache_pmd(struct vm_area_struct *vma, 1293 unsigned long addr, pmd_t *pmd) 1294 { 1295 } 1296 static inline void update_mmu_cache_pud(struct vm_area_struct *vma, 1297 unsigned long addr, pud_t *pud) 1298 { 1299 } 1300 1301 #ifdef CONFIG_HAVE_ARCH_SOFT_DIRTY 1302 static inline pte_t pte_swp_mksoft_dirty(pte_t pte) 1303 { 1304 return pte_set_flags(pte, _PAGE_SWP_SOFT_DIRTY); 1305 } 1306 1307 static inline int pte_swp_soft_dirty(pte_t pte) 1308 { 1309 return pte_flags(pte) & _PAGE_SWP_SOFT_DIRTY; 1310 } 1311 1312 static inline pte_t pte_swp_clear_soft_dirty(pte_t pte) 1313 { 1314 return pte_clear_flags(pte, _PAGE_SWP_SOFT_DIRTY); 1315 } 1316 1317 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION 1318 static inline pmd_t pmd_swp_mksoft_dirty(pmd_t pmd) 1319 { 1320 return pmd_set_flags(pmd, _PAGE_SWP_SOFT_DIRTY); 1321 } 1322 1323 static inline int pmd_swp_soft_dirty(pmd_t pmd) 1324 { 1325 return pmd_flags(pmd) & _PAGE_SWP_SOFT_DIRTY; 1326 } 1327 1328 static inline pmd_t pmd_swp_clear_soft_dirty(pmd_t pmd) 1329 { 1330 return pmd_clear_flags(pmd, _PAGE_SWP_SOFT_DIRTY); 1331 } 1332 #endif 1333 #endif 1334 1335 #ifdef CONFIG_HAVE_ARCH_USERFAULTFD_WP 1336 static inline pte_t pte_swp_mkuffd_wp(pte_t pte) 1337 { 1338 return pte_set_flags(pte, _PAGE_SWP_UFFD_WP); 1339 } 1340 1341 static inline int pte_swp_uffd_wp(pte_t pte) 1342 { 1343 return pte_flags(pte) & _PAGE_SWP_UFFD_WP; 1344 } 1345 1346 static inline pte_t pte_swp_clear_uffd_wp(pte_t pte) 1347 { 1348 return pte_clear_flags(pte, _PAGE_SWP_UFFD_WP); 1349 } 1350 1351 static inline pmd_t pmd_swp_mkuffd_wp(pmd_t pmd) 1352 { 1353 return pmd_set_flags(pmd, _PAGE_SWP_UFFD_WP); 1354 } 1355 1356 static inline int pmd_swp_uffd_wp(pmd_t pmd) 1357 { 1358 return pmd_flags(pmd) & _PAGE_SWP_UFFD_WP; 1359 } 1360 1361 static inline pmd_t pmd_swp_clear_uffd_wp(pmd_t pmd) 1362 { 1363 return pmd_clear_flags(pmd, _PAGE_SWP_UFFD_WP); 1364 } 1365 #endif /* CONFIG_HAVE_ARCH_USERFAULTFD_WP */ 1366 1367 #define PKRU_AD_BIT 0x1 1368 #define PKRU_WD_BIT 0x2 1369 #define PKRU_BITS_PER_PKEY 2 1370 1371 #ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS 1372 extern u32 init_pkru_value; 1373 #else 1374 #define init_pkru_value 0 1375 #endif 1376 1377 static inline bool __pkru_allows_read(u32 pkru, u16 pkey) 1378 { 1379 int pkru_pkey_bits = pkey * PKRU_BITS_PER_PKEY; 1380 return !(pkru & (PKRU_AD_BIT << pkru_pkey_bits)); 1381 } 1382 1383 static inline bool __pkru_allows_write(u32 pkru, u16 pkey) 1384 { 1385 int pkru_pkey_bits = pkey * PKRU_BITS_PER_PKEY; 1386 /* 1387 * Access-disable disables writes too so we need to check 1388 * both bits here. 1389 */ 1390 return !(pkru & ((PKRU_AD_BIT|PKRU_WD_BIT) << pkru_pkey_bits)); 1391 } 1392 1393 static inline u16 pte_flags_pkey(unsigned long pte_flags) 1394 { 1395 #ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS 1396 /* ifdef to avoid doing 59-bit shift on 32-bit values */ 1397 return (pte_flags & _PAGE_PKEY_MASK) >> _PAGE_BIT_PKEY_BIT0; 1398 #else 1399 return 0; 1400 #endif 1401 } 1402 1403 static inline bool __pkru_allows_pkey(u16 pkey, bool write) 1404 { 1405 u32 pkru = read_pkru(); 1406 1407 if (!__pkru_allows_read(pkru, pkey)) 1408 return false; 1409 if (write && !__pkru_allows_write(pkru, pkey)) 1410 return false; 1411 1412 return true; 1413 } 1414 1415 /* 1416 * 'pteval' can come from a PTE, PMD or PUD. We only check 1417 * _PAGE_PRESENT, _PAGE_USER, and _PAGE_RW in here which are the 1418 * same value on all 3 types. 1419 */ 1420 static inline bool __pte_access_permitted(unsigned long pteval, bool write) 1421 { 1422 unsigned long need_pte_bits = _PAGE_PRESENT|_PAGE_USER; 1423 1424 if (write) 1425 need_pte_bits |= _PAGE_RW; 1426 1427 if ((pteval & need_pte_bits) != need_pte_bits) 1428 return 0; 1429 1430 return __pkru_allows_pkey(pte_flags_pkey(pteval), write); 1431 } 1432 1433 #define pte_access_permitted pte_access_permitted 1434 static inline bool pte_access_permitted(pte_t pte, bool write) 1435 { 1436 return __pte_access_permitted(pte_val(pte), write); 1437 } 1438 1439 #define pmd_access_permitted pmd_access_permitted 1440 static inline bool pmd_access_permitted(pmd_t pmd, bool write) 1441 { 1442 return __pte_access_permitted(pmd_val(pmd), write); 1443 } 1444 1445 #define pud_access_permitted pud_access_permitted 1446 static inline bool pud_access_permitted(pud_t pud, bool write) 1447 { 1448 return __pte_access_permitted(pud_val(pud), write); 1449 } 1450 1451 #define __HAVE_ARCH_PFN_MODIFY_ALLOWED 1 1452 extern bool pfn_modify_allowed(unsigned long pfn, pgprot_t prot); 1453 1454 static inline bool arch_has_pfn_modify_check(void) 1455 { 1456 return boot_cpu_has_bug(X86_BUG_L1TF); 1457 } 1458 1459 #define arch_faults_on_old_pte arch_faults_on_old_pte 1460 static inline bool arch_faults_on_old_pte(void) 1461 { 1462 return false; 1463 } 1464 1465 #endif /* __ASSEMBLY__ */ 1466 1467 #endif /* _ASM_X86_PGTABLE_H */ 1468