1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _ASM_X86_PGTABLE_3LEVEL_H
3 #define _ASM_X86_PGTABLE_3LEVEL_H
4 
5 /*
6  * Intel Physical Address Extension (PAE) Mode - three-level page
7  * tables on PPro+ CPUs.
8  *
9  * Copyright (C) 1999 Ingo Molnar <mingo@redhat.com>
10  */
11 
12 #define pte_ERROR(e)							\
13 	pr_err("%s:%d: bad pte %p(%08lx%08lx)\n",			\
14 	       __FILE__, __LINE__, &(e), (e).pte_high, (e).pte_low)
15 #define pmd_ERROR(e)							\
16 	pr_err("%s:%d: bad pmd %p(%016Lx)\n",				\
17 	       __FILE__, __LINE__, &(e), pmd_val(e))
18 #define pgd_ERROR(e)							\
19 	pr_err("%s:%d: bad pgd %p(%016Lx)\n",				\
20 	       __FILE__, __LINE__, &(e), pgd_val(e))
21 
22 /* Rules for using set_pte: the pte being assigned *must* be
23  * either not present or in a state where the hardware will
24  * not attempt to update the pte.  In places where this is
25  * not possible, use pte_get_and_clear to obtain the old pte
26  * value and then use set_pte to update it.  -ben
27  */
28 static inline void native_set_pte(pte_t *ptep, pte_t pte)
29 {
30 	ptep->pte_high = pte.pte_high;
31 	smp_wmb();
32 	ptep->pte_low = pte.pte_low;
33 }
34 
35 #define pmd_read_atomic pmd_read_atomic
36 /*
37  * pte_offset_map_lock on 32bit PAE kernels was reading the pmd_t with
38  * a "*pmdp" dereference done by gcc. Problem is, in certain places
39  * where pte_offset_map_lock is called, concurrent page faults are
40  * allowed, if the mmap_sem is hold for reading. An example is mincore
41  * vs page faults vs MADV_DONTNEED. On the page fault side
42  * pmd_populate rightfully does a set_64bit, but if we're reading the
43  * pmd_t with a "*pmdp" on the mincore side, a SMP race can happen
44  * because gcc will not read the 64bit of the pmd atomically. To fix
45  * this all places running pmd_offset_map_lock() while holding the
46  * mmap_sem in read mode, shall read the pmdp pointer using this
47  * function to know if the pmd is null nor not, and in turn to know if
48  * they can run pmd_offset_map_lock or pmd_trans_huge or other pmd
49  * operations.
50  *
51  * Without THP if the mmap_sem is hold for reading, the pmd can only
52  * transition from null to not null while pmd_read_atomic runs. So
53  * we can always return atomic pmd values with this function.
54  *
55  * With THP if the mmap_sem is hold for reading, the pmd can become
56  * trans_huge or none or point to a pte (and in turn become "stable")
57  * at any time under pmd_read_atomic. We could read it really
58  * atomically here with a atomic64_read for the THP enabled case (and
59  * it would be a whole lot simpler), but to avoid using cmpxchg8b we
60  * only return an atomic pmdval if the low part of the pmdval is later
61  * found stable (i.e. pointing to a pte). And we're returning a none
62  * pmdval if the low part of the pmd is none. In some cases the high
63  * and low part of the pmdval returned may not be consistent if THP is
64  * enabled (the low part may point to previously mapped hugepage,
65  * while the high part may point to a more recently mapped hugepage),
66  * but pmd_none_or_trans_huge_or_clear_bad() only needs the low part
67  * of the pmd to be read atomically to decide if the pmd is unstable
68  * or not, with the only exception of when the low part of the pmd is
69  * zero in which case we return a none pmd.
70  */
71 static inline pmd_t pmd_read_atomic(pmd_t *pmdp)
72 {
73 	pmdval_t ret;
74 	u32 *tmp = (u32 *)pmdp;
75 
76 	ret = (pmdval_t) (*tmp);
77 	if (ret) {
78 		/*
79 		 * If the low part is null, we must not read the high part
80 		 * or we can end up with a partial pmd.
81 		 */
82 		smp_rmb();
83 		ret |= ((pmdval_t)*(tmp + 1)) << 32;
84 	}
85 
86 	return (pmd_t) { ret };
87 }
88 
89 static inline void native_set_pte_atomic(pte_t *ptep, pte_t pte)
90 {
91 	set_64bit((unsigned long long *)(ptep), native_pte_val(pte));
92 }
93 
94 static inline void native_set_pmd(pmd_t *pmdp, pmd_t pmd)
95 {
96 	set_64bit((unsigned long long *)(pmdp), native_pmd_val(pmd));
97 }
98 
99 static inline void native_set_pud(pud_t *pudp, pud_t pud)
100 {
101 #ifdef CONFIG_PAGE_TABLE_ISOLATION
102 	pud.p4d.pgd = pti_set_user_pgtbl(&pudp->p4d.pgd, pud.p4d.pgd);
103 #endif
104 	set_64bit((unsigned long long *)(pudp), native_pud_val(pud));
105 }
106 
107 /*
108  * For PTEs and PDEs, we must clear the P-bit first when clearing a page table
109  * entry, so clear the bottom half first and enforce ordering with a compiler
110  * barrier.
111  */
112 static inline void native_pte_clear(struct mm_struct *mm, unsigned long addr,
113 				    pte_t *ptep)
114 {
115 	ptep->pte_low = 0;
116 	smp_wmb();
117 	ptep->pte_high = 0;
118 }
119 
120 static inline void native_pmd_clear(pmd_t *pmd)
121 {
122 	u32 *tmp = (u32 *)pmd;
123 	*tmp = 0;
124 	smp_wmb();
125 	*(tmp + 1) = 0;
126 }
127 
128 static inline void native_pud_clear(pud_t *pudp)
129 {
130 }
131 
132 static inline void pud_clear(pud_t *pudp)
133 {
134 	set_pud(pudp, __pud(0));
135 
136 	/*
137 	 * According to Intel App note "TLBs, Paging-Structure Caches,
138 	 * and Their Invalidation", April 2007, document 317080-001,
139 	 * section 8.1: in PAE mode we explicitly have to flush the
140 	 * TLB via cr3 if the top-level pgd is changed...
141 	 *
142 	 * Currently all places where pud_clear() is called either have
143 	 * flush_tlb_mm() followed or don't need TLB flush (x86_64 code or
144 	 * pud_clear_bad()), so we don't need TLB flush here.
145 	 */
146 }
147 
148 #ifdef CONFIG_SMP
149 static inline pte_t native_ptep_get_and_clear(pte_t *ptep)
150 {
151 	pte_t res;
152 
153 	/* xchg acts as a barrier before the setting of the high bits */
154 	res.pte_low = xchg(&ptep->pte_low, 0);
155 	res.pte_high = ptep->pte_high;
156 	ptep->pte_high = 0;
157 
158 	return res;
159 }
160 #else
161 #define native_ptep_get_and_clear(xp) native_local_ptep_get_and_clear(xp)
162 #endif
163 
164 union split_pmd {
165 	struct {
166 		u32 pmd_low;
167 		u32 pmd_high;
168 	};
169 	pmd_t pmd;
170 };
171 
172 #ifdef CONFIG_SMP
173 static inline pmd_t native_pmdp_get_and_clear(pmd_t *pmdp)
174 {
175 	union split_pmd res, *orig = (union split_pmd *)pmdp;
176 
177 	/* xchg acts as a barrier before setting of the high bits */
178 	res.pmd_low = xchg(&orig->pmd_low, 0);
179 	res.pmd_high = orig->pmd_high;
180 	orig->pmd_high = 0;
181 
182 	return res.pmd;
183 }
184 #else
185 #define native_pmdp_get_and_clear(xp) native_local_pmdp_get_and_clear(xp)
186 #endif
187 
188 #ifndef pmdp_establish
189 #define pmdp_establish pmdp_establish
190 static inline pmd_t pmdp_establish(struct vm_area_struct *vma,
191 		unsigned long address, pmd_t *pmdp, pmd_t pmd)
192 {
193 	pmd_t old;
194 
195 	/*
196 	 * If pmd has present bit cleared we can get away without expensive
197 	 * cmpxchg64: we can update pmdp half-by-half without racing with
198 	 * anybody.
199 	 */
200 	if (!(pmd_val(pmd) & _PAGE_PRESENT)) {
201 		union split_pmd old, new, *ptr;
202 
203 		ptr = (union split_pmd *)pmdp;
204 
205 		new.pmd = pmd;
206 
207 		/* xchg acts as a barrier before setting of the high bits */
208 		old.pmd_low = xchg(&ptr->pmd_low, new.pmd_low);
209 		old.pmd_high = ptr->pmd_high;
210 		ptr->pmd_high = new.pmd_high;
211 		return old.pmd;
212 	}
213 
214 	do {
215 		old = *pmdp;
216 	} while (cmpxchg64(&pmdp->pmd, old.pmd, pmd.pmd) != old.pmd);
217 
218 	return old;
219 }
220 #endif
221 
222 #ifdef CONFIG_SMP
223 union split_pud {
224 	struct {
225 		u32 pud_low;
226 		u32 pud_high;
227 	};
228 	pud_t pud;
229 };
230 
231 static inline pud_t native_pudp_get_and_clear(pud_t *pudp)
232 {
233 	union split_pud res, *orig = (union split_pud *)pudp;
234 
235 #ifdef CONFIG_PAGE_TABLE_ISOLATION
236 	pti_set_user_pgtbl(&pudp->p4d.pgd, __pgd(0));
237 #endif
238 
239 	/* xchg acts as a barrier before setting of the high bits */
240 	res.pud_low = xchg(&orig->pud_low, 0);
241 	res.pud_high = orig->pud_high;
242 	orig->pud_high = 0;
243 
244 	return res.pud;
245 }
246 #else
247 #define native_pudp_get_and_clear(xp) native_local_pudp_get_and_clear(xp)
248 #endif
249 
250 /* Encode and de-code a swap entry */
251 #define SWP_TYPE_BITS		5
252 
253 #define SWP_OFFSET_FIRST_BIT	(_PAGE_BIT_PROTNONE + 1)
254 
255 /* We always extract/encode the offset by shifting it all the way up, and then down again */
256 #define SWP_OFFSET_SHIFT	(SWP_OFFSET_FIRST_BIT + SWP_TYPE_BITS)
257 
258 #define MAX_SWAPFILES_CHECK() BUILD_BUG_ON(MAX_SWAPFILES_SHIFT > 5)
259 #define __swp_type(x)			(((x).val) & 0x1f)
260 #define __swp_offset(x)			((x).val >> 5)
261 #define __swp_entry(type, offset)	((swp_entry_t){(type) | (offset) << 5})
262 
263 /*
264  * Normally, __swp_entry() converts from arch-independent swp_entry_t to
265  * arch-dependent swp_entry_t, and __swp_entry_to_pte() just stores the result
266  * to pte. But here we have 32bit swp_entry_t and 64bit pte, and need to use the
267  * whole 64 bits. Thus, we shift the "real" arch-dependent conversion to
268  * __swp_entry_to_pte() through the following helper macro based on 64bit
269  * __swp_entry().
270  */
271 #define __swp_pteval_entry(type, offset) ((pteval_t) { \
272 	(~(pteval_t)(offset) << SWP_OFFSET_SHIFT >> SWP_TYPE_BITS) \
273 	| ((pteval_t)(type) << (64 - SWP_TYPE_BITS)) })
274 
275 #define __swp_entry_to_pte(x)	((pte_t){ .pte = \
276 		__swp_pteval_entry(__swp_type(x), __swp_offset(x)) })
277 /*
278  * Analogically, __pte_to_swp_entry() doesn't just extract the arch-dependent
279  * swp_entry_t, but also has to convert it from 64bit to the 32bit
280  * intermediate representation, using the following macros based on 64bit
281  * __swp_type() and __swp_offset().
282  */
283 #define __pteval_swp_type(x) ((unsigned long)((x).pte >> (64 - SWP_TYPE_BITS)))
284 #define __pteval_swp_offset(x) ((unsigned long)(~((x).pte) << SWP_TYPE_BITS >> SWP_OFFSET_SHIFT))
285 
286 #define __pte_to_swp_entry(pte)	(__swp_entry(__pteval_swp_type(pte), \
287 					     __pteval_swp_offset(pte)))
288 
289 #define gup_get_pte gup_get_pte
290 /*
291  * WARNING: only to be used in the get_user_pages_fast() implementation.
292  *
293  * With get_user_pages_fast(), we walk down the pagetables without taking
294  * any locks.  For this we would like to load the pointers atomically,
295  * but that is not possible (without expensive cmpxchg8b) on PAE.  What
296  * we do have is the guarantee that a PTE will only either go from not
297  * present to present, or present to not present or both -- it will not
298  * switch to a completely different present page without a TLB flush in
299  * between; something that we are blocking by holding interrupts off.
300  *
301  * Setting ptes from not present to present goes:
302  *
303  *   ptep->pte_high = h;
304  *   smp_wmb();
305  *   ptep->pte_low = l;
306  *
307  * And present to not present goes:
308  *
309  *   ptep->pte_low = 0;
310  *   smp_wmb();
311  *   ptep->pte_high = 0;
312  *
313  * We must ensure here that the load of pte_low sees 'l' iff pte_high
314  * sees 'h'. We load pte_high *after* loading pte_low, which ensures we
315  * don't see an older value of pte_high.  *Then* we recheck pte_low,
316  * which ensures that we haven't picked up a changed pte high. We might
317  * have gotten rubbish values from pte_low and pte_high, but we are
318  * guaranteed that pte_low will not have the present bit set *unless*
319  * it is 'l'. Because get_user_pages_fast() only operates on present ptes
320  * we're safe.
321  */
322 static inline pte_t gup_get_pte(pte_t *ptep)
323 {
324 	pte_t pte;
325 
326 	do {
327 		pte.pte_low = ptep->pte_low;
328 		smp_rmb();
329 		pte.pte_high = ptep->pte_high;
330 		smp_rmb();
331 	} while (unlikely(pte.pte_low != ptep->pte_low));
332 
333 	return pte;
334 }
335 
336 #include <asm/pgtable-invert.h>
337 
338 #endif /* _ASM_X86_PGTABLE_3LEVEL_H */
339