1 #ifndef _ASM_X86_PGTABLE_3LEVEL_H
2 #define _ASM_X86_PGTABLE_3LEVEL_H
3 
4 /*
5  * Intel Physical Address Extension (PAE) Mode - three-level page
6  * tables on PPro+ CPUs.
7  *
8  * Copyright (C) 1999 Ingo Molnar <mingo@redhat.com>
9  */
10 
11 #define pte_ERROR(e)							\
12 	pr_err("%s:%d: bad pte %p(%08lx%08lx)\n",			\
13 	       __FILE__, __LINE__, &(e), (e).pte_high, (e).pte_low)
14 #define pmd_ERROR(e)							\
15 	pr_err("%s:%d: bad pmd %p(%016Lx)\n",				\
16 	       __FILE__, __LINE__, &(e), pmd_val(e))
17 #define pgd_ERROR(e)							\
18 	pr_err("%s:%d: bad pgd %p(%016Lx)\n",				\
19 	       __FILE__, __LINE__, &(e), pgd_val(e))
20 
21 /* Rules for using set_pte: the pte being assigned *must* be
22  * either not present or in a state where the hardware will
23  * not attempt to update the pte.  In places where this is
24  * not possible, use pte_get_and_clear to obtain the old pte
25  * value and then use set_pte to update it.  -ben
26  */
27 static inline void native_set_pte(pte_t *ptep, pte_t pte)
28 {
29 	ptep->pte_high = pte.pte_high;
30 	smp_wmb();
31 	ptep->pte_low = pte.pte_low;
32 }
33 
34 #define pmd_read_atomic pmd_read_atomic
35 /*
36  * pte_offset_map_lock on 32bit PAE kernels was reading the pmd_t with
37  * a "*pmdp" dereference done by gcc. Problem is, in certain places
38  * where pte_offset_map_lock is called, concurrent page faults are
39  * allowed, if the mmap_sem is hold for reading. An example is mincore
40  * vs page faults vs MADV_DONTNEED. On the page fault side
41  * pmd_populate rightfully does a set_64bit, but if we're reading the
42  * pmd_t with a "*pmdp" on the mincore side, a SMP race can happen
43  * because gcc will not read the 64bit of the pmd atomically. To fix
44  * this all places running pmd_offset_map_lock() while holding the
45  * mmap_sem in read mode, shall read the pmdp pointer using this
46  * function to know if the pmd is null nor not, and in turn to know if
47  * they can run pmd_offset_map_lock or pmd_trans_huge or other pmd
48  * operations.
49  *
50  * Without THP if the mmap_sem is hold for reading, the pmd can only
51  * transition from null to not null while pmd_read_atomic runs. So
52  * we can always return atomic pmd values with this function.
53  *
54  * With THP if the mmap_sem is hold for reading, the pmd can become
55  * trans_huge or none or point to a pte (and in turn become "stable")
56  * at any time under pmd_read_atomic. We could read it really
57  * atomically here with a atomic64_read for the THP enabled case (and
58  * it would be a whole lot simpler), but to avoid using cmpxchg8b we
59  * only return an atomic pmdval if the low part of the pmdval is later
60  * found stable (i.e. pointing to a pte). And we're returning a none
61  * pmdval if the low part of the pmd is none. In some cases the high
62  * and low part of the pmdval returned may not be consistent if THP is
63  * enabled (the low part may point to previously mapped hugepage,
64  * while the high part may point to a more recently mapped hugepage),
65  * but pmd_none_or_trans_huge_or_clear_bad() only needs the low part
66  * of the pmd to be read atomically to decide if the pmd is unstable
67  * or not, with the only exception of when the low part of the pmd is
68  * zero in which case we return a none pmd.
69  */
70 static inline pmd_t pmd_read_atomic(pmd_t *pmdp)
71 {
72 	pmdval_t ret;
73 	u32 *tmp = (u32 *)pmdp;
74 
75 	ret = (pmdval_t) (*tmp);
76 	if (ret) {
77 		/*
78 		 * If the low part is null, we must not read the high part
79 		 * or we can end up with a partial pmd.
80 		 */
81 		smp_rmb();
82 		ret |= ((pmdval_t)*(tmp + 1)) << 32;
83 	}
84 
85 	return (pmd_t) { ret };
86 }
87 
88 static inline void native_set_pte_atomic(pte_t *ptep, pte_t pte)
89 {
90 	set_64bit((unsigned long long *)(ptep), native_pte_val(pte));
91 }
92 
93 static inline void native_set_pmd(pmd_t *pmdp, pmd_t pmd)
94 {
95 	set_64bit((unsigned long long *)(pmdp), native_pmd_val(pmd));
96 }
97 
98 static inline void native_set_pud(pud_t *pudp, pud_t pud)
99 {
100 	set_64bit((unsigned long long *)(pudp), native_pud_val(pud));
101 }
102 
103 /*
104  * For PTEs and PDEs, we must clear the P-bit first when clearing a page table
105  * entry, so clear the bottom half first and enforce ordering with a compiler
106  * barrier.
107  */
108 static inline void native_pte_clear(struct mm_struct *mm, unsigned long addr,
109 				    pte_t *ptep)
110 {
111 	ptep->pte_low = 0;
112 	smp_wmb();
113 	ptep->pte_high = 0;
114 }
115 
116 static inline void native_pmd_clear(pmd_t *pmd)
117 {
118 	u32 *tmp = (u32 *)pmd;
119 	*tmp = 0;
120 	smp_wmb();
121 	*(tmp + 1) = 0;
122 }
123 
124 #if !defined(CONFIG_SMP) || (defined(CONFIG_HIGHMEM64G) && \
125 		defined(CONFIG_PARAVIRT))
126 static inline void native_pud_clear(pud_t *pudp)
127 {
128 }
129 #endif
130 
131 static inline void pud_clear(pud_t *pudp)
132 {
133 	set_pud(pudp, __pud(0));
134 
135 	/*
136 	 * According to Intel App note "TLBs, Paging-Structure Caches,
137 	 * and Their Invalidation", April 2007, document 317080-001,
138 	 * section 8.1: in PAE mode we explicitly have to flush the
139 	 * TLB via cr3 if the top-level pgd is changed...
140 	 *
141 	 * Currently all places where pud_clear() is called either have
142 	 * flush_tlb_mm() followed or don't need TLB flush (x86_64 code or
143 	 * pud_clear_bad()), so we don't need TLB flush here.
144 	 */
145 }
146 
147 #ifdef CONFIG_SMP
148 static inline pte_t native_ptep_get_and_clear(pte_t *ptep)
149 {
150 	pte_t res;
151 
152 	/* xchg acts as a barrier before the setting of the high bits */
153 	res.pte_low = xchg(&ptep->pte_low, 0);
154 	res.pte_high = ptep->pte_high;
155 	ptep->pte_high = 0;
156 
157 	return res;
158 }
159 #else
160 #define native_ptep_get_and_clear(xp) native_local_ptep_get_and_clear(xp)
161 #endif
162 
163 #ifdef CONFIG_SMP
164 union split_pmd {
165 	struct {
166 		u32 pmd_low;
167 		u32 pmd_high;
168 	};
169 	pmd_t pmd;
170 };
171 static inline pmd_t native_pmdp_get_and_clear(pmd_t *pmdp)
172 {
173 	union split_pmd res, *orig = (union split_pmd *)pmdp;
174 
175 	/* xchg acts as a barrier before setting of the high bits */
176 	res.pmd_low = xchg(&orig->pmd_low, 0);
177 	res.pmd_high = orig->pmd_high;
178 	orig->pmd_high = 0;
179 
180 	return res.pmd;
181 }
182 #else
183 #define native_pmdp_get_and_clear(xp) native_local_pmdp_get_and_clear(xp)
184 #endif
185 
186 #ifdef CONFIG_SMP
187 union split_pud {
188 	struct {
189 		u32 pud_low;
190 		u32 pud_high;
191 	};
192 	pud_t pud;
193 };
194 
195 static inline pud_t native_pudp_get_and_clear(pud_t *pudp)
196 {
197 	union split_pud res, *orig = (union split_pud *)pudp;
198 
199 	/* xchg acts as a barrier before setting of the high bits */
200 	res.pud_low = xchg(&orig->pud_low, 0);
201 	res.pud_high = orig->pud_high;
202 	orig->pud_high = 0;
203 
204 	return res.pud;
205 }
206 #else
207 #define native_pudp_get_and_clear(xp) native_local_pudp_get_and_clear(xp)
208 #endif
209 
210 /* Encode and de-code a swap entry */
211 #define MAX_SWAPFILES_CHECK() BUILD_BUG_ON(MAX_SWAPFILES_SHIFT > 5)
212 #define __swp_type(x)			(((x).val) & 0x1f)
213 #define __swp_offset(x)			((x).val >> 5)
214 #define __swp_entry(type, offset)	((swp_entry_t){(type) | (offset) << 5})
215 #define __pte_to_swp_entry(pte)		((swp_entry_t){ (pte).pte_high })
216 #define __swp_entry_to_pte(x)		((pte_t){ { .pte_high = (x).val } })
217 
218 #endif /* _ASM_X86_PGTABLE_3LEVEL_H */
219