xref: /openbmc/linux/arch/x86/include/asm/pgtable-3level.h (revision 63f59b73e80a0f7431f6f91383fcc3f5fac49bb8)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _ASM_X86_PGTABLE_3LEVEL_H
3 #define _ASM_X86_PGTABLE_3LEVEL_H
4 
5 #include <asm/atomic64_32.h>
6 
7 /*
8  * Intel Physical Address Extension (PAE) Mode - three-level page
9  * tables on PPro+ CPUs.
10  *
11  * Copyright (C) 1999 Ingo Molnar <mingo@redhat.com>
12  */
13 
14 #define pte_ERROR(e)							\
15 	pr_err("%s:%d: bad pte %p(%08lx%08lx)\n",			\
16 	       __FILE__, __LINE__, &(e), (e).pte_high, (e).pte_low)
17 #define pmd_ERROR(e)							\
18 	pr_err("%s:%d: bad pmd %p(%016Lx)\n",				\
19 	       __FILE__, __LINE__, &(e), pmd_val(e))
20 #define pgd_ERROR(e)							\
21 	pr_err("%s:%d: bad pgd %p(%016Lx)\n",				\
22 	       __FILE__, __LINE__, &(e), pgd_val(e))
23 
24 /* Rules for using set_pte: the pte being assigned *must* be
25  * either not present or in a state where the hardware will
26  * not attempt to update the pte.  In places where this is
27  * not possible, use pte_get_and_clear to obtain the old pte
28  * value and then use set_pte to update it.  -ben
29  */
30 static inline void native_set_pte(pte_t *ptep, pte_t pte)
31 {
32 	ptep->pte_high = pte.pte_high;
33 	smp_wmb();
34 	ptep->pte_low = pte.pte_low;
35 }
36 
37 #define pmd_read_atomic pmd_read_atomic
38 /*
39  * pte_offset_map_lock on 32bit PAE kernels was reading the pmd_t with
40  * a "*pmdp" dereference done by gcc. Problem is, in certain places
41  * where pte_offset_map_lock is called, concurrent page faults are
42  * allowed, if the mmap_sem is hold for reading. An example is mincore
43  * vs page faults vs MADV_DONTNEED. On the page fault side
44  * pmd_populate rightfully does a set_64bit, but if we're reading the
45  * pmd_t with a "*pmdp" on the mincore side, a SMP race can happen
46  * because gcc will not read the 64bit of the pmd atomically. To fix
47  * this all places running pmd_offset_map_lock() while holding the
48  * mmap_sem in read mode, shall read the pmdp pointer using this
49  * function to know if the pmd is null nor not, and in turn to know if
50  * they can run pmd_offset_map_lock or pmd_trans_huge or other pmd
51  * operations.
52  *
53  * Without THP if the mmap_sem is hold for reading, the pmd can only
54  * transition from null to not null while pmd_read_atomic runs. So
55  * we can always return atomic pmd values with this function.
56  *
57  * With THP if the mmap_sem is hold for reading, the pmd can become
58  * trans_huge or none or point to a pte (and in turn become "stable")
59  * at any time under pmd_read_atomic. We could read it really
60  * atomically here with a atomic64_read for the THP enabled case (and
61  * it would be a whole lot simpler), but to avoid using cmpxchg8b we
62  * only return an atomic pmdval if the low part of the pmdval is later
63  * found stable (i.e. pointing to a pte). And we're returning a none
64  * pmdval if the low part of the pmd is none. In some cases the high
65  * and low part of the pmdval returned may not be consistent if THP is
66  * enabled (the low part may point to previously mapped hugepage,
67  * while the high part may point to a more recently mapped hugepage),
68  * but pmd_none_or_trans_huge_or_clear_bad() only needs the low part
69  * of the pmd to be read atomically to decide if the pmd is unstable
70  * or not, with the only exception of when the low part of the pmd is
71  * zero in which case we return a none pmd.
72  */
73 static inline pmd_t pmd_read_atomic(pmd_t *pmdp)
74 {
75 	pmdval_t ret;
76 	u32 *tmp = (u32 *)pmdp;
77 
78 	ret = (pmdval_t) (*tmp);
79 	if (ret) {
80 		/*
81 		 * If the low part is null, we must not read the high part
82 		 * or we can end up with a partial pmd.
83 		 */
84 		smp_rmb();
85 		ret |= ((pmdval_t)*(tmp + 1)) << 32;
86 	}
87 
88 	return (pmd_t) { ret };
89 }
90 
91 static inline void native_set_pte_atomic(pte_t *ptep, pte_t pte)
92 {
93 	set_64bit((unsigned long long *)(ptep), native_pte_val(pte));
94 }
95 
96 static inline void native_set_pmd(pmd_t *pmdp, pmd_t pmd)
97 {
98 	set_64bit((unsigned long long *)(pmdp), native_pmd_val(pmd));
99 }
100 
101 static inline void native_set_pud(pud_t *pudp, pud_t pud)
102 {
103 #ifdef CONFIG_PAGE_TABLE_ISOLATION
104 	pud.p4d.pgd = pti_set_user_pgtbl(&pudp->p4d.pgd, pud.p4d.pgd);
105 #endif
106 	set_64bit((unsigned long long *)(pudp), native_pud_val(pud));
107 }
108 
109 /*
110  * For PTEs and PDEs, we must clear the P-bit first when clearing a page table
111  * entry, so clear the bottom half first and enforce ordering with a compiler
112  * barrier.
113  */
114 static inline void native_pte_clear(struct mm_struct *mm, unsigned long addr,
115 				    pte_t *ptep)
116 {
117 	ptep->pte_low = 0;
118 	smp_wmb();
119 	ptep->pte_high = 0;
120 }
121 
122 static inline void native_pmd_clear(pmd_t *pmd)
123 {
124 	u32 *tmp = (u32 *)pmd;
125 	*tmp = 0;
126 	smp_wmb();
127 	*(tmp + 1) = 0;
128 }
129 
130 static inline void native_pud_clear(pud_t *pudp)
131 {
132 }
133 
134 static inline void pud_clear(pud_t *pudp)
135 {
136 	set_pud(pudp, __pud(0));
137 
138 	/*
139 	 * According to Intel App note "TLBs, Paging-Structure Caches,
140 	 * and Their Invalidation", April 2007, document 317080-001,
141 	 * section 8.1: in PAE mode we explicitly have to flush the
142 	 * TLB via cr3 if the top-level pgd is changed...
143 	 *
144 	 * Currently all places where pud_clear() is called either have
145 	 * flush_tlb_mm() followed or don't need TLB flush (x86_64 code or
146 	 * pud_clear_bad()), so we don't need TLB flush here.
147 	 */
148 }
149 
150 #ifdef CONFIG_SMP
151 static inline pte_t native_ptep_get_and_clear(pte_t *ptep)
152 {
153 	pte_t res;
154 
155 	res.pte = (pteval_t)arch_atomic64_xchg((atomic64_t *)ptep, 0);
156 
157 	return res;
158 }
159 #else
160 #define native_ptep_get_and_clear(xp) native_local_ptep_get_and_clear(xp)
161 #endif
162 
163 union split_pmd {
164 	struct {
165 		u32 pmd_low;
166 		u32 pmd_high;
167 	};
168 	pmd_t pmd;
169 };
170 
171 #ifdef CONFIG_SMP
172 static inline pmd_t native_pmdp_get_and_clear(pmd_t *pmdp)
173 {
174 	union split_pmd res, *orig = (union split_pmd *)pmdp;
175 
176 	/* xchg acts as a barrier before setting of the high bits */
177 	res.pmd_low = xchg(&orig->pmd_low, 0);
178 	res.pmd_high = orig->pmd_high;
179 	orig->pmd_high = 0;
180 
181 	return res.pmd;
182 }
183 #else
184 #define native_pmdp_get_and_clear(xp) native_local_pmdp_get_and_clear(xp)
185 #endif
186 
187 #ifndef pmdp_establish
188 #define pmdp_establish pmdp_establish
189 static inline pmd_t pmdp_establish(struct vm_area_struct *vma,
190 		unsigned long address, pmd_t *pmdp, pmd_t pmd)
191 {
192 	pmd_t old;
193 
194 	/*
195 	 * If pmd has present bit cleared we can get away without expensive
196 	 * cmpxchg64: we can update pmdp half-by-half without racing with
197 	 * anybody.
198 	 */
199 	if (!(pmd_val(pmd) & _PAGE_PRESENT)) {
200 		union split_pmd old, new, *ptr;
201 
202 		ptr = (union split_pmd *)pmdp;
203 
204 		new.pmd = pmd;
205 
206 		/* xchg acts as a barrier before setting of the high bits */
207 		old.pmd_low = xchg(&ptr->pmd_low, new.pmd_low);
208 		old.pmd_high = ptr->pmd_high;
209 		ptr->pmd_high = new.pmd_high;
210 		return old.pmd;
211 	}
212 
213 	do {
214 		old = *pmdp;
215 	} while (cmpxchg64(&pmdp->pmd, old.pmd, pmd.pmd) != old.pmd);
216 
217 	return old;
218 }
219 #endif
220 
221 #ifdef CONFIG_SMP
222 union split_pud {
223 	struct {
224 		u32 pud_low;
225 		u32 pud_high;
226 	};
227 	pud_t pud;
228 };
229 
230 static inline pud_t native_pudp_get_and_clear(pud_t *pudp)
231 {
232 	union split_pud res, *orig = (union split_pud *)pudp;
233 
234 #ifdef CONFIG_PAGE_TABLE_ISOLATION
235 	pti_set_user_pgtbl(&pudp->p4d.pgd, __pgd(0));
236 #endif
237 
238 	/* xchg acts as a barrier before setting of the high bits */
239 	res.pud_low = xchg(&orig->pud_low, 0);
240 	res.pud_high = orig->pud_high;
241 	orig->pud_high = 0;
242 
243 	return res.pud;
244 }
245 #else
246 #define native_pudp_get_and_clear(xp) native_local_pudp_get_and_clear(xp)
247 #endif
248 
249 /* Encode and de-code a swap entry */
250 #define SWP_TYPE_BITS		5
251 
252 #define SWP_OFFSET_FIRST_BIT	(_PAGE_BIT_PROTNONE + 1)
253 
254 /* We always extract/encode the offset by shifting it all the way up, and then down again */
255 #define SWP_OFFSET_SHIFT	(SWP_OFFSET_FIRST_BIT + SWP_TYPE_BITS)
256 
257 #define MAX_SWAPFILES_CHECK() BUILD_BUG_ON(MAX_SWAPFILES_SHIFT > 5)
258 #define __swp_type(x)			(((x).val) & 0x1f)
259 #define __swp_offset(x)			((x).val >> 5)
260 #define __swp_entry(type, offset)	((swp_entry_t){(type) | (offset) << 5})
261 
262 /*
263  * Normally, __swp_entry() converts from arch-independent swp_entry_t to
264  * arch-dependent swp_entry_t, and __swp_entry_to_pte() just stores the result
265  * to pte. But here we have 32bit swp_entry_t and 64bit pte, and need to use the
266  * whole 64 bits. Thus, we shift the "real" arch-dependent conversion to
267  * __swp_entry_to_pte() through the following helper macro based on 64bit
268  * __swp_entry().
269  */
270 #define __swp_pteval_entry(type, offset) ((pteval_t) { \
271 	(~(pteval_t)(offset) << SWP_OFFSET_SHIFT >> SWP_TYPE_BITS) \
272 	| ((pteval_t)(type) << (64 - SWP_TYPE_BITS)) })
273 
274 #define __swp_entry_to_pte(x)	((pte_t){ .pte = \
275 		__swp_pteval_entry(__swp_type(x), __swp_offset(x)) })
276 /*
277  * Analogically, __pte_to_swp_entry() doesn't just extract the arch-dependent
278  * swp_entry_t, but also has to convert it from 64bit to the 32bit
279  * intermediate representation, using the following macros based on 64bit
280  * __swp_type() and __swp_offset().
281  */
282 #define __pteval_swp_type(x) ((unsigned long)((x).pte >> (64 - SWP_TYPE_BITS)))
283 #define __pteval_swp_offset(x) ((unsigned long)(~((x).pte) << SWP_TYPE_BITS >> SWP_OFFSET_SHIFT))
284 
285 #define __pte_to_swp_entry(pte)	(__swp_entry(__pteval_swp_type(pte), \
286 					     __pteval_swp_offset(pte)))
287 
288 #define gup_get_pte gup_get_pte
289 /*
290  * WARNING: only to be used in the get_user_pages_fast() implementation.
291  *
292  * With get_user_pages_fast(), we walk down the pagetables without taking
293  * any locks.  For this we would like to load the pointers atomically,
294  * but that is not possible (without expensive cmpxchg8b) on PAE.  What
295  * we do have is the guarantee that a PTE will only either go from not
296  * present to present, or present to not present or both -- it will not
297  * switch to a completely different present page without a TLB flush in
298  * between; something that we are blocking by holding interrupts off.
299  *
300  * Setting ptes from not present to present goes:
301  *
302  *   ptep->pte_high = h;
303  *   smp_wmb();
304  *   ptep->pte_low = l;
305  *
306  * And present to not present goes:
307  *
308  *   ptep->pte_low = 0;
309  *   smp_wmb();
310  *   ptep->pte_high = 0;
311  *
312  * We must ensure here that the load of pte_low sees 'l' iff pte_high
313  * sees 'h'. We load pte_high *after* loading pte_low, which ensures we
314  * don't see an older value of pte_high.  *Then* we recheck pte_low,
315  * which ensures that we haven't picked up a changed pte high. We might
316  * have gotten rubbish values from pte_low and pte_high, but we are
317  * guaranteed that pte_low will not have the present bit set *unless*
318  * it is 'l'. Because get_user_pages_fast() only operates on present ptes
319  * we're safe.
320  */
321 static inline pte_t gup_get_pte(pte_t *ptep)
322 {
323 	pte_t pte;
324 
325 	do {
326 		pte.pte_low = ptep->pte_low;
327 		smp_rmb();
328 		pte.pte_high = ptep->pte_high;
329 		smp_rmb();
330 	} while (unlikely(pte.pte_low != ptep->pte_low));
331 
332 	return pte;
333 }
334 
335 #include <asm/pgtable-invert.h>
336 
337 #endif /* _ASM_X86_PGTABLE_3LEVEL_H */
338