1 #ifndef _ASM_X86_PGTABLE_H 2 #define _ASM_X86_PGTABLE_H 3 4 #include <asm/page.h> 5 #include <asm/e820.h> 6 7 #include <asm/pgtable_types.h> 8 9 /* 10 * Macro to mark a page protection value as UC- 11 */ 12 #define pgprot_noncached(prot) \ 13 ((boot_cpu_data.x86 > 3) \ 14 ? (__pgprot(pgprot_val(prot) | _PAGE_CACHE_UC_MINUS)) \ 15 : (prot)) 16 17 #ifndef __ASSEMBLY__ 18 19 #include <asm/x86_init.h> 20 21 /* 22 * ZERO_PAGE is a global shared page that is always zero: used 23 * for zero-mapped memory areas etc.. 24 */ 25 extern unsigned long empty_zero_page[PAGE_SIZE / sizeof(unsigned long)]; 26 #define ZERO_PAGE(vaddr) (virt_to_page(empty_zero_page)) 27 28 extern spinlock_t pgd_lock; 29 extern struct list_head pgd_list; 30 31 extern struct mm_struct *pgd_page_get_mm(struct page *page); 32 33 #ifdef CONFIG_PARAVIRT 34 #include <asm/paravirt.h> 35 #else /* !CONFIG_PARAVIRT */ 36 #define set_pte(ptep, pte) native_set_pte(ptep, pte) 37 #define set_pte_at(mm, addr, ptep, pte) native_set_pte_at(mm, addr, ptep, pte) 38 #define set_pmd_at(mm, addr, pmdp, pmd) native_set_pmd_at(mm, addr, pmdp, pmd) 39 40 #define set_pte_atomic(ptep, pte) \ 41 native_set_pte_atomic(ptep, pte) 42 43 #define set_pmd(pmdp, pmd) native_set_pmd(pmdp, pmd) 44 45 #ifndef __PAGETABLE_PUD_FOLDED 46 #define set_pgd(pgdp, pgd) native_set_pgd(pgdp, pgd) 47 #define pgd_clear(pgd) native_pgd_clear(pgd) 48 #endif 49 50 #ifndef set_pud 51 # define set_pud(pudp, pud) native_set_pud(pudp, pud) 52 #endif 53 54 #ifndef __PAGETABLE_PMD_FOLDED 55 #define pud_clear(pud) native_pud_clear(pud) 56 #endif 57 58 #define pte_clear(mm, addr, ptep) native_pte_clear(mm, addr, ptep) 59 #define pmd_clear(pmd) native_pmd_clear(pmd) 60 61 #define pte_update(mm, addr, ptep) do { } while (0) 62 #define pte_update_defer(mm, addr, ptep) do { } while (0) 63 #define pmd_update(mm, addr, ptep) do { } while (0) 64 #define pmd_update_defer(mm, addr, ptep) do { } while (0) 65 66 #define pgd_val(x) native_pgd_val(x) 67 #define __pgd(x) native_make_pgd(x) 68 69 #ifndef __PAGETABLE_PUD_FOLDED 70 #define pud_val(x) native_pud_val(x) 71 #define __pud(x) native_make_pud(x) 72 #endif 73 74 #ifndef __PAGETABLE_PMD_FOLDED 75 #define pmd_val(x) native_pmd_val(x) 76 #define __pmd(x) native_make_pmd(x) 77 #endif 78 79 #define pte_val(x) native_pte_val(x) 80 #define __pte(x) native_make_pte(x) 81 82 #define arch_end_context_switch(prev) do {} while(0) 83 84 #endif /* CONFIG_PARAVIRT */ 85 86 /* 87 * The following only work if pte_present() is true. 88 * Undefined behaviour if not.. 89 */ 90 static inline int pte_dirty(pte_t pte) 91 { 92 return pte_flags(pte) & _PAGE_DIRTY; 93 } 94 95 static inline int pte_young(pte_t pte) 96 { 97 return pte_flags(pte) & _PAGE_ACCESSED; 98 } 99 100 static inline int pmd_young(pmd_t pmd) 101 { 102 return pmd_flags(pmd) & _PAGE_ACCESSED; 103 } 104 105 static inline int pte_write(pte_t pte) 106 { 107 return pte_flags(pte) & _PAGE_RW; 108 } 109 110 static inline int pte_file(pte_t pte) 111 { 112 return pte_flags(pte) & _PAGE_FILE; 113 } 114 115 static inline int pte_huge(pte_t pte) 116 { 117 return pte_flags(pte) & _PAGE_PSE; 118 } 119 120 static inline int pte_global(pte_t pte) 121 { 122 return pte_flags(pte) & _PAGE_GLOBAL; 123 } 124 125 static inline int pte_exec(pte_t pte) 126 { 127 return !(pte_flags(pte) & _PAGE_NX); 128 } 129 130 static inline int pte_special(pte_t pte) 131 { 132 return pte_flags(pte) & _PAGE_SPECIAL; 133 } 134 135 static inline unsigned long pte_pfn(pte_t pte) 136 { 137 return (pte_val(pte) & PTE_PFN_MASK) >> PAGE_SHIFT; 138 } 139 140 static inline unsigned long pmd_pfn(pmd_t pmd) 141 { 142 return (pmd_val(pmd) & PTE_PFN_MASK) >> PAGE_SHIFT; 143 } 144 145 static inline unsigned long pud_pfn(pud_t pud) 146 { 147 return (pud_val(pud) & PTE_PFN_MASK) >> PAGE_SHIFT; 148 } 149 150 #define pte_page(pte) pfn_to_page(pte_pfn(pte)) 151 152 static inline int pmd_large(pmd_t pte) 153 { 154 return pmd_flags(pte) & _PAGE_PSE; 155 } 156 157 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 158 static inline int pmd_trans_splitting(pmd_t pmd) 159 { 160 return pmd_val(pmd) & _PAGE_SPLITTING; 161 } 162 163 static inline int pmd_trans_huge(pmd_t pmd) 164 { 165 return pmd_val(pmd) & _PAGE_PSE; 166 } 167 168 static inline int has_transparent_hugepage(void) 169 { 170 return cpu_has_pse; 171 } 172 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 173 174 static inline pte_t pte_set_flags(pte_t pte, pteval_t set) 175 { 176 pteval_t v = native_pte_val(pte); 177 178 return native_make_pte(v | set); 179 } 180 181 static inline pte_t pte_clear_flags(pte_t pte, pteval_t clear) 182 { 183 pteval_t v = native_pte_val(pte); 184 185 return native_make_pte(v & ~clear); 186 } 187 188 static inline pte_t pte_mkclean(pte_t pte) 189 { 190 return pte_clear_flags(pte, _PAGE_DIRTY); 191 } 192 193 static inline pte_t pte_mkold(pte_t pte) 194 { 195 return pte_clear_flags(pte, _PAGE_ACCESSED); 196 } 197 198 static inline pte_t pte_wrprotect(pte_t pte) 199 { 200 return pte_clear_flags(pte, _PAGE_RW); 201 } 202 203 static inline pte_t pte_mkexec(pte_t pte) 204 { 205 return pte_clear_flags(pte, _PAGE_NX); 206 } 207 208 static inline pte_t pte_mkdirty(pte_t pte) 209 { 210 return pte_set_flags(pte, _PAGE_DIRTY | _PAGE_SOFT_DIRTY); 211 } 212 213 static inline pte_t pte_mkyoung(pte_t pte) 214 { 215 return pte_set_flags(pte, _PAGE_ACCESSED); 216 } 217 218 static inline pte_t pte_mkwrite(pte_t pte) 219 { 220 return pte_set_flags(pte, _PAGE_RW); 221 } 222 223 static inline pte_t pte_mkhuge(pte_t pte) 224 { 225 return pte_set_flags(pte, _PAGE_PSE); 226 } 227 228 static inline pte_t pte_clrhuge(pte_t pte) 229 { 230 return pte_clear_flags(pte, _PAGE_PSE); 231 } 232 233 static inline pte_t pte_mkglobal(pte_t pte) 234 { 235 return pte_set_flags(pte, _PAGE_GLOBAL); 236 } 237 238 static inline pte_t pte_clrglobal(pte_t pte) 239 { 240 return pte_clear_flags(pte, _PAGE_GLOBAL); 241 } 242 243 static inline pte_t pte_mkspecial(pte_t pte) 244 { 245 return pte_set_flags(pte, _PAGE_SPECIAL); 246 } 247 248 static inline pmd_t pmd_set_flags(pmd_t pmd, pmdval_t set) 249 { 250 pmdval_t v = native_pmd_val(pmd); 251 252 return __pmd(v | set); 253 } 254 255 static inline pmd_t pmd_clear_flags(pmd_t pmd, pmdval_t clear) 256 { 257 pmdval_t v = native_pmd_val(pmd); 258 259 return __pmd(v & ~clear); 260 } 261 262 static inline pmd_t pmd_mkold(pmd_t pmd) 263 { 264 return pmd_clear_flags(pmd, _PAGE_ACCESSED); 265 } 266 267 static inline pmd_t pmd_wrprotect(pmd_t pmd) 268 { 269 return pmd_clear_flags(pmd, _PAGE_RW); 270 } 271 272 static inline pmd_t pmd_mkdirty(pmd_t pmd) 273 { 274 return pmd_set_flags(pmd, _PAGE_DIRTY | _PAGE_SOFT_DIRTY); 275 } 276 277 static inline pmd_t pmd_mkhuge(pmd_t pmd) 278 { 279 return pmd_set_flags(pmd, _PAGE_PSE); 280 } 281 282 static inline pmd_t pmd_mkyoung(pmd_t pmd) 283 { 284 return pmd_set_flags(pmd, _PAGE_ACCESSED); 285 } 286 287 static inline pmd_t pmd_mkwrite(pmd_t pmd) 288 { 289 return pmd_set_flags(pmd, _PAGE_RW); 290 } 291 292 static inline pmd_t pmd_mknotpresent(pmd_t pmd) 293 { 294 return pmd_clear_flags(pmd, _PAGE_PRESENT); 295 } 296 297 static inline int pte_soft_dirty(pte_t pte) 298 { 299 return pte_flags(pte) & _PAGE_SOFT_DIRTY; 300 } 301 302 static inline int pmd_soft_dirty(pmd_t pmd) 303 { 304 return pmd_flags(pmd) & _PAGE_SOFT_DIRTY; 305 } 306 307 static inline pte_t pte_mksoft_dirty(pte_t pte) 308 { 309 return pte_set_flags(pte, _PAGE_SOFT_DIRTY); 310 } 311 312 static inline pmd_t pmd_mksoft_dirty(pmd_t pmd) 313 { 314 return pmd_set_flags(pmd, _PAGE_SOFT_DIRTY); 315 } 316 317 static inline pte_t pte_swp_mksoft_dirty(pte_t pte) 318 { 319 return pte_set_flags(pte, _PAGE_SWP_SOFT_DIRTY); 320 } 321 322 static inline int pte_swp_soft_dirty(pte_t pte) 323 { 324 return pte_flags(pte) & _PAGE_SWP_SOFT_DIRTY; 325 } 326 327 static inline pte_t pte_swp_clear_soft_dirty(pte_t pte) 328 { 329 return pte_clear_flags(pte, _PAGE_SWP_SOFT_DIRTY); 330 } 331 332 static inline pte_t pte_file_clear_soft_dirty(pte_t pte) 333 { 334 return pte_clear_flags(pte, _PAGE_SOFT_DIRTY); 335 } 336 337 static inline pte_t pte_file_mksoft_dirty(pte_t pte) 338 { 339 return pte_set_flags(pte, _PAGE_SOFT_DIRTY); 340 } 341 342 static inline int pte_file_soft_dirty(pte_t pte) 343 { 344 return pte_flags(pte) & _PAGE_SOFT_DIRTY; 345 } 346 347 /* 348 * Mask out unsupported bits in a present pgprot. Non-present pgprots 349 * can use those bits for other purposes, so leave them be. 350 */ 351 static inline pgprotval_t massage_pgprot(pgprot_t pgprot) 352 { 353 pgprotval_t protval = pgprot_val(pgprot); 354 355 if (protval & _PAGE_PRESENT) 356 protval &= __supported_pte_mask; 357 358 return protval; 359 } 360 361 static inline pte_t pfn_pte(unsigned long page_nr, pgprot_t pgprot) 362 { 363 return __pte(((phys_addr_t)page_nr << PAGE_SHIFT) | 364 massage_pgprot(pgprot)); 365 } 366 367 static inline pmd_t pfn_pmd(unsigned long page_nr, pgprot_t pgprot) 368 { 369 return __pmd(((phys_addr_t)page_nr << PAGE_SHIFT) | 370 massage_pgprot(pgprot)); 371 } 372 373 static inline pte_t pte_modify(pte_t pte, pgprot_t newprot) 374 { 375 pteval_t val = pte_val(pte); 376 377 /* 378 * Chop off the NX bit (if present), and add the NX portion of 379 * the newprot (if present): 380 */ 381 val &= _PAGE_CHG_MASK; 382 val |= massage_pgprot(newprot) & ~_PAGE_CHG_MASK; 383 384 return __pte(val); 385 } 386 387 static inline pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot) 388 { 389 pmdval_t val = pmd_val(pmd); 390 391 val &= _HPAGE_CHG_MASK; 392 val |= massage_pgprot(newprot) & ~_HPAGE_CHG_MASK; 393 394 return __pmd(val); 395 } 396 397 /* mprotect needs to preserve PAT bits when updating vm_page_prot */ 398 #define pgprot_modify pgprot_modify 399 static inline pgprot_t pgprot_modify(pgprot_t oldprot, pgprot_t newprot) 400 { 401 pgprotval_t preservebits = pgprot_val(oldprot) & _PAGE_CHG_MASK; 402 pgprotval_t addbits = pgprot_val(newprot); 403 return __pgprot(preservebits | addbits); 404 } 405 406 #define pte_pgprot(x) __pgprot(pte_flags(x) & PTE_FLAGS_MASK) 407 408 #define canon_pgprot(p) __pgprot(massage_pgprot(p)) 409 410 static inline int is_new_memtype_allowed(u64 paddr, unsigned long size, 411 unsigned long flags, 412 unsigned long new_flags) 413 { 414 /* 415 * PAT type is always WB for untracked ranges, so no need to check. 416 */ 417 if (x86_platform.is_untracked_pat_range(paddr, paddr + size)) 418 return 1; 419 420 /* 421 * Certain new memtypes are not allowed with certain 422 * requested memtype: 423 * - request is uncached, return cannot be write-back 424 * - request is write-combine, return cannot be write-back 425 */ 426 if ((flags == _PAGE_CACHE_UC_MINUS && 427 new_flags == _PAGE_CACHE_WB) || 428 (flags == _PAGE_CACHE_WC && 429 new_flags == _PAGE_CACHE_WB)) { 430 return 0; 431 } 432 433 return 1; 434 } 435 436 pmd_t *populate_extra_pmd(unsigned long vaddr); 437 pte_t *populate_extra_pte(unsigned long vaddr); 438 #endif /* __ASSEMBLY__ */ 439 440 #ifdef CONFIG_X86_32 441 # include <asm/pgtable_32.h> 442 #else 443 # include <asm/pgtable_64.h> 444 #endif 445 446 #ifndef __ASSEMBLY__ 447 #include <linux/mm_types.h> 448 #include <linux/log2.h> 449 450 static inline int pte_none(pte_t pte) 451 { 452 return !pte.pte; 453 } 454 455 #define __HAVE_ARCH_PTE_SAME 456 static inline int pte_same(pte_t a, pte_t b) 457 { 458 return a.pte == b.pte; 459 } 460 461 static inline int pte_present(pte_t a) 462 { 463 return pte_flags(a) & (_PAGE_PRESENT | _PAGE_PROTNONE | 464 _PAGE_NUMA); 465 } 466 467 #define pte_accessible pte_accessible 468 static inline int pte_accessible(pte_t a) 469 { 470 return pte_flags(a) & _PAGE_PRESENT; 471 } 472 473 static inline int pte_hidden(pte_t pte) 474 { 475 return pte_flags(pte) & _PAGE_HIDDEN; 476 } 477 478 static inline int pmd_present(pmd_t pmd) 479 { 480 /* 481 * Checking for _PAGE_PSE is needed too because 482 * split_huge_page will temporarily clear the present bit (but 483 * the _PAGE_PSE flag will remain set at all times while the 484 * _PAGE_PRESENT bit is clear). 485 */ 486 return pmd_flags(pmd) & (_PAGE_PRESENT | _PAGE_PROTNONE | _PAGE_PSE | 487 _PAGE_NUMA); 488 } 489 490 static inline int pmd_none(pmd_t pmd) 491 { 492 /* Only check low word on 32-bit platforms, since it might be 493 out of sync with upper half. */ 494 return (unsigned long)native_pmd_val(pmd) == 0; 495 } 496 497 static inline unsigned long pmd_page_vaddr(pmd_t pmd) 498 { 499 return (unsigned long)__va(pmd_val(pmd) & PTE_PFN_MASK); 500 } 501 502 /* 503 * Currently stuck as a macro due to indirect forward reference to 504 * linux/mmzone.h's __section_mem_map_addr() definition: 505 */ 506 #define pmd_page(pmd) pfn_to_page((pmd_val(pmd) & PTE_PFN_MASK) >> PAGE_SHIFT) 507 508 /* 509 * the pmd page can be thought of an array like this: pmd_t[PTRS_PER_PMD] 510 * 511 * this macro returns the index of the entry in the pmd page which would 512 * control the given virtual address 513 */ 514 static inline unsigned long pmd_index(unsigned long address) 515 { 516 return (address >> PMD_SHIFT) & (PTRS_PER_PMD - 1); 517 } 518 519 /* 520 * Conversion functions: convert a page and protection to a page entry, 521 * and a page entry and page directory to the page they refer to. 522 * 523 * (Currently stuck as a macro because of indirect forward reference 524 * to linux/mm.h:page_to_nid()) 525 */ 526 #define mk_pte(page, pgprot) pfn_pte(page_to_pfn(page), (pgprot)) 527 528 /* 529 * the pte page can be thought of an array like this: pte_t[PTRS_PER_PTE] 530 * 531 * this function returns the index of the entry in the pte page which would 532 * control the given virtual address 533 */ 534 static inline unsigned long pte_index(unsigned long address) 535 { 536 return (address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1); 537 } 538 539 static inline pte_t *pte_offset_kernel(pmd_t *pmd, unsigned long address) 540 { 541 return (pte_t *)pmd_page_vaddr(*pmd) + pte_index(address); 542 } 543 544 static inline int pmd_bad(pmd_t pmd) 545 { 546 #ifdef CONFIG_NUMA_BALANCING 547 /* pmd_numa check */ 548 if ((pmd_flags(pmd) & (_PAGE_NUMA|_PAGE_PRESENT)) == _PAGE_NUMA) 549 return 0; 550 #endif 551 return (pmd_flags(pmd) & ~_PAGE_USER) != _KERNPG_TABLE; 552 } 553 554 static inline unsigned long pages_to_mb(unsigned long npg) 555 { 556 return npg >> (20 - PAGE_SHIFT); 557 } 558 559 #if PAGETABLE_LEVELS > 2 560 static inline int pud_none(pud_t pud) 561 { 562 return native_pud_val(pud) == 0; 563 } 564 565 static inline int pud_present(pud_t pud) 566 { 567 return pud_flags(pud) & _PAGE_PRESENT; 568 } 569 570 static inline unsigned long pud_page_vaddr(pud_t pud) 571 { 572 return (unsigned long)__va((unsigned long)pud_val(pud) & PTE_PFN_MASK); 573 } 574 575 /* 576 * Currently stuck as a macro due to indirect forward reference to 577 * linux/mmzone.h's __section_mem_map_addr() definition: 578 */ 579 #define pud_page(pud) pfn_to_page(pud_val(pud) >> PAGE_SHIFT) 580 581 /* Find an entry in the second-level page table.. */ 582 static inline pmd_t *pmd_offset(pud_t *pud, unsigned long address) 583 { 584 return (pmd_t *)pud_page_vaddr(*pud) + pmd_index(address); 585 } 586 587 static inline int pud_large(pud_t pud) 588 { 589 return (pud_val(pud) & (_PAGE_PSE | _PAGE_PRESENT)) == 590 (_PAGE_PSE | _PAGE_PRESENT); 591 } 592 593 static inline int pud_bad(pud_t pud) 594 { 595 return (pud_flags(pud) & ~(_KERNPG_TABLE | _PAGE_USER)) != 0; 596 } 597 #else 598 static inline int pud_large(pud_t pud) 599 { 600 return 0; 601 } 602 #endif /* PAGETABLE_LEVELS > 2 */ 603 604 #if PAGETABLE_LEVELS > 3 605 static inline int pgd_present(pgd_t pgd) 606 { 607 return pgd_flags(pgd) & _PAGE_PRESENT; 608 } 609 610 static inline unsigned long pgd_page_vaddr(pgd_t pgd) 611 { 612 return (unsigned long)__va((unsigned long)pgd_val(pgd) & PTE_PFN_MASK); 613 } 614 615 /* 616 * Currently stuck as a macro due to indirect forward reference to 617 * linux/mmzone.h's __section_mem_map_addr() definition: 618 */ 619 #define pgd_page(pgd) pfn_to_page(pgd_val(pgd) >> PAGE_SHIFT) 620 621 /* to find an entry in a page-table-directory. */ 622 static inline unsigned long pud_index(unsigned long address) 623 { 624 return (address >> PUD_SHIFT) & (PTRS_PER_PUD - 1); 625 } 626 627 static inline pud_t *pud_offset(pgd_t *pgd, unsigned long address) 628 { 629 return (pud_t *)pgd_page_vaddr(*pgd) + pud_index(address); 630 } 631 632 static inline int pgd_bad(pgd_t pgd) 633 { 634 return (pgd_flags(pgd) & ~_PAGE_USER) != _KERNPG_TABLE; 635 } 636 637 static inline int pgd_none(pgd_t pgd) 638 { 639 return !native_pgd_val(pgd); 640 } 641 #endif /* PAGETABLE_LEVELS > 3 */ 642 643 #endif /* __ASSEMBLY__ */ 644 645 /* 646 * the pgd page can be thought of an array like this: pgd_t[PTRS_PER_PGD] 647 * 648 * this macro returns the index of the entry in the pgd page which would 649 * control the given virtual address 650 */ 651 #define pgd_index(address) (((address) >> PGDIR_SHIFT) & (PTRS_PER_PGD - 1)) 652 653 /* 654 * pgd_offset() returns a (pgd_t *) 655 * pgd_index() is used get the offset into the pgd page's array of pgd_t's; 656 */ 657 #define pgd_offset(mm, address) ((mm)->pgd + pgd_index((address))) 658 /* 659 * a shortcut which implies the use of the kernel's pgd, instead 660 * of a process's 661 */ 662 #define pgd_offset_k(address) pgd_offset(&init_mm, (address)) 663 664 665 #define KERNEL_PGD_BOUNDARY pgd_index(PAGE_OFFSET) 666 #define KERNEL_PGD_PTRS (PTRS_PER_PGD - KERNEL_PGD_BOUNDARY) 667 668 #ifndef __ASSEMBLY__ 669 670 extern int direct_gbpages; 671 void init_mem_mapping(void); 672 void early_alloc_pgt_buf(void); 673 674 /* local pte updates need not use xchg for locking */ 675 static inline pte_t native_local_ptep_get_and_clear(pte_t *ptep) 676 { 677 pte_t res = *ptep; 678 679 /* Pure native function needs no input for mm, addr */ 680 native_pte_clear(NULL, 0, ptep); 681 return res; 682 } 683 684 static inline pmd_t native_local_pmdp_get_and_clear(pmd_t *pmdp) 685 { 686 pmd_t res = *pmdp; 687 688 native_pmd_clear(pmdp); 689 return res; 690 } 691 692 static inline void native_set_pte_at(struct mm_struct *mm, unsigned long addr, 693 pte_t *ptep , pte_t pte) 694 { 695 native_set_pte(ptep, pte); 696 } 697 698 static inline void native_set_pmd_at(struct mm_struct *mm, unsigned long addr, 699 pmd_t *pmdp , pmd_t pmd) 700 { 701 native_set_pmd(pmdp, pmd); 702 } 703 704 #ifndef CONFIG_PARAVIRT 705 /* 706 * Rules for using pte_update - it must be called after any PTE update which 707 * has not been done using the set_pte / clear_pte interfaces. It is used by 708 * shadow mode hypervisors to resynchronize the shadow page tables. Kernel PTE 709 * updates should either be sets, clears, or set_pte_atomic for P->P 710 * transitions, which means this hook should only be called for user PTEs. 711 * This hook implies a P->P protection or access change has taken place, which 712 * requires a subsequent TLB flush. The notification can optionally be delayed 713 * until the TLB flush event by using the pte_update_defer form of the 714 * interface, but care must be taken to assure that the flush happens while 715 * still holding the same page table lock so that the shadow and primary pages 716 * do not become out of sync on SMP. 717 */ 718 #define pte_update(mm, addr, ptep) do { } while (0) 719 #define pte_update_defer(mm, addr, ptep) do { } while (0) 720 #endif 721 722 /* 723 * We only update the dirty/accessed state if we set 724 * the dirty bit by hand in the kernel, since the hardware 725 * will do the accessed bit for us, and we don't want to 726 * race with other CPU's that might be updating the dirty 727 * bit at the same time. 728 */ 729 struct vm_area_struct; 730 731 #define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS 732 extern int ptep_set_access_flags(struct vm_area_struct *vma, 733 unsigned long address, pte_t *ptep, 734 pte_t entry, int dirty); 735 736 #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG 737 extern int ptep_test_and_clear_young(struct vm_area_struct *vma, 738 unsigned long addr, pte_t *ptep); 739 740 #define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH 741 extern int ptep_clear_flush_young(struct vm_area_struct *vma, 742 unsigned long address, pte_t *ptep); 743 744 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR 745 static inline pte_t ptep_get_and_clear(struct mm_struct *mm, unsigned long addr, 746 pte_t *ptep) 747 { 748 pte_t pte = native_ptep_get_and_clear(ptep); 749 pte_update(mm, addr, ptep); 750 return pte; 751 } 752 753 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL 754 static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm, 755 unsigned long addr, pte_t *ptep, 756 int full) 757 { 758 pte_t pte; 759 if (full) { 760 /* 761 * Full address destruction in progress; paravirt does not 762 * care about updates and native needs no locking 763 */ 764 pte = native_local_ptep_get_and_clear(ptep); 765 } else { 766 pte = ptep_get_and_clear(mm, addr, ptep); 767 } 768 return pte; 769 } 770 771 #define __HAVE_ARCH_PTEP_SET_WRPROTECT 772 static inline void ptep_set_wrprotect(struct mm_struct *mm, 773 unsigned long addr, pte_t *ptep) 774 { 775 clear_bit(_PAGE_BIT_RW, (unsigned long *)&ptep->pte); 776 pte_update(mm, addr, ptep); 777 } 778 779 #define flush_tlb_fix_spurious_fault(vma, address) do { } while (0) 780 781 #define mk_pmd(page, pgprot) pfn_pmd(page_to_pfn(page), (pgprot)) 782 783 #define __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS 784 extern int pmdp_set_access_flags(struct vm_area_struct *vma, 785 unsigned long address, pmd_t *pmdp, 786 pmd_t entry, int dirty); 787 788 #define __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG 789 extern int pmdp_test_and_clear_young(struct vm_area_struct *vma, 790 unsigned long addr, pmd_t *pmdp); 791 792 #define __HAVE_ARCH_PMDP_CLEAR_YOUNG_FLUSH 793 extern int pmdp_clear_flush_young(struct vm_area_struct *vma, 794 unsigned long address, pmd_t *pmdp); 795 796 797 #define __HAVE_ARCH_PMDP_SPLITTING_FLUSH 798 extern void pmdp_splitting_flush(struct vm_area_struct *vma, 799 unsigned long addr, pmd_t *pmdp); 800 801 #define __HAVE_ARCH_PMD_WRITE 802 static inline int pmd_write(pmd_t pmd) 803 { 804 return pmd_flags(pmd) & _PAGE_RW; 805 } 806 807 #define __HAVE_ARCH_PMDP_GET_AND_CLEAR 808 static inline pmd_t pmdp_get_and_clear(struct mm_struct *mm, unsigned long addr, 809 pmd_t *pmdp) 810 { 811 pmd_t pmd = native_pmdp_get_and_clear(pmdp); 812 pmd_update(mm, addr, pmdp); 813 return pmd; 814 } 815 816 #define __HAVE_ARCH_PMDP_SET_WRPROTECT 817 static inline void pmdp_set_wrprotect(struct mm_struct *mm, 818 unsigned long addr, pmd_t *pmdp) 819 { 820 clear_bit(_PAGE_BIT_RW, (unsigned long *)pmdp); 821 pmd_update(mm, addr, pmdp); 822 } 823 824 /* 825 * clone_pgd_range(pgd_t *dst, pgd_t *src, int count); 826 * 827 * dst - pointer to pgd range anwhere on a pgd page 828 * src - "" 829 * count - the number of pgds to copy. 830 * 831 * dst and src can be on the same page, but the range must not overlap, 832 * and must not cross a page boundary. 833 */ 834 static inline void clone_pgd_range(pgd_t *dst, pgd_t *src, int count) 835 { 836 memcpy(dst, src, count * sizeof(pgd_t)); 837 } 838 839 #define PTE_SHIFT ilog2(PTRS_PER_PTE) 840 static inline int page_level_shift(enum pg_level level) 841 { 842 return (PAGE_SHIFT - PTE_SHIFT) + level * PTE_SHIFT; 843 } 844 static inline unsigned long page_level_size(enum pg_level level) 845 { 846 return 1UL << page_level_shift(level); 847 } 848 static inline unsigned long page_level_mask(enum pg_level level) 849 { 850 return ~(page_level_size(level) - 1); 851 } 852 853 /* 854 * The x86 doesn't have any external MMU info: the kernel page 855 * tables contain all the necessary information. 856 */ 857 static inline void update_mmu_cache(struct vm_area_struct *vma, 858 unsigned long addr, pte_t *ptep) 859 { 860 } 861 static inline void update_mmu_cache_pmd(struct vm_area_struct *vma, 862 unsigned long addr, pmd_t *pmd) 863 { 864 } 865 866 #include <asm-generic/pgtable.h> 867 #endif /* __ASSEMBLY__ */ 868 869 #endif /* _ASM_X86_PGTABLE_H */ 870