xref: /openbmc/linux/arch/x86/include/asm/msr.h (revision fb574682)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _ASM_X86_MSR_H
3 #define _ASM_X86_MSR_H
4 
5 #include "msr-index.h"
6 
7 #ifndef __ASSEMBLY__
8 
9 #include <asm/asm.h>
10 #include <asm/errno.h>
11 #include <asm/cpumask.h>
12 #include <uapi/asm/msr.h>
13 
14 struct msr {
15 	union {
16 		struct {
17 			u32 l;
18 			u32 h;
19 		};
20 		u64 q;
21 	};
22 };
23 
24 struct msr_info {
25 	u32 msr_no;
26 	struct msr reg;
27 	struct msr *msrs;
28 	int err;
29 };
30 
31 struct msr_regs_info {
32 	u32 *regs;
33 	int err;
34 };
35 
36 struct saved_msr {
37 	bool valid;
38 	struct msr_info info;
39 };
40 
41 struct saved_msrs {
42 	unsigned int num;
43 	struct saved_msr *array;
44 };
45 
46 /*
47  * both i386 and x86_64 returns 64-bit value in edx:eax, but gcc's "A"
48  * constraint has different meanings. For i386, "A" means exactly
49  * edx:eax, while for x86_64 it doesn't mean rdx:rax or edx:eax. Instead,
50  * it means rax *or* rdx.
51  */
52 #ifdef CONFIG_X86_64
53 /* Using 64-bit values saves one instruction clearing the high half of low */
54 #define DECLARE_ARGS(val, low, high)	unsigned long low, high
55 #define EAX_EDX_VAL(val, low, high)	((low) | (high) << 32)
56 #define EAX_EDX_RET(val, low, high)	"=a" (low), "=d" (high)
57 #else
58 #define DECLARE_ARGS(val, low, high)	unsigned long long val
59 #define EAX_EDX_VAL(val, low, high)	(val)
60 #define EAX_EDX_RET(val, low, high)	"=A" (val)
61 #endif
62 
63 #ifdef CONFIG_TRACEPOINTS
64 /*
65  * Be very careful with includes. This header is prone to include loops.
66  */
67 #include <asm/atomic.h>
68 #include <linux/tracepoint-defs.h>
69 
70 extern struct tracepoint __tracepoint_read_msr;
71 extern struct tracepoint __tracepoint_write_msr;
72 extern struct tracepoint __tracepoint_rdpmc;
73 #define msr_tracepoint_active(t) static_key_false(&(t).key)
74 extern void do_trace_write_msr(unsigned int msr, u64 val, int failed);
75 extern void do_trace_read_msr(unsigned int msr, u64 val, int failed);
76 extern void do_trace_rdpmc(unsigned int msr, u64 val, int failed);
77 #else
78 #define msr_tracepoint_active(t) false
79 static inline void do_trace_write_msr(unsigned int msr, u64 val, int failed) {}
80 static inline void do_trace_read_msr(unsigned int msr, u64 val, int failed) {}
81 static inline void do_trace_rdpmc(unsigned int msr, u64 val, int failed) {}
82 #endif
83 
84 /*
85  * __rdmsr() and __wrmsr() are the two primitives which are the bare minimum MSR
86  * accessors and should not have any tracing or other functionality piggybacking
87  * on them - those are *purely* for accessing MSRs and nothing more. So don't even
88  * think of extending them - you will be slapped with a stinking trout or a frozen
89  * shark will reach you, wherever you are! You've been warned.
90  */
91 static inline unsigned long long notrace __rdmsr(unsigned int msr)
92 {
93 	DECLARE_ARGS(val, low, high);
94 
95 	asm volatile("1: rdmsr\n"
96 		     "2:\n"
97 		     _ASM_EXTABLE_HANDLE(1b, 2b, ex_handler_rdmsr_unsafe)
98 		     : EAX_EDX_RET(val, low, high) : "c" (msr));
99 
100 	return EAX_EDX_VAL(val, low, high);
101 }
102 
103 static inline void notrace __wrmsr(unsigned int msr, u32 low, u32 high)
104 {
105 	asm volatile("1: wrmsr\n"
106 		     "2:\n"
107 		     _ASM_EXTABLE_HANDLE(1b, 2b, ex_handler_wrmsr_unsafe)
108 		     : : "c" (msr), "a"(low), "d" (high) : "memory");
109 }
110 
111 #define native_rdmsr(msr, val1, val2)			\
112 do {							\
113 	u64 __val = __rdmsr((msr));			\
114 	(void)((val1) = (u32)__val);			\
115 	(void)((val2) = (u32)(__val >> 32));		\
116 } while (0)
117 
118 #define native_wrmsr(msr, low, high)			\
119 	__wrmsr(msr, low, high)
120 
121 #define native_wrmsrl(msr, val)				\
122 	__wrmsr((msr), (u32)((u64)(val)),		\
123 		       (u32)((u64)(val) >> 32))
124 
125 static inline unsigned long long native_read_msr(unsigned int msr)
126 {
127 	unsigned long long val;
128 
129 	val = __rdmsr(msr);
130 
131 	if (msr_tracepoint_active(__tracepoint_read_msr))
132 		do_trace_read_msr(msr, val, 0);
133 
134 	return val;
135 }
136 
137 static inline unsigned long long native_read_msr_safe(unsigned int msr,
138 						      int *err)
139 {
140 	DECLARE_ARGS(val, low, high);
141 
142 	asm volatile("2: rdmsr ; xor %[err],%[err]\n"
143 		     "1:\n\t"
144 		     ".section .fixup,\"ax\"\n\t"
145 		     "3: mov %[fault],%[err]\n\t"
146 		     "xorl %%eax, %%eax\n\t"
147 		     "xorl %%edx, %%edx\n\t"
148 		     "jmp 1b\n\t"
149 		     ".previous\n\t"
150 		     _ASM_EXTABLE(2b, 3b)
151 		     : [err] "=r" (*err), EAX_EDX_RET(val, low, high)
152 		     : "c" (msr), [fault] "i" (-EIO));
153 	if (msr_tracepoint_active(__tracepoint_read_msr))
154 		do_trace_read_msr(msr, EAX_EDX_VAL(val, low, high), *err);
155 	return EAX_EDX_VAL(val, low, high);
156 }
157 
158 /* Can be uninlined because referenced by paravirt */
159 static inline void notrace
160 native_write_msr(unsigned int msr, u32 low, u32 high)
161 {
162 	__wrmsr(msr, low, high);
163 
164 	if (msr_tracepoint_active(__tracepoint_write_msr))
165 		do_trace_write_msr(msr, ((u64)high << 32 | low), 0);
166 }
167 
168 /* Can be uninlined because referenced by paravirt */
169 static inline int notrace
170 native_write_msr_safe(unsigned int msr, u32 low, u32 high)
171 {
172 	int err;
173 
174 	asm volatile("2: wrmsr ; xor %[err],%[err]\n"
175 		     "1:\n\t"
176 		     ".section .fixup,\"ax\"\n\t"
177 		     "3:  mov %[fault],%[err] ; jmp 1b\n\t"
178 		     ".previous\n\t"
179 		     _ASM_EXTABLE(2b, 3b)
180 		     : [err] "=a" (err)
181 		     : "c" (msr), "0" (low), "d" (high),
182 		       [fault] "i" (-EIO)
183 		     : "memory");
184 	if (msr_tracepoint_active(__tracepoint_write_msr))
185 		do_trace_write_msr(msr, ((u64)high << 32 | low), err);
186 	return err;
187 }
188 
189 extern int rdmsr_safe_regs(u32 regs[8]);
190 extern int wrmsr_safe_regs(u32 regs[8]);
191 
192 /**
193  * rdtsc() - returns the current TSC without ordering constraints
194  *
195  * rdtsc() returns the result of RDTSC as a 64-bit integer.  The
196  * only ordering constraint it supplies is the ordering implied by
197  * "asm volatile": it will put the RDTSC in the place you expect.  The
198  * CPU can and will speculatively execute that RDTSC, though, so the
199  * results can be non-monotonic if compared on different CPUs.
200  */
201 static __always_inline unsigned long long rdtsc(void)
202 {
203 	DECLARE_ARGS(val, low, high);
204 
205 	asm volatile("rdtsc" : EAX_EDX_RET(val, low, high));
206 
207 	return EAX_EDX_VAL(val, low, high);
208 }
209 
210 /**
211  * rdtsc_ordered() - read the current TSC in program order
212  *
213  * rdtsc_ordered() returns the result of RDTSC as a 64-bit integer.
214  * It is ordered like a load to a global in-memory counter.  It should
215  * be impossible to observe non-monotonic rdtsc_unordered() behavior
216  * across multiple CPUs as long as the TSC is synced.
217  */
218 static __always_inline unsigned long long rdtsc_ordered(void)
219 {
220 	DECLARE_ARGS(val, low, high);
221 
222 	/*
223 	 * The RDTSC instruction is not ordered relative to memory
224 	 * access.  The Intel SDM and the AMD APM are both vague on this
225 	 * point, but empirically an RDTSC instruction can be
226 	 * speculatively executed before prior loads.  An RDTSC
227 	 * immediately after an appropriate barrier appears to be
228 	 * ordered as a normal load, that is, it provides the same
229 	 * ordering guarantees as reading from a global memory location
230 	 * that some other imaginary CPU is updating continuously with a
231 	 * time stamp.
232 	 *
233 	 * Thus, use the preferred barrier on the respective CPU, aiming for
234 	 * RDTSCP as the default.
235 	 */
236 	asm volatile(ALTERNATIVE_2("rdtsc",
237 				   "lfence; rdtsc", X86_FEATURE_LFENCE_RDTSC,
238 				   "rdtscp", X86_FEATURE_RDTSCP)
239 			: EAX_EDX_RET(val, low, high)
240 			/* RDTSCP clobbers ECX with MSR_TSC_AUX. */
241 			:: "ecx");
242 
243 	return EAX_EDX_VAL(val, low, high);
244 }
245 
246 static inline unsigned long long native_read_pmc(int counter)
247 {
248 	DECLARE_ARGS(val, low, high);
249 
250 	asm volatile("rdpmc" : EAX_EDX_RET(val, low, high) : "c" (counter));
251 	if (msr_tracepoint_active(__tracepoint_rdpmc))
252 		do_trace_rdpmc(counter, EAX_EDX_VAL(val, low, high), 0);
253 	return EAX_EDX_VAL(val, low, high);
254 }
255 
256 #ifdef CONFIG_PARAVIRT_XXL
257 #include <asm/paravirt.h>
258 #else
259 #include <linux/errno.h>
260 /*
261  * Access to machine-specific registers (available on 586 and better only)
262  * Note: the rd* operations modify the parameters directly (without using
263  * pointer indirection), this allows gcc to optimize better
264  */
265 
266 #define rdmsr(msr, low, high)					\
267 do {								\
268 	u64 __val = native_read_msr((msr));			\
269 	(void)((low) = (u32)__val);				\
270 	(void)((high) = (u32)(__val >> 32));			\
271 } while (0)
272 
273 static inline void wrmsr(unsigned int msr, u32 low, u32 high)
274 {
275 	native_write_msr(msr, low, high);
276 }
277 
278 #define rdmsrl(msr, val)			\
279 	((val) = native_read_msr((msr)))
280 
281 static inline void wrmsrl(unsigned int msr, u64 val)
282 {
283 	native_write_msr(msr, (u32)(val & 0xffffffffULL), (u32)(val >> 32));
284 }
285 
286 /* wrmsr with exception handling */
287 static inline int wrmsr_safe(unsigned int msr, u32 low, u32 high)
288 {
289 	return native_write_msr_safe(msr, low, high);
290 }
291 
292 /* rdmsr with exception handling */
293 #define rdmsr_safe(msr, low, high)				\
294 ({								\
295 	int __err;						\
296 	u64 __val = native_read_msr_safe((msr), &__err);	\
297 	(*low) = (u32)__val;					\
298 	(*high) = (u32)(__val >> 32);				\
299 	__err;							\
300 })
301 
302 static inline int rdmsrl_safe(unsigned int msr, unsigned long long *p)
303 {
304 	int err;
305 
306 	*p = native_read_msr_safe(msr, &err);
307 	return err;
308 }
309 
310 #define rdpmc(counter, low, high)			\
311 do {							\
312 	u64 _l = native_read_pmc((counter));		\
313 	(low)  = (u32)_l;				\
314 	(high) = (u32)(_l >> 32);			\
315 } while (0)
316 
317 #define rdpmcl(counter, val) ((val) = native_read_pmc(counter))
318 
319 #endif	/* !CONFIG_PARAVIRT_XXL */
320 
321 /*
322  * 64-bit version of wrmsr_safe():
323  */
324 static inline int wrmsrl_safe(u32 msr, u64 val)
325 {
326 	return wrmsr_safe(msr, (u32)val,  (u32)(val >> 32));
327 }
328 
329 #define write_tsc(low, high) wrmsr(MSR_IA32_TSC, (low), (high))
330 
331 #define write_rdtscp_aux(val) wrmsr(MSR_TSC_AUX, (val), 0)
332 
333 struct msr *msrs_alloc(void);
334 void msrs_free(struct msr *msrs);
335 int msr_set_bit(u32 msr, u8 bit);
336 int msr_clear_bit(u32 msr, u8 bit);
337 
338 #ifdef CONFIG_SMP
339 int rdmsr_on_cpu(unsigned int cpu, u32 msr_no, u32 *l, u32 *h);
340 int wrmsr_on_cpu(unsigned int cpu, u32 msr_no, u32 l, u32 h);
341 int rdmsrl_on_cpu(unsigned int cpu, u32 msr_no, u64 *q);
342 int wrmsrl_on_cpu(unsigned int cpu, u32 msr_no, u64 q);
343 void rdmsr_on_cpus(const struct cpumask *mask, u32 msr_no, struct msr *msrs);
344 void wrmsr_on_cpus(const struct cpumask *mask, u32 msr_no, struct msr *msrs);
345 int rdmsr_safe_on_cpu(unsigned int cpu, u32 msr_no, u32 *l, u32 *h);
346 int wrmsr_safe_on_cpu(unsigned int cpu, u32 msr_no, u32 l, u32 h);
347 int rdmsrl_safe_on_cpu(unsigned int cpu, u32 msr_no, u64 *q);
348 int wrmsrl_safe_on_cpu(unsigned int cpu, u32 msr_no, u64 q);
349 int rdmsr_safe_regs_on_cpu(unsigned int cpu, u32 regs[8]);
350 int wrmsr_safe_regs_on_cpu(unsigned int cpu, u32 regs[8]);
351 #else  /*  CONFIG_SMP  */
352 static inline int rdmsr_on_cpu(unsigned int cpu, u32 msr_no, u32 *l, u32 *h)
353 {
354 	rdmsr(msr_no, *l, *h);
355 	return 0;
356 }
357 static inline int wrmsr_on_cpu(unsigned int cpu, u32 msr_no, u32 l, u32 h)
358 {
359 	wrmsr(msr_no, l, h);
360 	return 0;
361 }
362 static inline int rdmsrl_on_cpu(unsigned int cpu, u32 msr_no, u64 *q)
363 {
364 	rdmsrl(msr_no, *q);
365 	return 0;
366 }
367 static inline int wrmsrl_on_cpu(unsigned int cpu, u32 msr_no, u64 q)
368 {
369 	wrmsrl(msr_no, q);
370 	return 0;
371 }
372 static inline void rdmsr_on_cpus(const struct cpumask *m, u32 msr_no,
373 				struct msr *msrs)
374 {
375 	rdmsr_on_cpu(0, msr_no, &(msrs[0].l), &(msrs[0].h));
376 }
377 static inline void wrmsr_on_cpus(const struct cpumask *m, u32 msr_no,
378 				struct msr *msrs)
379 {
380 	wrmsr_on_cpu(0, msr_no, msrs[0].l, msrs[0].h);
381 }
382 static inline int rdmsr_safe_on_cpu(unsigned int cpu, u32 msr_no,
383 				    u32 *l, u32 *h)
384 {
385 	return rdmsr_safe(msr_no, l, h);
386 }
387 static inline int wrmsr_safe_on_cpu(unsigned int cpu, u32 msr_no, u32 l, u32 h)
388 {
389 	return wrmsr_safe(msr_no, l, h);
390 }
391 static inline int rdmsrl_safe_on_cpu(unsigned int cpu, u32 msr_no, u64 *q)
392 {
393 	return rdmsrl_safe(msr_no, q);
394 }
395 static inline int wrmsrl_safe_on_cpu(unsigned int cpu, u32 msr_no, u64 q)
396 {
397 	return wrmsrl_safe(msr_no, q);
398 }
399 static inline int rdmsr_safe_regs_on_cpu(unsigned int cpu, u32 regs[8])
400 {
401 	return rdmsr_safe_regs(regs);
402 }
403 static inline int wrmsr_safe_regs_on_cpu(unsigned int cpu, u32 regs[8])
404 {
405 	return wrmsr_safe_regs(regs);
406 }
407 #endif  /* CONFIG_SMP */
408 #endif /* __ASSEMBLY__ */
409 #endif /* _ASM_X86_MSR_H */
410