1 /* SPDX-License-Identifier: GPL-2.0 */ 2 #ifndef _ASM_X86_PGTABLE_H 3 #define _ASM_X86_PGTABLE_H 4 5 #include <linux/mem_encrypt.h> 6 #include <asm/page.h> 7 #include <asm/pgtable_types.h> 8 9 /* 10 * Macro to mark a page protection value as UC- 11 */ 12 #define pgprot_noncached(prot) \ 13 ((boot_cpu_data.x86 > 3) \ 14 ? (__pgprot(pgprot_val(prot) | \ 15 cachemode2protval(_PAGE_CACHE_MODE_UC_MINUS))) \ 16 : (prot)) 17 18 /* 19 * Macros to add or remove encryption attribute 20 */ 21 #define pgprot_encrypted(prot) __pgprot(__sme_set(pgprot_val(prot))) 22 #define pgprot_decrypted(prot) __pgprot(__sme_clr(pgprot_val(prot))) 23 24 #ifndef __ASSEMBLY__ 25 #include <asm/x86_init.h> 26 #include <asm/fpu/xstate.h> 27 #include <asm/fpu/api.h> 28 #include <asm-generic/pgtable_uffd.h> 29 30 extern pgd_t early_top_pgt[PTRS_PER_PGD]; 31 int __init __early_make_pgtable(unsigned long address, pmdval_t pmd); 32 33 void ptdump_walk_pgd_level(struct seq_file *m, struct mm_struct *mm); 34 void ptdump_walk_pgd_level_debugfs(struct seq_file *m, struct mm_struct *mm, 35 bool user); 36 void ptdump_walk_pgd_level_checkwx(void); 37 void ptdump_walk_user_pgd_level_checkwx(void); 38 39 #ifdef CONFIG_DEBUG_WX 40 #define debug_checkwx() ptdump_walk_pgd_level_checkwx() 41 #define debug_checkwx_user() ptdump_walk_user_pgd_level_checkwx() 42 #else 43 #define debug_checkwx() do { } while (0) 44 #define debug_checkwx_user() do { } while (0) 45 #endif 46 47 /* 48 * ZERO_PAGE is a global shared page that is always zero: used 49 * for zero-mapped memory areas etc.. 50 */ 51 extern unsigned long empty_zero_page[PAGE_SIZE / sizeof(unsigned long)] 52 __visible; 53 #define ZERO_PAGE(vaddr) ((void)(vaddr),virt_to_page(empty_zero_page)) 54 55 extern spinlock_t pgd_lock; 56 extern struct list_head pgd_list; 57 58 extern struct mm_struct *pgd_page_get_mm(struct page *page); 59 60 extern pmdval_t early_pmd_flags; 61 62 #ifdef CONFIG_PARAVIRT_XXL 63 #include <asm/paravirt.h> 64 #else /* !CONFIG_PARAVIRT_XXL */ 65 #define set_pte(ptep, pte) native_set_pte(ptep, pte) 66 #define set_pte_at(mm, addr, ptep, pte) native_set_pte_at(mm, addr, ptep, pte) 67 68 #define set_pte_atomic(ptep, pte) \ 69 native_set_pte_atomic(ptep, pte) 70 71 #define set_pmd(pmdp, pmd) native_set_pmd(pmdp, pmd) 72 73 #ifndef __PAGETABLE_P4D_FOLDED 74 #define set_pgd(pgdp, pgd) native_set_pgd(pgdp, pgd) 75 #define pgd_clear(pgd) (pgtable_l5_enabled() ? native_pgd_clear(pgd) : 0) 76 #endif 77 78 #ifndef set_p4d 79 # define set_p4d(p4dp, p4d) native_set_p4d(p4dp, p4d) 80 #endif 81 82 #ifndef __PAGETABLE_PUD_FOLDED 83 #define p4d_clear(p4d) native_p4d_clear(p4d) 84 #endif 85 86 #ifndef set_pud 87 # define set_pud(pudp, pud) native_set_pud(pudp, pud) 88 #endif 89 90 #ifndef __PAGETABLE_PUD_FOLDED 91 #define pud_clear(pud) native_pud_clear(pud) 92 #endif 93 94 #define pte_clear(mm, addr, ptep) native_pte_clear(mm, addr, ptep) 95 #define pmd_clear(pmd) native_pmd_clear(pmd) 96 97 #define pgd_val(x) native_pgd_val(x) 98 #define __pgd(x) native_make_pgd(x) 99 100 #ifndef __PAGETABLE_P4D_FOLDED 101 #define p4d_val(x) native_p4d_val(x) 102 #define __p4d(x) native_make_p4d(x) 103 #endif 104 105 #ifndef __PAGETABLE_PUD_FOLDED 106 #define pud_val(x) native_pud_val(x) 107 #define __pud(x) native_make_pud(x) 108 #endif 109 110 #ifndef __PAGETABLE_PMD_FOLDED 111 #define pmd_val(x) native_pmd_val(x) 112 #define __pmd(x) native_make_pmd(x) 113 #endif 114 115 #define pte_val(x) native_pte_val(x) 116 #define __pte(x) native_make_pte(x) 117 118 #define arch_end_context_switch(prev) do {} while(0) 119 #endif /* CONFIG_PARAVIRT_XXL */ 120 121 /* 122 * The following only work if pte_present() is true. 123 * Undefined behaviour if not.. 124 */ 125 static inline int pte_dirty(pte_t pte) 126 { 127 return pte_flags(pte) & _PAGE_DIRTY; 128 } 129 130 131 static inline u32 read_pkru(void) 132 { 133 if (boot_cpu_has(X86_FEATURE_OSPKE)) 134 return rdpkru(); 135 return 0; 136 } 137 138 static inline void write_pkru(u32 pkru) 139 { 140 struct pkru_state *pk; 141 142 if (!boot_cpu_has(X86_FEATURE_OSPKE)) 143 return; 144 145 pk = get_xsave_addr(¤t->thread.fpu.state.xsave, XFEATURE_PKRU); 146 147 /* 148 * The PKRU value in xstate needs to be in sync with the value that is 149 * written to the CPU. The FPU restore on return to userland would 150 * otherwise load the previous value again. 151 */ 152 fpregs_lock(); 153 if (pk) 154 pk->pkru = pkru; 155 __write_pkru(pkru); 156 fpregs_unlock(); 157 } 158 159 static inline int pte_young(pte_t pte) 160 { 161 return pte_flags(pte) & _PAGE_ACCESSED; 162 } 163 164 static inline int pmd_dirty(pmd_t pmd) 165 { 166 return pmd_flags(pmd) & _PAGE_DIRTY; 167 } 168 169 static inline int pmd_young(pmd_t pmd) 170 { 171 return pmd_flags(pmd) & _PAGE_ACCESSED; 172 } 173 174 static inline int pud_dirty(pud_t pud) 175 { 176 return pud_flags(pud) & _PAGE_DIRTY; 177 } 178 179 static inline int pud_young(pud_t pud) 180 { 181 return pud_flags(pud) & _PAGE_ACCESSED; 182 } 183 184 static inline int pte_write(pte_t pte) 185 { 186 return pte_flags(pte) & _PAGE_RW; 187 } 188 189 static inline int pte_huge(pte_t pte) 190 { 191 return pte_flags(pte) & _PAGE_PSE; 192 } 193 194 static inline int pte_global(pte_t pte) 195 { 196 return pte_flags(pte) & _PAGE_GLOBAL; 197 } 198 199 static inline int pte_exec(pte_t pte) 200 { 201 return !(pte_flags(pte) & _PAGE_NX); 202 } 203 204 static inline int pte_special(pte_t pte) 205 { 206 return pte_flags(pte) & _PAGE_SPECIAL; 207 } 208 209 /* Entries that were set to PROT_NONE are inverted */ 210 211 static inline u64 protnone_mask(u64 val); 212 213 static inline unsigned long pte_pfn(pte_t pte) 214 { 215 phys_addr_t pfn = pte_val(pte); 216 pfn ^= protnone_mask(pfn); 217 return (pfn & PTE_PFN_MASK) >> PAGE_SHIFT; 218 } 219 220 static inline unsigned long pmd_pfn(pmd_t pmd) 221 { 222 phys_addr_t pfn = pmd_val(pmd); 223 pfn ^= protnone_mask(pfn); 224 return (pfn & pmd_pfn_mask(pmd)) >> PAGE_SHIFT; 225 } 226 227 static inline unsigned long pud_pfn(pud_t pud) 228 { 229 phys_addr_t pfn = pud_val(pud); 230 pfn ^= protnone_mask(pfn); 231 return (pfn & pud_pfn_mask(pud)) >> PAGE_SHIFT; 232 } 233 234 static inline unsigned long p4d_pfn(p4d_t p4d) 235 { 236 return (p4d_val(p4d) & p4d_pfn_mask(p4d)) >> PAGE_SHIFT; 237 } 238 239 static inline unsigned long pgd_pfn(pgd_t pgd) 240 { 241 return (pgd_val(pgd) & PTE_PFN_MASK) >> PAGE_SHIFT; 242 } 243 244 #define p4d_leaf p4d_large 245 static inline int p4d_large(p4d_t p4d) 246 { 247 /* No 512 GiB pages yet */ 248 return 0; 249 } 250 251 #define pte_page(pte) pfn_to_page(pte_pfn(pte)) 252 253 #define pmd_leaf pmd_large 254 static inline int pmd_large(pmd_t pte) 255 { 256 return pmd_flags(pte) & _PAGE_PSE; 257 } 258 259 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 260 static inline int pmd_trans_huge(pmd_t pmd) 261 { 262 return (pmd_val(pmd) & (_PAGE_PSE|_PAGE_DEVMAP)) == _PAGE_PSE; 263 } 264 265 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD 266 static inline int pud_trans_huge(pud_t pud) 267 { 268 return (pud_val(pud) & (_PAGE_PSE|_PAGE_DEVMAP)) == _PAGE_PSE; 269 } 270 #endif 271 272 #define has_transparent_hugepage has_transparent_hugepage 273 static inline int has_transparent_hugepage(void) 274 { 275 return boot_cpu_has(X86_FEATURE_PSE); 276 } 277 278 #ifdef CONFIG_ARCH_HAS_PTE_DEVMAP 279 static inline int pmd_devmap(pmd_t pmd) 280 { 281 return !!(pmd_val(pmd) & _PAGE_DEVMAP); 282 } 283 284 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD 285 static inline int pud_devmap(pud_t pud) 286 { 287 return !!(pud_val(pud) & _PAGE_DEVMAP); 288 } 289 #else 290 static inline int pud_devmap(pud_t pud) 291 { 292 return 0; 293 } 294 #endif 295 296 static inline int pgd_devmap(pgd_t pgd) 297 { 298 return 0; 299 } 300 #endif 301 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 302 303 static inline pte_t pte_set_flags(pte_t pte, pteval_t set) 304 { 305 pteval_t v = native_pte_val(pte); 306 307 return native_make_pte(v | set); 308 } 309 310 static inline pte_t pte_clear_flags(pte_t pte, pteval_t clear) 311 { 312 pteval_t v = native_pte_val(pte); 313 314 return native_make_pte(v & ~clear); 315 } 316 317 #ifdef CONFIG_HAVE_ARCH_USERFAULTFD_WP 318 static inline int pte_uffd_wp(pte_t pte) 319 { 320 return pte_flags(pte) & _PAGE_UFFD_WP; 321 } 322 323 static inline pte_t pte_mkuffd_wp(pte_t pte) 324 { 325 return pte_set_flags(pte, _PAGE_UFFD_WP); 326 } 327 328 static inline pte_t pte_clear_uffd_wp(pte_t pte) 329 { 330 return pte_clear_flags(pte, _PAGE_UFFD_WP); 331 } 332 #endif /* CONFIG_HAVE_ARCH_USERFAULTFD_WP */ 333 334 static inline pte_t pte_mkclean(pte_t pte) 335 { 336 return pte_clear_flags(pte, _PAGE_DIRTY); 337 } 338 339 static inline pte_t pte_mkold(pte_t pte) 340 { 341 return pte_clear_flags(pte, _PAGE_ACCESSED); 342 } 343 344 static inline pte_t pte_wrprotect(pte_t pte) 345 { 346 return pte_clear_flags(pte, _PAGE_RW); 347 } 348 349 static inline pte_t pte_mkexec(pte_t pte) 350 { 351 return pte_clear_flags(pte, _PAGE_NX); 352 } 353 354 static inline pte_t pte_mkdirty(pte_t pte) 355 { 356 return pte_set_flags(pte, _PAGE_DIRTY | _PAGE_SOFT_DIRTY); 357 } 358 359 static inline pte_t pte_mkyoung(pte_t pte) 360 { 361 return pte_set_flags(pte, _PAGE_ACCESSED); 362 } 363 364 static inline pte_t pte_mkwrite(pte_t pte) 365 { 366 return pte_set_flags(pte, _PAGE_RW); 367 } 368 369 static inline pte_t pte_mkhuge(pte_t pte) 370 { 371 return pte_set_flags(pte, _PAGE_PSE); 372 } 373 374 static inline pte_t pte_clrhuge(pte_t pte) 375 { 376 return pte_clear_flags(pte, _PAGE_PSE); 377 } 378 379 static inline pte_t pte_mkglobal(pte_t pte) 380 { 381 return pte_set_flags(pte, _PAGE_GLOBAL); 382 } 383 384 static inline pte_t pte_clrglobal(pte_t pte) 385 { 386 return pte_clear_flags(pte, _PAGE_GLOBAL); 387 } 388 389 static inline pte_t pte_mkspecial(pte_t pte) 390 { 391 return pte_set_flags(pte, _PAGE_SPECIAL); 392 } 393 394 static inline pte_t pte_mkdevmap(pte_t pte) 395 { 396 return pte_set_flags(pte, _PAGE_SPECIAL|_PAGE_DEVMAP); 397 } 398 399 static inline pmd_t pmd_set_flags(pmd_t pmd, pmdval_t set) 400 { 401 pmdval_t v = native_pmd_val(pmd); 402 403 return native_make_pmd(v | set); 404 } 405 406 static inline pmd_t pmd_clear_flags(pmd_t pmd, pmdval_t clear) 407 { 408 pmdval_t v = native_pmd_val(pmd); 409 410 return native_make_pmd(v & ~clear); 411 } 412 413 #ifdef CONFIG_HAVE_ARCH_USERFAULTFD_WP 414 static inline int pmd_uffd_wp(pmd_t pmd) 415 { 416 return pmd_flags(pmd) & _PAGE_UFFD_WP; 417 } 418 419 static inline pmd_t pmd_mkuffd_wp(pmd_t pmd) 420 { 421 return pmd_set_flags(pmd, _PAGE_UFFD_WP); 422 } 423 424 static inline pmd_t pmd_clear_uffd_wp(pmd_t pmd) 425 { 426 return pmd_clear_flags(pmd, _PAGE_UFFD_WP); 427 } 428 #endif /* CONFIG_HAVE_ARCH_USERFAULTFD_WP */ 429 430 static inline pmd_t pmd_mkold(pmd_t pmd) 431 { 432 return pmd_clear_flags(pmd, _PAGE_ACCESSED); 433 } 434 435 static inline pmd_t pmd_mkclean(pmd_t pmd) 436 { 437 return pmd_clear_flags(pmd, _PAGE_DIRTY); 438 } 439 440 static inline pmd_t pmd_wrprotect(pmd_t pmd) 441 { 442 return pmd_clear_flags(pmd, _PAGE_RW); 443 } 444 445 static inline pmd_t pmd_mkdirty(pmd_t pmd) 446 { 447 return pmd_set_flags(pmd, _PAGE_DIRTY | _PAGE_SOFT_DIRTY); 448 } 449 450 static inline pmd_t pmd_mkdevmap(pmd_t pmd) 451 { 452 return pmd_set_flags(pmd, _PAGE_DEVMAP); 453 } 454 455 static inline pmd_t pmd_mkhuge(pmd_t pmd) 456 { 457 return pmd_set_flags(pmd, _PAGE_PSE); 458 } 459 460 static inline pmd_t pmd_mkyoung(pmd_t pmd) 461 { 462 return pmd_set_flags(pmd, _PAGE_ACCESSED); 463 } 464 465 static inline pmd_t pmd_mkwrite(pmd_t pmd) 466 { 467 return pmd_set_flags(pmd, _PAGE_RW); 468 } 469 470 static inline pud_t pud_set_flags(pud_t pud, pudval_t set) 471 { 472 pudval_t v = native_pud_val(pud); 473 474 return native_make_pud(v | set); 475 } 476 477 static inline pud_t pud_clear_flags(pud_t pud, pudval_t clear) 478 { 479 pudval_t v = native_pud_val(pud); 480 481 return native_make_pud(v & ~clear); 482 } 483 484 static inline pud_t pud_mkold(pud_t pud) 485 { 486 return pud_clear_flags(pud, _PAGE_ACCESSED); 487 } 488 489 static inline pud_t pud_mkclean(pud_t pud) 490 { 491 return pud_clear_flags(pud, _PAGE_DIRTY); 492 } 493 494 static inline pud_t pud_wrprotect(pud_t pud) 495 { 496 return pud_clear_flags(pud, _PAGE_RW); 497 } 498 499 static inline pud_t pud_mkdirty(pud_t pud) 500 { 501 return pud_set_flags(pud, _PAGE_DIRTY | _PAGE_SOFT_DIRTY); 502 } 503 504 static inline pud_t pud_mkdevmap(pud_t pud) 505 { 506 return pud_set_flags(pud, _PAGE_DEVMAP); 507 } 508 509 static inline pud_t pud_mkhuge(pud_t pud) 510 { 511 return pud_set_flags(pud, _PAGE_PSE); 512 } 513 514 static inline pud_t pud_mkyoung(pud_t pud) 515 { 516 return pud_set_flags(pud, _PAGE_ACCESSED); 517 } 518 519 static inline pud_t pud_mkwrite(pud_t pud) 520 { 521 return pud_set_flags(pud, _PAGE_RW); 522 } 523 524 #ifdef CONFIG_HAVE_ARCH_SOFT_DIRTY 525 static inline int pte_soft_dirty(pte_t pte) 526 { 527 return pte_flags(pte) & _PAGE_SOFT_DIRTY; 528 } 529 530 static inline int pmd_soft_dirty(pmd_t pmd) 531 { 532 return pmd_flags(pmd) & _PAGE_SOFT_DIRTY; 533 } 534 535 static inline int pud_soft_dirty(pud_t pud) 536 { 537 return pud_flags(pud) & _PAGE_SOFT_DIRTY; 538 } 539 540 static inline pte_t pte_mksoft_dirty(pte_t pte) 541 { 542 return pte_set_flags(pte, _PAGE_SOFT_DIRTY); 543 } 544 545 static inline pmd_t pmd_mksoft_dirty(pmd_t pmd) 546 { 547 return pmd_set_flags(pmd, _PAGE_SOFT_DIRTY); 548 } 549 550 static inline pud_t pud_mksoft_dirty(pud_t pud) 551 { 552 return pud_set_flags(pud, _PAGE_SOFT_DIRTY); 553 } 554 555 static inline pte_t pte_clear_soft_dirty(pte_t pte) 556 { 557 return pte_clear_flags(pte, _PAGE_SOFT_DIRTY); 558 } 559 560 static inline pmd_t pmd_clear_soft_dirty(pmd_t pmd) 561 { 562 return pmd_clear_flags(pmd, _PAGE_SOFT_DIRTY); 563 } 564 565 static inline pud_t pud_clear_soft_dirty(pud_t pud) 566 { 567 return pud_clear_flags(pud, _PAGE_SOFT_DIRTY); 568 } 569 570 #endif /* CONFIG_HAVE_ARCH_SOFT_DIRTY */ 571 572 /* 573 * Mask out unsupported bits in a present pgprot. Non-present pgprots 574 * can use those bits for other purposes, so leave them be. 575 */ 576 static inline pgprotval_t massage_pgprot(pgprot_t pgprot) 577 { 578 pgprotval_t protval = pgprot_val(pgprot); 579 580 if (protval & _PAGE_PRESENT) 581 protval &= __supported_pte_mask; 582 583 return protval; 584 } 585 586 static inline pgprotval_t check_pgprot(pgprot_t pgprot) 587 { 588 pgprotval_t massaged_val = massage_pgprot(pgprot); 589 590 /* mmdebug.h can not be included here because of dependencies */ 591 #ifdef CONFIG_DEBUG_VM 592 WARN_ONCE(pgprot_val(pgprot) != massaged_val, 593 "attempted to set unsupported pgprot: %016llx " 594 "bits: %016llx supported: %016llx\n", 595 (u64)pgprot_val(pgprot), 596 (u64)pgprot_val(pgprot) ^ massaged_val, 597 (u64)__supported_pte_mask); 598 #endif 599 600 return massaged_val; 601 } 602 603 static inline pte_t pfn_pte(unsigned long page_nr, pgprot_t pgprot) 604 { 605 phys_addr_t pfn = (phys_addr_t)page_nr << PAGE_SHIFT; 606 pfn ^= protnone_mask(pgprot_val(pgprot)); 607 pfn &= PTE_PFN_MASK; 608 return __pte(pfn | check_pgprot(pgprot)); 609 } 610 611 static inline pmd_t pfn_pmd(unsigned long page_nr, pgprot_t pgprot) 612 { 613 phys_addr_t pfn = (phys_addr_t)page_nr << PAGE_SHIFT; 614 pfn ^= protnone_mask(pgprot_val(pgprot)); 615 pfn &= PHYSICAL_PMD_PAGE_MASK; 616 return __pmd(pfn | check_pgprot(pgprot)); 617 } 618 619 static inline pud_t pfn_pud(unsigned long page_nr, pgprot_t pgprot) 620 { 621 phys_addr_t pfn = (phys_addr_t)page_nr << PAGE_SHIFT; 622 pfn ^= protnone_mask(pgprot_val(pgprot)); 623 pfn &= PHYSICAL_PUD_PAGE_MASK; 624 return __pud(pfn | check_pgprot(pgprot)); 625 } 626 627 static inline pmd_t pmd_mkinvalid(pmd_t pmd) 628 { 629 return pfn_pmd(pmd_pfn(pmd), 630 __pgprot(pmd_flags(pmd) & ~(_PAGE_PRESENT|_PAGE_PROTNONE))); 631 } 632 633 static inline u64 flip_protnone_guard(u64 oldval, u64 val, u64 mask); 634 635 static inline pte_t pte_modify(pte_t pte, pgprot_t newprot) 636 { 637 pteval_t val = pte_val(pte), oldval = val; 638 639 /* 640 * Chop off the NX bit (if present), and add the NX portion of 641 * the newprot (if present): 642 */ 643 val &= _PAGE_CHG_MASK; 644 val |= check_pgprot(newprot) & ~_PAGE_CHG_MASK; 645 val = flip_protnone_guard(oldval, val, PTE_PFN_MASK); 646 return __pte(val); 647 } 648 649 static inline pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot) 650 { 651 pmdval_t val = pmd_val(pmd), oldval = val; 652 653 val &= _HPAGE_CHG_MASK; 654 val |= check_pgprot(newprot) & ~_HPAGE_CHG_MASK; 655 val = flip_protnone_guard(oldval, val, PHYSICAL_PMD_PAGE_MASK); 656 return __pmd(val); 657 } 658 659 /* 660 * mprotect needs to preserve PAT and encryption bits when updating 661 * vm_page_prot 662 */ 663 #define pgprot_modify pgprot_modify 664 static inline pgprot_t pgprot_modify(pgprot_t oldprot, pgprot_t newprot) 665 { 666 pgprotval_t preservebits = pgprot_val(oldprot) & _PAGE_CHG_MASK; 667 pgprotval_t addbits = pgprot_val(newprot) & ~_PAGE_CHG_MASK; 668 return __pgprot(preservebits | addbits); 669 } 670 671 #define pte_pgprot(x) __pgprot(pte_flags(x)) 672 #define pmd_pgprot(x) __pgprot(pmd_flags(x)) 673 #define pud_pgprot(x) __pgprot(pud_flags(x)) 674 #define p4d_pgprot(x) __pgprot(p4d_flags(x)) 675 676 #define canon_pgprot(p) __pgprot(massage_pgprot(p)) 677 678 static inline pgprot_t arch_filter_pgprot(pgprot_t prot) 679 { 680 return canon_pgprot(prot); 681 } 682 683 static inline int is_new_memtype_allowed(u64 paddr, unsigned long size, 684 enum page_cache_mode pcm, 685 enum page_cache_mode new_pcm) 686 { 687 /* 688 * PAT type is always WB for untracked ranges, so no need to check. 689 */ 690 if (x86_platform.is_untracked_pat_range(paddr, paddr + size)) 691 return 1; 692 693 /* 694 * Certain new memtypes are not allowed with certain 695 * requested memtype: 696 * - request is uncached, return cannot be write-back 697 * - request is write-combine, return cannot be write-back 698 * - request is write-through, return cannot be write-back 699 * - request is write-through, return cannot be write-combine 700 */ 701 if ((pcm == _PAGE_CACHE_MODE_UC_MINUS && 702 new_pcm == _PAGE_CACHE_MODE_WB) || 703 (pcm == _PAGE_CACHE_MODE_WC && 704 new_pcm == _PAGE_CACHE_MODE_WB) || 705 (pcm == _PAGE_CACHE_MODE_WT && 706 new_pcm == _PAGE_CACHE_MODE_WB) || 707 (pcm == _PAGE_CACHE_MODE_WT && 708 new_pcm == _PAGE_CACHE_MODE_WC)) { 709 return 0; 710 } 711 712 return 1; 713 } 714 715 pmd_t *populate_extra_pmd(unsigned long vaddr); 716 pte_t *populate_extra_pte(unsigned long vaddr); 717 718 #ifdef CONFIG_PAGE_TABLE_ISOLATION 719 pgd_t __pti_set_user_pgtbl(pgd_t *pgdp, pgd_t pgd); 720 721 /* 722 * Take a PGD location (pgdp) and a pgd value that needs to be set there. 723 * Populates the user and returns the resulting PGD that must be set in 724 * the kernel copy of the page tables. 725 */ 726 static inline pgd_t pti_set_user_pgtbl(pgd_t *pgdp, pgd_t pgd) 727 { 728 if (!static_cpu_has(X86_FEATURE_PTI)) 729 return pgd; 730 return __pti_set_user_pgtbl(pgdp, pgd); 731 } 732 #else /* CONFIG_PAGE_TABLE_ISOLATION */ 733 static inline pgd_t pti_set_user_pgtbl(pgd_t *pgdp, pgd_t pgd) 734 { 735 return pgd; 736 } 737 #endif /* CONFIG_PAGE_TABLE_ISOLATION */ 738 739 #endif /* __ASSEMBLY__ */ 740 741 742 #ifdef CONFIG_X86_32 743 # include <asm/pgtable_32.h> 744 #else 745 # include <asm/pgtable_64.h> 746 #endif 747 748 #ifndef __ASSEMBLY__ 749 #include <linux/mm_types.h> 750 #include <linux/mmdebug.h> 751 #include <linux/log2.h> 752 #include <asm/fixmap.h> 753 754 static inline int pte_none(pte_t pte) 755 { 756 return !(pte.pte & ~(_PAGE_KNL_ERRATUM_MASK)); 757 } 758 759 #define __HAVE_ARCH_PTE_SAME 760 static inline int pte_same(pte_t a, pte_t b) 761 { 762 return a.pte == b.pte; 763 } 764 765 static inline int pte_present(pte_t a) 766 { 767 return pte_flags(a) & (_PAGE_PRESENT | _PAGE_PROTNONE); 768 } 769 770 #ifdef CONFIG_ARCH_HAS_PTE_DEVMAP 771 static inline int pte_devmap(pte_t a) 772 { 773 return (pte_flags(a) & _PAGE_DEVMAP) == _PAGE_DEVMAP; 774 } 775 #endif 776 777 #define pte_accessible pte_accessible 778 static inline bool pte_accessible(struct mm_struct *mm, pte_t a) 779 { 780 if (pte_flags(a) & _PAGE_PRESENT) 781 return true; 782 783 if ((pte_flags(a) & _PAGE_PROTNONE) && 784 mm_tlb_flush_pending(mm)) 785 return true; 786 787 return false; 788 } 789 790 static inline int pmd_present(pmd_t pmd) 791 { 792 /* 793 * Checking for _PAGE_PSE is needed too because 794 * split_huge_page will temporarily clear the present bit (but 795 * the _PAGE_PSE flag will remain set at all times while the 796 * _PAGE_PRESENT bit is clear). 797 */ 798 return pmd_flags(pmd) & (_PAGE_PRESENT | _PAGE_PROTNONE | _PAGE_PSE); 799 } 800 801 #ifdef CONFIG_NUMA_BALANCING 802 /* 803 * These work without NUMA balancing but the kernel does not care. See the 804 * comment in include/asm-generic/pgtable.h 805 */ 806 static inline int pte_protnone(pte_t pte) 807 { 808 return (pte_flags(pte) & (_PAGE_PROTNONE | _PAGE_PRESENT)) 809 == _PAGE_PROTNONE; 810 } 811 812 static inline int pmd_protnone(pmd_t pmd) 813 { 814 return (pmd_flags(pmd) & (_PAGE_PROTNONE | _PAGE_PRESENT)) 815 == _PAGE_PROTNONE; 816 } 817 #endif /* CONFIG_NUMA_BALANCING */ 818 819 static inline int pmd_none(pmd_t pmd) 820 { 821 /* Only check low word on 32-bit platforms, since it might be 822 out of sync with upper half. */ 823 unsigned long val = native_pmd_val(pmd); 824 return (val & ~_PAGE_KNL_ERRATUM_MASK) == 0; 825 } 826 827 static inline unsigned long pmd_page_vaddr(pmd_t pmd) 828 { 829 return (unsigned long)__va(pmd_val(pmd) & pmd_pfn_mask(pmd)); 830 } 831 832 /* 833 * Currently stuck as a macro due to indirect forward reference to 834 * linux/mmzone.h's __section_mem_map_addr() definition: 835 */ 836 #define pmd_page(pmd) pfn_to_page(pmd_pfn(pmd)) 837 838 /* 839 * the pmd page can be thought of an array like this: pmd_t[PTRS_PER_PMD] 840 * 841 * this macro returns the index of the entry in the pmd page which would 842 * control the given virtual address 843 */ 844 static inline unsigned long pmd_index(unsigned long address) 845 { 846 return (address >> PMD_SHIFT) & (PTRS_PER_PMD - 1); 847 } 848 849 /* 850 * Conversion functions: convert a page and protection to a page entry, 851 * and a page entry and page directory to the page they refer to. 852 * 853 * (Currently stuck as a macro because of indirect forward reference 854 * to linux/mm.h:page_to_nid()) 855 */ 856 #define mk_pte(page, pgprot) pfn_pte(page_to_pfn(page), (pgprot)) 857 858 /* 859 * the pte page can be thought of an array like this: pte_t[PTRS_PER_PTE] 860 * 861 * this function returns the index of the entry in the pte page which would 862 * control the given virtual address 863 * 864 * Also define macro so we can test if pte_index is defined for arch. 865 */ 866 #define pte_index pte_index 867 static inline unsigned long pte_index(unsigned long address) 868 { 869 return (address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1); 870 } 871 872 static inline pte_t *pte_offset_kernel(pmd_t *pmd, unsigned long address) 873 { 874 return (pte_t *)pmd_page_vaddr(*pmd) + pte_index(address); 875 } 876 877 static inline int pmd_bad(pmd_t pmd) 878 { 879 return (pmd_flags(pmd) & ~_PAGE_USER) != _KERNPG_TABLE; 880 } 881 882 static inline unsigned long pages_to_mb(unsigned long npg) 883 { 884 return npg >> (20 - PAGE_SHIFT); 885 } 886 887 #if CONFIG_PGTABLE_LEVELS > 2 888 static inline int pud_none(pud_t pud) 889 { 890 return (native_pud_val(pud) & ~(_PAGE_KNL_ERRATUM_MASK)) == 0; 891 } 892 893 static inline int pud_present(pud_t pud) 894 { 895 return pud_flags(pud) & _PAGE_PRESENT; 896 } 897 898 static inline unsigned long pud_page_vaddr(pud_t pud) 899 { 900 return (unsigned long)__va(pud_val(pud) & pud_pfn_mask(pud)); 901 } 902 903 /* 904 * Currently stuck as a macro due to indirect forward reference to 905 * linux/mmzone.h's __section_mem_map_addr() definition: 906 */ 907 #define pud_page(pud) pfn_to_page(pud_pfn(pud)) 908 909 /* Find an entry in the second-level page table.. */ 910 static inline pmd_t *pmd_offset(pud_t *pud, unsigned long address) 911 { 912 return (pmd_t *)pud_page_vaddr(*pud) + pmd_index(address); 913 } 914 915 #define pud_leaf pud_large 916 static inline int pud_large(pud_t pud) 917 { 918 return (pud_val(pud) & (_PAGE_PSE | _PAGE_PRESENT)) == 919 (_PAGE_PSE | _PAGE_PRESENT); 920 } 921 922 static inline int pud_bad(pud_t pud) 923 { 924 return (pud_flags(pud) & ~(_KERNPG_TABLE | _PAGE_USER)) != 0; 925 } 926 #else 927 #define pud_leaf pud_large 928 static inline int pud_large(pud_t pud) 929 { 930 return 0; 931 } 932 #endif /* CONFIG_PGTABLE_LEVELS > 2 */ 933 934 static inline unsigned long pud_index(unsigned long address) 935 { 936 return (address >> PUD_SHIFT) & (PTRS_PER_PUD - 1); 937 } 938 939 #if CONFIG_PGTABLE_LEVELS > 3 940 static inline int p4d_none(p4d_t p4d) 941 { 942 return (native_p4d_val(p4d) & ~(_PAGE_KNL_ERRATUM_MASK)) == 0; 943 } 944 945 static inline int p4d_present(p4d_t p4d) 946 { 947 return p4d_flags(p4d) & _PAGE_PRESENT; 948 } 949 950 static inline unsigned long p4d_page_vaddr(p4d_t p4d) 951 { 952 return (unsigned long)__va(p4d_val(p4d) & p4d_pfn_mask(p4d)); 953 } 954 955 /* 956 * Currently stuck as a macro due to indirect forward reference to 957 * linux/mmzone.h's __section_mem_map_addr() definition: 958 */ 959 #define p4d_page(p4d) pfn_to_page(p4d_pfn(p4d)) 960 961 /* Find an entry in the third-level page table.. */ 962 static inline pud_t *pud_offset(p4d_t *p4d, unsigned long address) 963 { 964 return (pud_t *)p4d_page_vaddr(*p4d) + pud_index(address); 965 } 966 967 static inline int p4d_bad(p4d_t p4d) 968 { 969 unsigned long ignore_flags = _KERNPG_TABLE | _PAGE_USER; 970 971 if (IS_ENABLED(CONFIG_PAGE_TABLE_ISOLATION)) 972 ignore_flags |= _PAGE_NX; 973 974 return (p4d_flags(p4d) & ~ignore_flags) != 0; 975 } 976 #endif /* CONFIG_PGTABLE_LEVELS > 3 */ 977 978 static inline unsigned long p4d_index(unsigned long address) 979 { 980 return (address >> P4D_SHIFT) & (PTRS_PER_P4D - 1); 981 } 982 983 #if CONFIG_PGTABLE_LEVELS > 4 984 static inline int pgd_present(pgd_t pgd) 985 { 986 if (!pgtable_l5_enabled()) 987 return 1; 988 return pgd_flags(pgd) & _PAGE_PRESENT; 989 } 990 991 static inline unsigned long pgd_page_vaddr(pgd_t pgd) 992 { 993 return (unsigned long)__va((unsigned long)pgd_val(pgd) & PTE_PFN_MASK); 994 } 995 996 /* 997 * Currently stuck as a macro due to indirect forward reference to 998 * linux/mmzone.h's __section_mem_map_addr() definition: 999 */ 1000 #define pgd_page(pgd) pfn_to_page(pgd_pfn(pgd)) 1001 1002 /* to find an entry in a page-table-directory. */ 1003 static inline p4d_t *p4d_offset(pgd_t *pgd, unsigned long address) 1004 { 1005 if (!pgtable_l5_enabled()) 1006 return (p4d_t *)pgd; 1007 return (p4d_t *)pgd_page_vaddr(*pgd) + p4d_index(address); 1008 } 1009 1010 static inline int pgd_bad(pgd_t pgd) 1011 { 1012 unsigned long ignore_flags = _PAGE_USER; 1013 1014 if (!pgtable_l5_enabled()) 1015 return 0; 1016 1017 if (IS_ENABLED(CONFIG_PAGE_TABLE_ISOLATION)) 1018 ignore_flags |= _PAGE_NX; 1019 1020 return (pgd_flags(pgd) & ~ignore_flags) != _KERNPG_TABLE; 1021 } 1022 1023 static inline int pgd_none(pgd_t pgd) 1024 { 1025 if (!pgtable_l5_enabled()) 1026 return 0; 1027 /* 1028 * There is no need to do a workaround for the KNL stray 1029 * A/D bit erratum here. PGDs only point to page tables 1030 * except on 32-bit non-PAE which is not supported on 1031 * KNL. 1032 */ 1033 return !native_pgd_val(pgd); 1034 } 1035 #endif /* CONFIG_PGTABLE_LEVELS > 4 */ 1036 1037 #endif /* __ASSEMBLY__ */ 1038 1039 /* 1040 * the pgd page can be thought of an array like this: pgd_t[PTRS_PER_PGD] 1041 * 1042 * this macro returns the index of the entry in the pgd page which would 1043 * control the given virtual address 1044 */ 1045 #define pgd_index(address) (((address) >> PGDIR_SHIFT) & (PTRS_PER_PGD - 1)) 1046 1047 /* 1048 * pgd_offset() returns a (pgd_t *) 1049 * pgd_index() is used get the offset into the pgd page's array of pgd_t's; 1050 */ 1051 #define pgd_offset_pgd(pgd, address) (pgd + pgd_index((address))) 1052 /* 1053 * a shortcut to get a pgd_t in a given mm 1054 */ 1055 #define pgd_offset(mm, address) pgd_offset_pgd((mm)->pgd, (address)) 1056 /* 1057 * a shortcut which implies the use of the kernel's pgd, instead 1058 * of a process's 1059 */ 1060 #define pgd_offset_k(address) pgd_offset(&init_mm, (address)) 1061 1062 1063 #define KERNEL_PGD_BOUNDARY pgd_index(PAGE_OFFSET) 1064 #define KERNEL_PGD_PTRS (PTRS_PER_PGD - KERNEL_PGD_BOUNDARY) 1065 1066 #ifndef __ASSEMBLY__ 1067 1068 extern int direct_gbpages; 1069 void init_mem_mapping(void); 1070 void early_alloc_pgt_buf(void); 1071 extern void memblock_find_dma_reserve(void); 1072 1073 #ifdef CONFIG_X86_64 1074 /* Realmode trampoline initialization. */ 1075 extern pgd_t trampoline_pgd_entry; 1076 static inline void __meminit init_trampoline_default(void) 1077 { 1078 /* Default trampoline pgd value */ 1079 trampoline_pgd_entry = init_top_pgt[pgd_index(__PAGE_OFFSET)]; 1080 } 1081 1082 void __init poking_init(void); 1083 1084 unsigned long init_memory_mapping(unsigned long start, 1085 unsigned long end, pgprot_t prot); 1086 1087 # ifdef CONFIG_RANDOMIZE_MEMORY 1088 void __meminit init_trampoline(void); 1089 # else 1090 # define init_trampoline init_trampoline_default 1091 # endif 1092 #else 1093 static inline void init_trampoline(void) { } 1094 #endif 1095 1096 /* local pte updates need not use xchg for locking */ 1097 static inline pte_t native_local_ptep_get_and_clear(pte_t *ptep) 1098 { 1099 pte_t res = *ptep; 1100 1101 /* Pure native function needs no input for mm, addr */ 1102 native_pte_clear(NULL, 0, ptep); 1103 return res; 1104 } 1105 1106 static inline pmd_t native_local_pmdp_get_and_clear(pmd_t *pmdp) 1107 { 1108 pmd_t res = *pmdp; 1109 1110 native_pmd_clear(pmdp); 1111 return res; 1112 } 1113 1114 static inline pud_t native_local_pudp_get_and_clear(pud_t *pudp) 1115 { 1116 pud_t res = *pudp; 1117 1118 native_pud_clear(pudp); 1119 return res; 1120 } 1121 1122 static inline void native_set_pte_at(struct mm_struct *mm, unsigned long addr, 1123 pte_t *ptep , pte_t pte) 1124 { 1125 native_set_pte(ptep, pte); 1126 } 1127 1128 static inline void set_pmd_at(struct mm_struct *mm, unsigned long addr, 1129 pmd_t *pmdp, pmd_t pmd) 1130 { 1131 set_pmd(pmdp, pmd); 1132 } 1133 1134 static inline void set_pud_at(struct mm_struct *mm, unsigned long addr, 1135 pud_t *pudp, pud_t pud) 1136 { 1137 native_set_pud(pudp, pud); 1138 } 1139 1140 /* 1141 * We only update the dirty/accessed state if we set 1142 * the dirty bit by hand in the kernel, since the hardware 1143 * will do the accessed bit for us, and we don't want to 1144 * race with other CPU's that might be updating the dirty 1145 * bit at the same time. 1146 */ 1147 struct vm_area_struct; 1148 1149 #define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS 1150 extern int ptep_set_access_flags(struct vm_area_struct *vma, 1151 unsigned long address, pte_t *ptep, 1152 pte_t entry, int dirty); 1153 1154 #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG 1155 extern int ptep_test_and_clear_young(struct vm_area_struct *vma, 1156 unsigned long addr, pte_t *ptep); 1157 1158 #define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH 1159 extern int ptep_clear_flush_young(struct vm_area_struct *vma, 1160 unsigned long address, pte_t *ptep); 1161 1162 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR 1163 static inline pte_t ptep_get_and_clear(struct mm_struct *mm, unsigned long addr, 1164 pte_t *ptep) 1165 { 1166 pte_t pte = native_ptep_get_and_clear(ptep); 1167 return pte; 1168 } 1169 1170 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL 1171 static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm, 1172 unsigned long addr, pte_t *ptep, 1173 int full) 1174 { 1175 pte_t pte; 1176 if (full) { 1177 /* 1178 * Full address destruction in progress; paravirt does not 1179 * care about updates and native needs no locking 1180 */ 1181 pte = native_local_ptep_get_and_clear(ptep); 1182 } else { 1183 pte = ptep_get_and_clear(mm, addr, ptep); 1184 } 1185 return pte; 1186 } 1187 1188 #define __HAVE_ARCH_PTEP_SET_WRPROTECT 1189 static inline void ptep_set_wrprotect(struct mm_struct *mm, 1190 unsigned long addr, pte_t *ptep) 1191 { 1192 clear_bit(_PAGE_BIT_RW, (unsigned long *)&ptep->pte); 1193 } 1194 1195 #define flush_tlb_fix_spurious_fault(vma, address) do { } while (0) 1196 1197 #define mk_pmd(page, pgprot) pfn_pmd(page_to_pfn(page), (pgprot)) 1198 1199 #define __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS 1200 extern int pmdp_set_access_flags(struct vm_area_struct *vma, 1201 unsigned long address, pmd_t *pmdp, 1202 pmd_t entry, int dirty); 1203 extern int pudp_set_access_flags(struct vm_area_struct *vma, 1204 unsigned long address, pud_t *pudp, 1205 pud_t entry, int dirty); 1206 1207 #define __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG 1208 extern int pmdp_test_and_clear_young(struct vm_area_struct *vma, 1209 unsigned long addr, pmd_t *pmdp); 1210 extern int pudp_test_and_clear_young(struct vm_area_struct *vma, 1211 unsigned long addr, pud_t *pudp); 1212 1213 #define __HAVE_ARCH_PMDP_CLEAR_YOUNG_FLUSH 1214 extern int pmdp_clear_flush_young(struct vm_area_struct *vma, 1215 unsigned long address, pmd_t *pmdp); 1216 1217 1218 #define pmd_write pmd_write 1219 static inline int pmd_write(pmd_t pmd) 1220 { 1221 return pmd_flags(pmd) & _PAGE_RW; 1222 } 1223 1224 #define __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR 1225 static inline pmd_t pmdp_huge_get_and_clear(struct mm_struct *mm, unsigned long addr, 1226 pmd_t *pmdp) 1227 { 1228 return native_pmdp_get_and_clear(pmdp); 1229 } 1230 1231 #define __HAVE_ARCH_PUDP_HUGE_GET_AND_CLEAR 1232 static inline pud_t pudp_huge_get_and_clear(struct mm_struct *mm, 1233 unsigned long addr, pud_t *pudp) 1234 { 1235 return native_pudp_get_and_clear(pudp); 1236 } 1237 1238 #define __HAVE_ARCH_PMDP_SET_WRPROTECT 1239 static inline void pmdp_set_wrprotect(struct mm_struct *mm, 1240 unsigned long addr, pmd_t *pmdp) 1241 { 1242 clear_bit(_PAGE_BIT_RW, (unsigned long *)pmdp); 1243 } 1244 1245 #define pud_write pud_write 1246 static inline int pud_write(pud_t pud) 1247 { 1248 return pud_flags(pud) & _PAGE_RW; 1249 } 1250 1251 #ifndef pmdp_establish 1252 #define pmdp_establish pmdp_establish 1253 static inline pmd_t pmdp_establish(struct vm_area_struct *vma, 1254 unsigned long address, pmd_t *pmdp, pmd_t pmd) 1255 { 1256 if (IS_ENABLED(CONFIG_SMP)) { 1257 return xchg(pmdp, pmd); 1258 } else { 1259 pmd_t old = *pmdp; 1260 WRITE_ONCE(*pmdp, pmd); 1261 return old; 1262 } 1263 } 1264 #endif 1265 /* 1266 * Page table pages are page-aligned. The lower half of the top 1267 * level is used for userspace and the top half for the kernel. 1268 * 1269 * Returns true for parts of the PGD that map userspace and 1270 * false for the parts that map the kernel. 1271 */ 1272 static inline bool pgdp_maps_userspace(void *__ptr) 1273 { 1274 unsigned long ptr = (unsigned long)__ptr; 1275 1276 return (((ptr & ~PAGE_MASK) / sizeof(pgd_t)) < PGD_KERNEL_START); 1277 } 1278 1279 #define pgd_leaf pgd_large 1280 static inline int pgd_large(pgd_t pgd) { return 0; } 1281 1282 #ifdef CONFIG_PAGE_TABLE_ISOLATION 1283 /* 1284 * All top-level PAGE_TABLE_ISOLATION page tables are order-1 pages 1285 * (8k-aligned and 8k in size). The kernel one is at the beginning 4k and 1286 * the user one is in the last 4k. To switch between them, you 1287 * just need to flip the 12th bit in their addresses. 1288 */ 1289 #define PTI_PGTABLE_SWITCH_BIT PAGE_SHIFT 1290 1291 /* 1292 * This generates better code than the inline assembly in 1293 * __set_bit(). 1294 */ 1295 static inline void *ptr_set_bit(void *ptr, int bit) 1296 { 1297 unsigned long __ptr = (unsigned long)ptr; 1298 1299 __ptr |= BIT(bit); 1300 return (void *)__ptr; 1301 } 1302 static inline void *ptr_clear_bit(void *ptr, int bit) 1303 { 1304 unsigned long __ptr = (unsigned long)ptr; 1305 1306 __ptr &= ~BIT(bit); 1307 return (void *)__ptr; 1308 } 1309 1310 static inline pgd_t *kernel_to_user_pgdp(pgd_t *pgdp) 1311 { 1312 return ptr_set_bit(pgdp, PTI_PGTABLE_SWITCH_BIT); 1313 } 1314 1315 static inline pgd_t *user_to_kernel_pgdp(pgd_t *pgdp) 1316 { 1317 return ptr_clear_bit(pgdp, PTI_PGTABLE_SWITCH_BIT); 1318 } 1319 1320 static inline p4d_t *kernel_to_user_p4dp(p4d_t *p4dp) 1321 { 1322 return ptr_set_bit(p4dp, PTI_PGTABLE_SWITCH_BIT); 1323 } 1324 1325 static inline p4d_t *user_to_kernel_p4dp(p4d_t *p4dp) 1326 { 1327 return ptr_clear_bit(p4dp, PTI_PGTABLE_SWITCH_BIT); 1328 } 1329 #endif /* CONFIG_PAGE_TABLE_ISOLATION */ 1330 1331 /* 1332 * clone_pgd_range(pgd_t *dst, pgd_t *src, int count); 1333 * 1334 * dst - pointer to pgd range anwhere on a pgd page 1335 * src - "" 1336 * count - the number of pgds to copy. 1337 * 1338 * dst and src can be on the same page, but the range must not overlap, 1339 * and must not cross a page boundary. 1340 */ 1341 static inline void clone_pgd_range(pgd_t *dst, pgd_t *src, int count) 1342 { 1343 memcpy(dst, src, count * sizeof(pgd_t)); 1344 #ifdef CONFIG_PAGE_TABLE_ISOLATION 1345 if (!static_cpu_has(X86_FEATURE_PTI)) 1346 return; 1347 /* Clone the user space pgd as well */ 1348 memcpy(kernel_to_user_pgdp(dst), kernel_to_user_pgdp(src), 1349 count * sizeof(pgd_t)); 1350 #endif 1351 } 1352 1353 #define PTE_SHIFT ilog2(PTRS_PER_PTE) 1354 static inline int page_level_shift(enum pg_level level) 1355 { 1356 return (PAGE_SHIFT - PTE_SHIFT) + level * PTE_SHIFT; 1357 } 1358 static inline unsigned long page_level_size(enum pg_level level) 1359 { 1360 return 1UL << page_level_shift(level); 1361 } 1362 static inline unsigned long page_level_mask(enum pg_level level) 1363 { 1364 return ~(page_level_size(level) - 1); 1365 } 1366 1367 /* 1368 * The x86 doesn't have any external MMU info: the kernel page 1369 * tables contain all the necessary information. 1370 */ 1371 static inline void update_mmu_cache(struct vm_area_struct *vma, 1372 unsigned long addr, pte_t *ptep) 1373 { 1374 } 1375 static inline void update_mmu_cache_pmd(struct vm_area_struct *vma, 1376 unsigned long addr, pmd_t *pmd) 1377 { 1378 } 1379 static inline void update_mmu_cache_pud(struct vm_area_struct *vma, 1380 unsigned long addr, pud_t *pud) 1381 { 1382 } 1383 1384 #ifdef CONFIG_HAVE_ARCH_SOFT_DIRTY 1385 static inline pte_t pte_swp_mksoft_dirty(pte_t pte) 1386 { 1387 return pte_set_flags(pte, _PAGE_SWP_SOFT_DIRTY); 1388 } 1389 1390 static inline int pte_swp_soft_dirty(pte_t pte) 1391 { 1392 return pte_flags(pte) & _PAGE_SWP_SOFT_DIRTY; 1393 } 1394 1395 static inline pte_t pte_swp_clear_soft_dirty(pte_t pte) 1396 { 1397 return pte_clear_flags(pte, _PAGE_SWP_SOFT_DIRTY); 1398 } 1399 1400 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION 1401 static inline pmd_t pmd_swp_mksoft_dirty(pmd_t pmd) 1402 { 1403 return pmd_set_flags(pmd, _PAGE_SWP_SOFT_DIRTY); 1404 } 1405 1406 static inline int pmd_swp_soft_dirty(pmd_t pmd) 1407 { 1408 return pmd_flags(pmd) & _PAGE_SWP_SOFT_DIRTY; 1409 } 1410 1411 static inline pmd_t pmd_swp_clear_soft_dirty(pmd_t pmd) 1412 { 1413 return pmd_clear_flags(pmd, _PAGE_SWP_SOFT_DIRTY); 1414 } 1415 #endif 1416 #endif 1417 1418 #ifdef CONFIG_HAVE_ARCH_USERFAULTFD_WP 1419 static inline pte_t pte_swp_mkuffd_wp(pte_t pte) 1420 { 1421 return pte_set_flags(pte, _PAGE_SWP_UFFD_WP); 1422 } 1423 1424 static inline int pte_swp_uffd_wp(pte_t pte) 1425 { 1426 return pte_flags(pte) & _PAGE_SWP_UFFD_WP; 1427 } 1428 1429 static inline pte_t pte_swp_clear_uffd_wp(pte_t pte) 1430 { 1431 return pte_clear_flags(pte, _PAGE_SWP_UFFD_WP); 1432 } 1433 1434 static inline pmd_t pmd_swp_mkuffd_wp(pmd_t pmd) 1435 { 1436 return pmd_set_flags(pmd, _PAGE_SWP_UFFD_WP); 1437 } 1438 1439 static inline int pmd_swp_uffd_wp(pmd_t pmd) 1440 { 1441 return pmd_flags(pmd) & _PAGE_SWP_UFFD_WP; 1442 } 1443 1444 static inline pmd_t pmd_swp_clear_uffd_wp(pmd_t pmd) 1445 { 1446 return pmd_clear_flags(pmd, _PAGE_SWP_UFFD_WP); 1447 } 1448 #endif /* CONFIG_HAVE_ARCH_USERFAULTFD_WP */ 1449 1450 #define PKRU_AD_BIT 0x1 1451 #define PKRU_WD_BIT 0x2 1452 #define PKRU_BITS_PER_PKEY 2 1453 1454 #ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS 1455 extern u32 init_pkru_value; 1456 #else 1457 #define init_pkru_value 0 1458 #endif 1459 1460 static inline bool __pkru_allows_read(u32 pkru, u16 pkey) 1461 { 1462 int pkru_pkey_bits = pkey * PKRU_BITS_PER_PKEY; 1463 return !(pkru & (PKRU_AD_BIT << pkru_pkey_bits)); 1464 } 1465 1466 static inline bool __pkru_allows_write(u32 pkru, u16 pkey) 1467 { 1468 int pkru_pkey_bits = pkey * PKRU_BITS_PER_PKEY; 1469 /* 1470 * Access-disable disables writes too so we need to check 1471 * both bits here. 1472 */ 1473 return !(pkru & ((PKRU_AD_BIT|PKRU_WD_BIT) << pkru_pkey_bits)); 1474 } 1475 1476 static inline u16 pte_flags_pkey(unsigned long pte_flags) 1477 { 1478 #ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS 1479 /* ifdef to avoid doing 59-bit shift on 32-bit values */ 1480 return (pte_flags & _PAGE_PKEY_MASK) >> _PAGE_BIT_PKEY_BIT0; 1481 #else 1482 return 0; 1483 #endif 1484 } 1485 1486 static inline bool __pkru_allows_pkey(u16 pkey, bool write) 1487 { 1488 u32 pkru = read_pkru(); 1489 1490 if (!__pkru_allows_read(pkru, pkey)) 1491 return false; 1492 if (write && !__pkru_allows_write(pkru, pkey)) 1493 return false; 1494 1495 return true; 1496 } 1497 1498 /* 1499 * 'pteval' can come from a PTE, PMD or PUD. We only check 1500 * _PAGE_PRESENT, _PAGE_USER, and _PAGE_RW in here which are the 1501 * same value on all 3 types. 1502 */ 1503 static inline bool __pte_access_permitted(unsigned long pteval, bool write) 1504 { 1505 unsigned long need_pte_bits = _PAGE_PRESENT|_PAGE_USER; 1506 1507 if (write) 1508 need_pte_bits |= _PAGE_RW; 1509 1510 if ((pteval & need_pte_bits) != need_pte_bits) 1511 return 0; 1512 1513 return __pkru_allows_pkey(pte_flags_pkey(pteval), write); 1514 } 1515 1516 #define pte_access_permitted pte_access_permitted 1517 static inline bool pte_access_permitted(pte_t pte, bool write) 1518 { 1519 return __pte_access_permitted(pte_val(pte), write); 1520 } 1521 1522 #define pmd_access_permitted pmd_access_permitted 1523 static inline bool pmd_access_permitted(pmd_t pmd, bool write) 1524 { 1525 return __pte_access_permitted(pmd_val(pmd), write); 1526 } 1527 1528 #define pud_access_permitted pud_access_permitted 1529 static inline bool pud_access_permitted(pud_t pud, bool write) 1530 { 1531 return __pte_access_permitted(pud_val(pud), write); 1532 } 1533 1534 #define __HAVE_ARCH_PFN_MODIFY_ALLOWED 1 1535 extern bool pfn_modify_allowed(unsigned long pfn, pgprot_t prot); 1536 1537 static inline bool arch_has_pfn_modify_check(void) 1538 { 1539 return boot_cpu_has_bug(X86_BUG_L1TF); 1540 } 1541 1542 #define arch_faults_on_old_pte arch_faults_on_old_pte 1543 static inline bool arch_faults_on_old_pte(void) 1544 { 1545 return false; 1546 } 1547 1548 #include <asm-generic/pgtable.h> 1549 #endif /* __ASSEMBLY__ */ 1550 1551 #endif /* _ASM_X86_PGTABLE_H */ 1552