xref: /openbmc/linux/arch/x86/include/asm/pgtable.h (revision 4f139972b489f8bc2c821aa25ac65018d92af3f7)
1 #ifndef _ASM_X86_PGTABLE_H
2 #define _ASM_X86_PGTABLE_H
3 
4 #include <asm/page.h>
5 #include <asm/e820.h>
6 
7 #include <asm/pgtable_types.h>
8 
9 /*
10  * Macro to mark a page protection value as UC-
11  */
12 #define pgprot_noncached(prot)						\
13 	((boot_cpu_data.x86 > 3)					\
14 	 ? (__pgprot(pgprot_val(prot) |					\
15 		     cachemode2protval(_PAGE_CACHE_MODE_UC_MINUS)))	\
16 	 : (prot))
17 
18 #ifndef __ASSEMBLY__
19 #include <asm/x86_init.h>
20 
21 void ptdump_walk_pgd_level(struct seq_file *m, pgd_t *pgd);
22 void ptdump_walk_pgd_level_checkwx(void);
23 
24 #ifdef CONFIG_DEBUG_WX
25 #define debug_checkwx() ptdump_walk_pgd_level_checkwx()
26 #else
27 #define debug_checkwx() do { } while (0)
28 #endif
29 
30 /*
31  * ZERO_PAGE is a global shared page that is always zero: used
32  * for zero-mapped memory areas etc..
33  */
34 extern unsigned long empty_zero_page[PAGE_SIZE / sizeof(unsigned long)]
35 	__visible;
36 #define ZERO_PAGE(vaddr) (virt_to_page(empty_zero_page))
37 
38 extern spinlock_t pgd_lock;
39 extern struct list_head pgd_list;
40 
41 extern struct mm_struct *pgd_page_get_mm(struct page *page);
42 
43 #ifdef CONFIG_PARAVIRT
44 #include <asm/paravirt.h>
45 #else  /* !CONFIG_PARAVIRT */
46 #define set_pte(ptep, pte)		native_set_pte(ptep, pte)
47 #define set_pte_at(mm, addr, ptep, pte)	native_set_pte_at(mm, addr, ptep, pte)
48 #define set_pmd_at(mm, addr, pmdp, pmd)	native_set_pmd_at(mm, addr, pmdp, pmd)
49 #define set_pud_at(mm, addr, pudp, pud)	native_set_pud_at(mm, addr, pudp, pud)
50 
51 #define set_pte_atomic(ptep, pte)					\
52 	native_set_pte_atomic(ptep, pte)
53 
54 #define set_pmd(pmdp, pmd)		native_set_pmd(pmdp, pmd)
55 
56 #ifndef __PAGETABLE_PUD_FOLDED
57 #define set_pgd(pgdp, pgd)		native_set_pgd(pgdp, pgd)
58 #define pgd_clear(pgd)			native_pgd_clear(pgd)
59 #endif
60 
61 #ifndef set_pud
62 # define set_pud(pudp, pud)		native_set_pud(pudp, pud)
63 #endif
64 
65 #ifndef __PAGETABLE_PUD_FOLDED
66 #define pud_clear(pud)			native_pud_clear(pud)
67 #endif
68 
69 #define pte_clear(mm, addr, ptep)	native_pte_clear(mm, addr, ptep)
70 #define pmd_clear(pmd)			native_pmd_clear(pmd)
71 
72 #define pte_update(mm, addr, ptep)              do { } while (0)
73 
74 #define pgd_val(x)	native_pgd_val(x)
75 #define __pgd(x)	native_make_pgd(x)
76 
77 #ifndef __PAGETABLE_PUD_FOLDED
78 #define pud_val(x)	native_pud_val(x)
79 #define __pud(x)	native_make_pud(x)
80 #endif
81 
82 #ifndef __PAGETABLE_PMD_FOLDED
83 #define pmd_val(x)	native_pmd_val(x)
84 #define __pmd(x)	native_make_pmd(x)
85 #endif
86 
87 #define pte_val(x)	native_pte_val(x)
88 #define __pte(x)	native_make_pte(x)
89 
90 #define arch_end_context_switch(prev)	do {} while(0)
91 
92 #endif	/* CONFIG_PARAVIRT */
93 
94 /*
95  * The following only work if pte_present() is true.
96  * Undefined behaviour if not..
97  */
98 static inline int pte_dirty(pte_t pte)
99 {
100 	return pte_flags(pte) & _PAGE_DIRTY;
101 }
102 
103 
104 static inline u32 read_pkru(void)
105 {
106 	if (boot_cpu_has(X86_FEATURE_OSPKE))
107 		return __read_pkru();
108 	return 0;
109 }
110 
111 static inline void write_pkru(u32 pkru)
112 {
113 	if (boot_cpu_has(X86_FEATURE_OSPKE))
114 		__write_pkru(pkru);
115 }
116 
117 static inline int pte_young(pte_t pte)
118 {
119 	return pte_flags(pte) & _PAGE_ACCESSED;
120 }
121 
122 static inline int pmd_dirty(pmd_t pmd)
123 {
124 	return pmd_flags(pmd) & _PAGE_DIRTY;
125 }
126 
127 static inline int pmd_young(pmd_t pmd)
128 {
129 	return pmd_flags(pmd) & _PAGE_ACCESSED;
130 }
131 
132 static inline int pud_dirty(pud_t pud)
133 {
134 	return pud_flags(pud) & _PAGE_DIRTY;
135 }
136 
137 static inline int pud_young(pud_t pud)
138 {
139 	return pud_flags(pud) & _PAGE_ACCESSED;
140 }
141 
142 static inline int pte_write(pte_t pte)
143 {
144 	return pte_flags(pte) & _PAGE_RW;
145 }
146 
147 static inline int pte_huge(pte_t pte)
148 {
149 	return pte_flags(pte) & _PAGE_PSE;
150 }
151 
152 static inline int pte_global(pte_t pte)
153 {
154 	return pte_flags(pte) & _PAGE_GLOBAL;
155 }
156 
157 static inline int pte_exec(pte_t pte)
158 {
159 	return !(pte_flags(pte) & _PAGE_NX);
160 }
161 
162 static inline int pte_special(pte_t pte)
163 {
164 	return pte_flags(pte) & _PAGE_SPECIAL;
165 }
166 
167 static inline unsigned long pte_pfn(pte_t pte)
168 {
169 	return (pte_val(pte) & PTE_PFN_MASK) >> PAGE_SHIFT;
170 }
171 
172 static inline unsigned long pmd_pfn(pmd_t pmd)
173 {
174 	return (pmd_val(pmd) & pmd_pfn_mask(pmd)) >> PAGE_SHIFT;
175 }
176 
177 static inline unsigned long pud_pfn(pud_t pud)
178 {
179 	return (pud_val(pud) & pud_pfn_mask(pud)) >> PAGE_SHIFT;
180 }
181 
182 #define pte_page(pte)	pfn_to_page(pte_pfn(pte))
183 
184 static inline int pmd_large(pmd_t pte)
185 {
186 	return pmd_flags(pte) & _PAGE_PSE;
187 }
188 
189 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
190 static inline int pmd_trans_huge(pmd_t pmd)
191 {
192 	return (pmd_val(pmd) & (_PAGE_PSE|_PAGE_DEVMAP)) == _PAGE_PSE;
193 }
194 
195 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
196 static inline int pud_trans_huge(pud_t pud)
197 {
198 	return (pud_val(pud) & (_PAGE_PSE|_PAGE_DEVMAP)) == _PAGE_PSE;
199 }
200 #endif
201 
202 #define has_transparent_hugepage has_transparent_hugepage
203 static inline int has_transparent_hugepage(void)
204 {
205 	return boot_cpu_has(X86_FEATURE_PSE);
206 }
207 
208 #ifdef __HAVE_ARCH_PTE_DEVMAP
209 static inline int pmd_devmap(pmd_t pmd)
210 {
211 	return !!(pmd_val(pmd) & _PAGE_DEVMAP);
212 }
213 
214 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
215 static inline int pud_devmap(pud_t pud)
216 {
217 	return !!(pud_val(pud) & _PAGE_DEVMAP);
218 }
219 #else
220 static inline int pud_devmap(pud_t pud)
221 {
222 	return 0;
223 }
224 #endif
225 #endif
226 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
227 
228 static inline pte_t pte_set_flags(pte_t pte, pteval_t set)
229 {
230 	pteval_t v = native_pte_val(pte);
231 
232 	return native_make_pte(v | set);
233 }
234 
235 static inline pte_t pte_clear_flags(pte_t pte, pteval_t clear)
236 {
237 	pteval_t v = native_pte_val(pte);
238 
239 	return native_make_pte(v & ~clear);
240 }
241 
242 static inline pte_t pte_mkclean(pte_t pte)
243 {
244 	return pte_clear_flags(pte, _PAGE_DIRTY);
245 }
246 
247 static inline pte_t pte_mkold(pte_t pte)
248 {
249 	return pte_clear_flags(pte, _PAGE_ACCESSED);
250 }
251 
252 static inline pte_t pte_wrprotect(pte_t pte)
253 {
254 	return pte_clear_flags(pte, _PAGE_RW);
255 }
256 
257 static inline pte_t pte_mkexec(pte_t pte)
258 {
259 	return pte_clear_flags(pte, _PAGE_NX);
260 }
261 
262 static inline pte_t pte_mkdirty(pte_t pte)
263 {
264 	return pte_set_flags(pte, _PAGE_DIRTY | _PAGE_SOFT_DIRTY);
265 }
266 
267 static inline pte_t pte_mkyoung(pte_t pte)
268 {
269 	return pte_set_flags(pte, _PAGE_ACCESSED);
270 }
271 
272 static inline pte_t pte_mkwrite(pte_t pte)
273 {
274 	return pte_set_flags(pte, _PAGE_RW);
275 }
276 
277 static inline pte_t pte_mkhuge(pte_t pte)
278 {
279 	return pte_set_flags(pte, _PAGE_PSE);
280 }
281 
282 static inline pte_t pte_clrhuge(pte_t pte)
283 {
284 	return pte_clear_flags(pte, _PAGE_PSE);
285 }
286 
287 static inline pte_t pte_mkglobal(pte_t pte)
288 {
289 	return pte_set_flags(pte, _PAGE_GLOBAL);
290 }
291 
292 static inline pte_t pte_clrglobal(pte_t pte)
293 {
294 	return pte_clear_flags(pte, _PAGE_GLOBAL);
295 }
296 
297 static inline pte_t pte_mkspecial(pte_t pte)
298 {
299 	return pte_set_flags(pte, _PAGE_SPECIAL);
300 }
301 
302 static inline pte_t pte_mkdevmap(pte_t pte)
303 {
304 	return pte_set_flags(pte, _PAGE_SPECIAL|_PAGE_DEVMAP);
305 }
306 
307 static inline pmd_t pmd_set_flags(pmd_t pmd, pmdval_t set)
308 {
309 	pmdval_t v = native_pmd_val(pmd);
310 
311 	return __pmd(v | set);
312 }
313 
314 static inline pmd_t pmd_clear_flags(pmd_t pmd, pmdval_t clear)
315 {
316 	pmdval_t v = native_pmd_val(pmd);
317 
318 	return __pmd(v & ~clear);
319 }
320 
321 static inline pmd_t pmd_mkold(pmd_t pmd)
322 {
323 	return pmd_clear_flags(pmd, _PAGE_ACCESSED);
324 }
325 
326 static inline pmd_t pmd_mkclean(pmd_t pmd)
327 {
328 	return pmd_clear_flags(pmd, _PAGE_DIRTY);
329 }
330 
331 static inline pmd_t pmd_wrprotect(pmd_t pmd)
332 {
333 	return pmd_clear_flags(pmd, _PAGE_RW);
334 }
335 
336 static inline pmd_t pmd_mkdirty(pmd_t pmd)
337 {
338 	return pmd_set_flags(pmd, _PAGE_DIRTY | _PAGE_SOFT_DIRTY);
339 }
340 
341 static inline pmd_t pmd_mkdevmap(pmd_t pmd)
342 {
343 	return pmd_set_flags(pmd, _PAGE_DEVMAP);
344 }
345 
346 static inline pmd_t pmd_mkhuge(pmd_t pmd)
347 {
348 	return pmd_set_flags(pmd, _PAGE_PSE);
349 }
350 
351 static inline pmd_t pmd_mkyoung(pmd_t pmd)
352 {
353 	return pmd_set_flags(pmd, _PAGE_ACCESSED);
354 }
355 
356 static inline pmd_t pmd_mkwrite(pmd_t pmd)
357 {
358 	return pmd_set_flags(pmd, _PAGE_RW);
359 }
360 
361 static inline pmd_t pmd_mknotpresent(pmd_t pmd)
362 {
363 	return pmd_clear_flags(pmd, _PAGE_PRESENT | _PAGE_PROTNONE);
364 }
365 
366 static inline pud_t pud_set_flags(pud_t pud, pudval_t set)
367 {
368 	pudval_t v = native_pud_val(pud);
369 
370 	return __pud(v | set);
371 }
372 
373 static inline pud_t pud_clear_flags(pud_t pud, pudval_t clear)
374 {
375 	pudval_t v = native_pud_val(pud);
376 
377 	return __pud(v & ~clear);
378 }
379 
380 static inline pud_t pud_mkold(pud_t pud)
381 {
382 	return pud_clear_flags(pud, _PAGE_ACCESSED);
383 }
384 
385 static inline pud_t pud_mkclean(pud_t pud)
386 {
387 	return pud_clear_flags(pud, _PAGE_DIRTY);
388 }
389 
390 static inline pud_t pud_wrprotect(pud_t pud)
391 {
392 	return pud_clear_flags(pud, _PAGE_RW);
393 }
394 
395 static inline pud_t pud_mkdirty(pud_t pud)
396 {
397 	return pud_set_flags(pud, _PAGE_DIRTY | _PAGE_SOFT_DIRTY);
398 }
399 
400 static inline pud_t pud_mkdevmap(pud_t pud)
401 {
402 	return pud_set_flags(pud, _PAGE_DEVMAP);
403 }
404 
405 static inline pud_t pud_mkhuge(pud_t pud)
406 {
407 	return pud_set_flags(pud, _PAGE_PSE);
408 }
409 
410 static inline pud_t pud_mkyoung(pud_t pud)
411 {
412 	return pud_set_flags(pud, _PAGE_ACCESSED);
413 }
414 
415 static inline pud_t pud_mkwrite(pud_t pud)
416 {
417 	return pud_set_flags(pud, _PAGE_RW);
418 }
419 
420 static inline pud_t pud_mknotpresent(pud_t pud)
421 {
422 	return pud_clear_flags(pud, _PAGE_PRESENT | _PAGE_PROTNONE);
423 }
424 
425 #ifdef CONFIG_HAVE_ARCH_SOFT_DIRTY
426 static inline int pte_soft_dirty(pte_t pte)
427 {
428 	return pte_flags(pte) & _PAGE_SOFT_DIRTY;
429 }
430 
431 static inline int pmd_soft_dirty(pmd_t pmd)
432 {
433 	return pmd_flags(pmd) & _PAGE_SOFT_DIRTY;
434 }
435 
436 static inline int pud_soft_dirty(pud_t pud)
437 {
438 	return pud_flags(pud) & _PAGE_SOFT_DIRTY;
439 }
440 
441 static inline pte_t pte_mksoft_dirty(pte_t pte)
442 {
443 	return pte_set_flags(pte, _PAGE_SOFT_DIRTY);
444 }
445 
446 static inline pmd_t pmd_mksoft_dirty(pmd_t pmd)
447 {
448 	return pmd_set_flags(pmd, _PAGE_SOFT_DIRTY);
449 }
450 
451 static inline pud_t pud_mksoft_dirty(pud_t pud)
452 {
453 	return pud_set_flags(pud, _PAGE_SOFT_DIRTY);
454 }
455 
456 static inline pte_t pte_clear_soft_dirty(pte_t pte)
457 {
458 	return pte_clear_flags(pte, _PAGE_SOFT_DIRTY);
459 }
460 
461 static inline pmd_t pmd_clear_soft_dirty(pmd_t pmd)
462 {
463 	return pmd_clear_flags(pmd, _PAGE_SOFT_DIRTY);
464 }
465 
466 static inline pud_t pud_clear_soft_dirty(pud_t pud)
467 {
468 	return pud_clear_flags(pud, _PAGE_SOFT_DIRTY);
469 }
470 
471 #endif /* CONFIG_HAVE_ARCH_SOFT_DIRTY */
472 
473 /*
474  * Mask out unsupported bits in a present pgprot.  Non-present pgprots
475  * can use those bits for other purposes, so leave them be.
476  */
477 static inline pgprotval_t massage_pgprot(pgprot_t pgprot)
478 {
479 	pgprotval_t protval = pgprot_val(pgprot);
480 
481 	if (protval & _PAGE_PRESENT)
482 		protval &= __supported_pte_mask;
483 
484 	return protval;
485 }
486 
487 static inline pte_t pfn_pte(unsigned long page_nr, pgprot_t pgprot)
488 {
489 	return __pte(((phys_addr_t)page_nr << PAGE_SHIFT) |
490 		     massage_pgprot(pgprot));
491 }
492 
493 static inline pmd_t pfn_pmd(unsigned long page_nr, pgprot_t pgprot)
494 {
495 	return __pmd(((phys_addr_t)page_nr << PAGE_SHIFT) |
496 		     massage_pgprot(pgprot));
497 }
498 
499 static inline pud_t pfn_pud(unsigned long page_nr, pgprot_t pgprot)
500 {
501 	return __pud(((phys_addr_t)page_nr << PAGE_SHIFT) |
502 		     massage_pgprot(pgprot));
503 }
504 
505 static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
506 {
507 	pteval_t val = pte_val(pte);
508 
509 	/*
510 	 * Chop off the NX bit (if present), and add the NX portion of
511 	 * the newprot (if present):
512 	 */
513 	val &= _PAGE_CHG_MASK;
514 	val |= massage_pgprot(newprot) & ~_PAGE_CHG_MASK;
515 
516 	return __pte(val);
517 }
518 
519 static inline pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot)
520 {
521 	pmdval_t val = pmd_val(pmd);
522 
523 	val &= _HPAGE_CHG_MASK;
524 	val |= massage_pgprot(newprot) & ~_HPAGE_CHG_MASK;
525 
526 	return __pmd(val);
527 }
528 
529 /* mprotect needs to preserve PAT bits when updating vm_page_prot */
530 #define pgprot_modify pgprot_modify
531 static inline pgprot_t pgprot_modify(pgprot_t oldprot, pgprot_t newprot)
532 {
533 	pgprotval_t preservebits = pgprot_val(oldprot) & _PAGE_CHG_MASK;
534 	pgprotval_t addbits = pgprot_val(newprot);
535 	return __pgprot(preservebits | addbits);
536 }
537 
538 #define pte_pgprot(x) __pgprot(pte_flags(x))
539 #define pmd_pgprot(x) __pgprot(pmd_flags(x))
540 #define pud_pgprot(x) __pgprot(pud_flags(x))
541 
542 #define canon_pgprot(p) __pgprot(massage_pgprot(p))
543 
544 static inline int is_new_memtype_allowed(u64 paddr, unsigned long size,
545 					 enum page_cache_mode pcm,
546 					 enum page_cache_mode new_pcm)
547 {
548 	/*
549 	 * PAT type is always WB for untracked ranges, so no need to check.
550 	 */
551 	if (x86_platform.is_untracked_pat_range(paddr, paddr + size))
552 		return 1;
553 
554 	/*
555 	 * Certain new memtypes are not allowed with certain
556 	 * requested memtype:
557 	 * - request is uncached, return cannot be write-back
558 	 * - request is write-combine, return cannot be write-back
559 	 * - request is write-through, return cannot be write-back
560 	 * - request is write-through, return cannot be write-combine
561 	 */
562 	if ((pcm == _PAGE_CACHE_MODE_UC_MINUS &&
563 	     new_pcm == _PAGE_CACHE_MODE_WB) ||
564 	    (pcm == _PAGE_CACHE_MODE_WC &&
565 	     new_pcm == _PAGE_CACHE_MODE_WB) ||
566 	    (pcm == _PAGE_CACHE_MODE_WT &&
567 	     new_pcm == _PAGE_CACHE_MODE_WB) ||
568 	    (pcm == _PAGE_CACHE_MODE_WT &&
569 	     new_pcm == _PAGE_CACHE_MODE_WC)) {
570 		return 0;
571 	}
572 
573 	return 1;
574 }
575 
576 pmd_t *populate_extra_pmd(unsigned long vaddr);
577 pte_t *populate_extra_pte(unsigned long vaddr);
578 #endif	/* __ASSEMBLY__ */
579 
580 #ifdef CONFIG_X86_32
581 # include <asm/pgtable_32.h>
582 #else
583 # include <asm/pgtable_64.h>
584 #endif
585 
586 #ifndef __ASSEMBLY__
587 #include <linux/mm_types.h>
588 #include <linux/mmdebug.h>
589 #include <linux/log2.h>
590 
591 static inline int pte_none(pte_t pte)
592 {
593 	return !(pte.pte & ~(_PAGE_KNL_ERRATUM_MASK));
594 }
595 
596 #define __HAVE_ARCH_PTE_SAME
597 static inline int pte_same(pte_t a, pte_t b)
598 {
599 	return a.pte == b.pte;
600 }
601 
602 static inline int pte_present(pte_t a)
603 {
604 	return pte_flags(a) & (_PAGE_PRESENT | _PAGE_PROTNONE);
605 }
606 
607 #ifdef __HAVE_ARCH_PTE_DEVMAP
608 static inline int pte_devmap(pte_t a)
609 {
610 	return (pte_flags(a) & _PAGE_DEVMAP) == _PAGE_DEVMAP;
611 }
612 #endif
613 
614 #define pte_accessible pte_accessible
615 static inline bool pte_accessible(struct mm_struct *mm, pte_t a)
616 {
617 	if (pte_flags(a) & _PAGE_PRESENT)
618 		return true;
619 
620 	if ((pte_flags(a) & _PAGE_PROTNONE) &&
621 			mm_tlb_flush_pending(mm))
622 		return true;
623 
624 	return false;
625 }
626 
627 static inline int pte_hidden(pte_t pte)
628 {
629 	return pte_flags(pte) & _PAGE_HIDDEN;
630 }
631 
632 static inline int pmd_present(pmd_t pmd)
633 {
634 	/*
635 	 * Checking for _PAGE_PSE is needed too because
636 	 * split_huge_page will temporarily clear the present bit (but
637 	 * the _PAGE_PSE flag will remain set at all times while the
638 	 * _PAGE_PRESENT bit is clear).
639 	 */
640 	return pmd_flags(pmd) & (_PAGE_PRESENT | _PAGE_PROTNONE | _PAGE_PSE);
641 }
642 
643 #ifdef CONFIG_NUMA_BALANCING
644 /*
645  * These work without NUMA balancing but the kernel does not care. See the
646  * comment in include/asm-generic/pgtable.h
647  */
648 static inline int pte_protnone(pte_t pte)
649 {
650 	return (pte_flags(pte) & (_PAGE_PROTNONE | _PAGE_PRESENT))
651 		== _PAGE_PROTNONE;
652 }
653 
654 static inline int pmd_protnone(pmd_t pmd)
655 {
656 	return (pmd_flags(pmd) & (_PAGE_PROTNONE | _PAGE_PRESENT))
657 		== _PAGE_PROTNONE;
658 }
659 #endif /* CONFIG_NUMA_BALANCING */
660 
661 static inline int pmd_none(pmd_t pmd)
662 {
663 	/* Only check low word on 32-bit platforms, since it might be
664 	   out of sync with upper half. */
665 	unsigned long val = native_pmd_val(pmd);
666 	return (val & ~_PAGE_KNL_ERRATUM_MASK) == 0;
667 }
668 
669 static inline unsigned long pmd_page_vaddr(pmd_t pmd)
670 {
671 	return (unsigned long)__va(pmd_val(pmd) & pmd_pfn_mask(pmd));
672 }
673 
674 /*
675  * Currently stuck as a macro due to indirect forward reference to
676  * linux/mmzone.h's __section_mem_map_addr() definition:
677  */
678 #define pmd_page(pmd)		\
679 	pfn_to_page((pmd_val(pmd) & pmd_pfn_mask(pmd)) >> PAGE_SHIFT)
680 
681 /*
682  * the pmd page can be thought of an array like this: pmd_t[PTRS_PER_PMD]
683  *
684  * this macro returns the index of the entry in the pmd page which would
685  * control the given virtual address
686  */
687 static inline unsigned long pmd_index(unsigned long address)
688 {
689 	return (address >> PMD_SHIFT) & (PTRS_PER_PMD - 1);
690 }
691 
692 /*
693  * Conversion functions: convert a page and protection to a page entry,
694  * and a page entry and page directory to the page they refer to.
695  *
696  * (Currently stuck as a macro because of indirect forward reference
697  * to linux/mm.h:page_to_nid())
698  */
699 #define mk_pte(page, pgprot)   pfn_pte(page_to_pfn(page), (pgprot))
700 
701 /*
702  * the pte page can be thought of an array like this: pte_t[PTRS_PER_PTE]
703  *
704  * this function returns the index of the entry in the pte page which would
705  * control the given virtual address
706  */
707 static inline unsigned long pte_index(unsigned long address)
708 {
709 	return (address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
710 }
711 
712 static inline pte_t *pte_offset_kernel(pmd_t *pmd, unsigned long address)
713 {
714 	return (pte_t *)pmd_page_vaddr(*pmd) + pte_index(address);
715 }
716 
717 static inline int pmd_bad(pmd_t pmd)
718 {
719 	return (pmd_flags(pmd) & ~_PAGE_USER) != _KERNPG_TABLE;
720 }
721 
722 static inline unsigned long pages_to_mb(unsigned long npg)
723 {
724 	return npg >> (20 - PAGE_SHIFT);
725 }
726 
727 #if CONFIG_PGTABLE_LEVELS > 2
728 static inline int pud_none(pud_t pud)
729 {
730 	return (native_pud_val(pud) & ~(_PAGE_KNL_ERRATUM_MASK)) == 0;
731 }
732 
733 static inline int pud_present(pud_t pud)
734 {
735 	return pud_flags(pud) & _PAGE_PRESENT;
736 }
737 
738 static inline unsigned long pud_page_vaddr(pud_t pud)
739 {
740 	return (unsigned long)__va(pud_val(pud) & pud_pfn_mask(pud));
741 }
742 
743 /*
744  * Currently stuck as a macro due to indirect forward reference to
745  * linux/mmzone.h's __section_mem_map_addr() definition:
746  */
747 #define pud_page(pud)		\
748 	pfn_to_page((pud_val(pud) & pud_pfn_mask(pud)) >> PAGE_SHIFT)
749 
750 /* Find an entry in the second-level page table.. */
751 static inline pmd_t *pmd_offset(pud_t *pud, unsigned long address)
752 {
753 	return (pmd_t *)pud_page_vaddr(*pud) + pmd_index(address);
754 }
755 
756 static inline int pud_large(pud_t pud)
757 {
758 	return (pud_val(pud) & (_PAGE_PSE | _PAGE_PRESENT)) ==
759 		(_PAGE_PSE | _PAGE_PRESENT);
760 }
761 
762 static inline int pud_bad(pud_t pud)
763 {
764 	return (pud_flags(pud) & ~(_KERNPG_TABLE | _PAGE_USER)) != 0;
765 }
766 #else
767 static inline int pud_large(pud_t pud)
768 {
769 	return 0;
770 }
771 #endif	/* CONFIG_PGTABLE_LEVELS > 2 */
772 
773 #if CONFIG_PGTABLE_LEVELS > 3
774 static inline int pgd_present(pgd_t pgd)
775 {
776 	return pgd_flags(pgd) & _PAGE_PRESENT;
777 }
778 
779 static inline unsigned long pgd_page_vaddr(pgd_t pgd)
780 {
781 	return (unsigned long)__va((unsigned long)pgd_val(pgd) & PTE_PFN_MASK);
782 }
783 
784 /*
785  * Currently stuck as a macro due to indirect forward reference to
786  * linux/mmzone.h's __section_mem_map_addr() definition:
787  */
788 #define pgd_page(pgd)		pfn_to_page(pgd_val(pgd) >> PAGE_SHIFT)
789 
790 /* to find an entry in a page-table-directory. */
791 static inline unsigned long pud_index(unsigned long address)
792 {
793 	return (address >> PUD_SHIFT) & (PTRS_PER_PUD - 1);
794 }
795 
796 static inline pud_t *pud_offset(pgd_t *pgd, unsigned long address)
797 {
798 	return (pud_t *)pgd_page_vaddr(*pgd) + pud_index(address);
799 }
800 
801 static inline int pgd_bad(pgd_t pgd)
802 {
803 	return (pgd_flags(pgd) & ~_PAGE_USER) != _KERNPG_TABLE;
804 }
805 
806 static inline int pgd_none(pgd_t pgd)
807 {
808 	/*
809 	 * There is no need to do a workaround for the KNL stray
810 	 * A/D bit erratum here.  PGDs only point to page tables
811 	 * except on 32-bit non-PAE which is not supported on
812 	 * KNL.
813 	 */
814 	return !native_pgd_val(pgd);
815 }
816 #endif	/* CONFIG_PGTABLE_LEVELS > 3 */
817 
818 #endif	/* __ASSEMBLY__ */
819 
820 /*
821  * the pgd page can be thought of an array like this: pgd_t[PTRS_PER_PGD]
822  *
823  * this macro returns the index of the entry in the pgd page which would
824  * control the given virtual address
825  */
826 #define pgd_index(address) (((address) >> PGDIR_SHIFT) & (PTRS_PER_PGD - 1))
827 
828 /*
829  * pgd_offset() returns a (pgd_t *)
830  * pgd_index() is used get the offset into the pgd page's array of pgd_t's;
831  */
832 #define pgd_offset(mm, address) ((mm)->pgd + pgd_index((address)))
833 /*
834  * a shortcut which implies the use of the kernel's pgd, instead
835  * of a process's
836  */
837 #define pgd_offset_k(address) pgd_offset(&init_mm, (address))
838 
839 
840 #define KERNEL_PGD_BOUNDARY	pgd_index(PAGE_OFFSET)
841 #define KERNEL_PGD_PTRS		(PTRS_PER_PGD - KERNEL_PGD_BOUNDARY)
842 
843 #ifndef __ASSEMBLY__
844 
845 extern int direct_gbpages;
846 void init_mem_mapping(void);
847 void early_alloc_pgt_buf(void);
848 
849 #ifdef CONFIG_X86_64
850 /* Realmode trampoline initialization. */
851 extern pgd_t trampoline_pgd_entry;
852 static inline void __meminit init_trampoline_default(void)
853 {
854 	/* Default trampoline pgd value */
855 	trampoline_pgd_entry = init_level4_pgt[pgd_index(__PAGE_OFFSET)];
856 }
857 # ifdef CONFIG_RANDOMIZE_MEMORY
858 void __meminit init_trampoline(void);
859 # else
860 #  define init_trampoline init_trampoline_default
861 # endif
862 #else
863 static inline void init_trampoline(void) { }
864 #endif
865 
866 /* local pte updates need not use xchg for locking */
867 static inline pte_t native_local_ptep_get_and_clear(pte_t *ptep)
868 {
869 	pte_t res = *ptep;
870 
871 	/* Pure native function needs no input for mm, addr */
872 	native_pte_clear(NULL, 0, ptep);
873 	return res;
874 }
875 
876 static inline pmd_t native_local_pmdp_get_and_clear(pmd_t *pmdp)
877 {
878 	pmd_t res = *pmdp;
879 
880 	native_pmd_clear(pmdp);
881 	return res;
882 }
883 
884 static inline pud_t native_local_pudp_get_and_clear(pud_t *pudp)
885 {
886 	pud_t res = *pudp;
887 
888 	native_pud_clear(pudp);
889 	return res;
890 }
891 
892 static inline void native_set_pte_at(struct mm_struct *mm, unsigned long addr,
893 				     pte_t *ptep , pte_t pte)
894 {
895 	native_set_pte(ptep, pte);
896 }
897 
898 static inline void native_set_pmd_at(struct mm_struct *mm, unsigned long addr,
899 				     pmd_t *pmdp , pmd_t pmd)
900 {
901 	native_set_pmd(pmdp, pmd);
902 }
903 
904 static inline void native_set_pud_at(struct mm_struct *mm, unsigned long addr,
905 				     pud_t *pudp, pud_t pud)
906 {
907 	native_set_pud(pudp, pud);
908 }
909 
910 #ifndef CONFIG_PARAVIRT
911 /*
912  * Rules for using pte_update - it must be called after any PTE update which
913  * has not been done using the set_pte / clear_pte interfaces.  It is used by
914  * shadow mode hypervisors to resynchronize the shadow page tables.  Kernel PTE
915  * updates should either be sets, clears, or set_pte_atomic for P->P
916  * transitions, which means this hook should only be called for user PTEs.
917  * This hook implies a P->P protection or access change has taken place, which
918  * requires a subsequent TLB flush.
919  */
920 #define pte_update(mm, addr, ptep)		do { } while (0)
921 #endif
922 
923 /*
924  * We only update the dirty/accessed state if we set
925  * the dirty bit by hand in the kernel, since the hardware
926  * will do the accessed bit for us, and we don't want to
927  * race with other CPU's that might be updating the dirty
928  * bit at the same time.
929  */
930 struct vm_area_struct;
931 
932 #define  __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
933 extern int ptep_set_access_flags(struct vm_area_struct *vma,
934 				 unsigned long address, pte_t *ptep,
935 				 pte_t entry, int dirty);
936 
937 #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
938 extern int ptep_test_and_clear_young(struct vm_area_struct *vma,
939 				     unsigned long addr, pte_t *ptep);
940 
941 #define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
942 extern int ptep_clear_flush_young(struct vm_area_struct *vma,
943 				  unsigned long address, pte_t *ptep);
944 
945 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR
946 static inline pte_t ptep_get_and_clear(struct mm_struct *mm, unsigned long addr,
947 				       pte_t *ptep)
948 {
949 	pte_t pte = native_ptep_get_and_clear(ptep);
950 	pte_update(mm, addr, ptep);
951 	return pte;
952 }
953 
954 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL
955 static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm,
956 					    unsigned long addr, pte_t *ptep,
957 					    int full)
958 {
959 	pte_t pte;
960 	if (full) {
961 		/*
962 		 * Full address destruction in progress; paravirt does not
963 		 * care about updates and native needs no locking
964 		 */
965 		pte = native_local_ptep_get_and_clear(ptep);
966 	} else {
967 		pte = ptep_get_and_clear(mm, addr, ptep);
968 	}
969 	return pte;
970 }
971 
972 #define __HAVE_ARCH_PTEP_SET_WRPROTECT
973 static inline void ptep_set_wrprotect(struct mm_struct *mm,
974 				      unsigned long addr, pte_t *ptep)
975 {
976 	clear_bit(_PAGE_BIT_RW, (unsigned long *)&ptep->pte);
977 	pte_update(mm, addr, ptep);
978 }
979 
980 #define flush_tlb_fix_spurious_fault(vma, address) do { } while (0)
981 
982 #define mk_pmd(page, pgprot)   pfn_pmd(page_to_pfn(page), (pgprot))
983 
984 #define  __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS
985 extern int pmdp_set_access_flags(struct vm_area_struct *vma,
986 				 unsigned long address, pmd_t *pmdp,
987 				 pmd_t entry, int dirty);
988 extern int pudp_set_access_flags(struct vm_area_struct *vma,
989 				 unsigned long address, pud_t *pudp,
990 				 pud_t entry, int dirty);
991 
992 #define __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG
993 extern int pmdp_test_and_clear_young(struct vm_area_struct *vma,
994 				     unsigned long addr, pmd_t *pmdp);
995 extern int pudp_test_and_clear_young(struct vm_area_struct *vma,
996 				     unsigned long addr, pud_t *pudp);
997 
998 #define __HAVE_ARCH_PMDP_CLEAR_YOUNG_FLUSH
999 extern int pmdp_clear_flush_young(struct vm_area_struct *vma,
1000 				  unsigned long address, pmd_t *pmdp);
1001 
1002 
1003 #define __HAVE_ARCH_PMD_WRITE
1004 static inline int pmd_write(pmd_t pmd)
1005 {
1006 	return pmd_flags(pmd) & _PAGE_RW;
1007 }
1008 
1009 #define __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR
1010 static inline pmd_t pmdp_huge_get_and_clear(struct mm_struct *mm, unsigned long addr,
1011 				       pmd_t *pmdp)
1012 {
1013 	return native_pmdp_get_and_clear(pmdp);
1014 }
1015 
1016 #define __HAVE_ARCH_PUDP_HUGE_GET_AND_CLEAR
1017 static inline pud_t pudp_huge_get_and_clear(struct mm_struct *mm,
1018 					unsigned long addr, pud_t *pudp)
1019 {
1020 	return native_pudp_get_and_clear(pudp);
1021 }
1022 
1023 #define __HAVE_ARCH_PMDP_SET_WRPROTECT
1024 static inline void pmdp_set_wrprotect(struct mm_struct *mm,
1025 				      unsigned long addr, pmd_t *pmdp)
1026 {
1027 	clear_bit(_PAGE_BIT_RW, (unsigned long *)pmdp);
1028 }
1029 
1030 /*
1031  * clone_pgd_range(pgd_t *dst, pgd_t *src, int count);
1032  *
1033  *  dst - pointer to pgd range anwhere on a pgd page
1034  *  src - ""
1035  *  count - the number of pgds to copy.
1036  *
1037  * dst and src can be on the same page, but the range must not overlap,
1038  * and must not cross a page boundary.
1039  */
1040 static inline void clone_pgd_range(pgd_t *dst, pgd_t *src, int count)
1041 {
1042        memcpy(dst, src, count * sizeof(pgd_t));
1043 }
1044 
1045 #define PTE_SHIFT ilog2(PTRS_PER_PTE)
1046 static inline int page_level_shift(enum pg_level level)
1047 {
1048 	return (PAGE_SHIFT - PTE_SHIFT) + level * PTE_SHIFT;
1049 }
1050 static inline unsigned long page_level_size(enum pg_level level)
1051 {
1052 	return 1UL << page_level_shift(level);
1053 }
1054 static inline unsigned long page_level_mask(enum pg_level level)
1055 {
1056 	return ~(page_level_size(level) - 1);
1057 }
1058 
1059 /*
1060  * The x86 doesn't have any external MMU info: the kernel page
1061  * tables contain all the necessary information.
1062  */
1063 static inline void update_mmu_cache(struct vm_area_struct *vma,
1064 		unsigned long addr, pte_t *ptep)
1065 {
1066 }
1067 static inline void update_mmu_cache_pmd(struct vm_area_struct *vma,
1068 		unsigned long addr, pmd_t *pmd)
1069 {
1070 }
1071 static inline void update_mmu_cache_pud(struct vm_area_struct *vma,
1072 		unsigned long addr, pud_t *pud)
1073 {
1074 }
1075 
1076 #ifdef CONFIG_HAVE_ARCH_SOFT_DIRTY
1077 static inline pte_t pte_swp_mksoft_dirty(pte_t pte)
1078 {
1079 	return pte_set_flags(pte, _PAGE_SWP_SOFT_DIRTY);
1080 }
1081 
1082 static inline int pte_swp_soft_dirty(pte_t pte)
1083 {
1084 	return pte_flags(pte) & _PAGE_SWP_SOFT_DIRTY;
1085 }
1086 
1087 static inline pte_t pte_swp_clear_soft_dirty(pte_t pte)
1088 {
1089 	return pte_clear_flags(pte, _PAGE_SWP_SOFT_DIRTY);
1090 }
1091 #endif
1092 
1093 #define PKRU_AD_BIT 0x1
1094 #define PKRU_WD_BIT 0x2
1095 #define PKRU_BITS_PER_PKEY 2
1096 
1097 static inline bool __pkru_allows_read(u32 pkru, u16 pkey)
1098 {
1099 	int pkru_pkey_bits = pkey * PKRU_BITS_PER_PKEY;
1100 	return !(pkru & (PKRU_AD_BIT << pkru_pkey_bits));
1101 }
1102 
1103 static inline bool __pkru_allows_write(u32 pkru, u16 pkey)
1104 {
1105 	int pkru_pkey_bits = pkey * PKRU_BITS_PER_PKEY;
1106 	/*
1107 	 * Access-disable disables writes too so we need to check
1108 	 * both bits here.
1109 	 */
1110 	return !(pkru & ((PKRU_AD_BIT|PKRU_WD_BIT) << pkru_pkey_bits));
1111 }
1112 
1113 static inline u16 pte_flags_pkey(unsigned long pte_flags)
1114 {
1115 #ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS
1116 	/* ifdef to avoid doing 59-bit shift on 32-bit values */
1117 	return (pte_flags & _PAGE_PKEY_MASK) >> _PAGE_BIT_PKEY_BIT0;
1118 #else
1119 	return 0;
1120 #endif
1121 }
1122 
1123 #include <asm-generic/pgtable.h>
1124 #endif	/* __ASSEMBLY__ */
1125 
1126 #endif /* _ASM_X86_PGTABLE_H */
1127