xref: /openbmc/linux/arch/x86/include/asm/msr.h (revision a8da474e)
1 #ifndef _ASM_X86_MSR_H
2 #define _ASM_X86_MSR_H
3 
4 #include "msr-index.h"
5 
6 #ifndef __ASSEMBLY__
7 
8 #include <asm/asm.h>
9 #include <asm/errno.h>
10 #include <asm/cpumask.h>
11 #include <uapi/asm/msr.h>
12 
13 struct msr {
14 	union {
15 		struct {
16 			u32 l;
17 			u32 h;
18 		};
19 		u64 q;
20 	};
21 };
22 
23 struct msr_info {
24 	u32 msr_no;
25 	struct msr reg;
26 	struct msr *msrs;
27 	int err;
28 };
29 
30 struct msr_regs_info {
31 	u32 *regs;
32 	int err;
33 };
34 
35 static inline unsigned long long native_read_tscp(unsigned int *aux)
36 {
37 	unsigned long low, high;
38 	asm volatile(".byte 0x0f,0x01,0xf9"
39 		     : "=a" (low), "=d" (high), "=c" (*aux));
40 	return low | ((u64)high << 32);
41 }
42 
43 /*
44  * both i386 and x86_64 returns 64-bit value in edx:eax, but gcc's "A"
45  * constraint has different meanings. For i386, "A" means exactly
46  * edx:eax, while for x86_64 it doesn't mean rdx:rax or edx:eax. Instead,
47  * it means rax *or* rdx.
48  */
49 #ifdef CONFIG_X86_64
50 /* Using 64-bit values saves one instruction clearing the high half of low */
51 #define DECLARE_ARGS(val, low, high)	unsigned long low, high
52 #define EAX_EDX_VAL(val, low, high)	((low) | (high) << 32)
53 #define EAX_EDX_RET(val, low, high)	"=a" (low), "=d" (high)
54 #else
55 #define DECLARE_ARGS(val, low, high)	unsigned long long val
56 #define EAX_EDX_VAL(val, low, high)	(val)
57 #define EAX_EDX_RET(val, low, high)	"=A" (val)
58 #endif
59 
60 static inline unsigned long long native_read_msr(unsigned int msr)
61 {
62 	DECLARE_ARGS(val, low, high);
63 
64 	asm volatile("rdmsr" : EAX_EDX_RET(val, low, high) : "c" (msr));
65 	return EAX_EDX_VAL(val, low, high);
66 }
67 
68 static inline unsigned long long native_read_msr_safe(unsigned int msr,
69 						      int *err)
70 {
71 	DECLARE_ARGS(val, low, high);
72 
73 	asm volatile("2: rdmsr ; xor %[err],%[err]\n"
74 		     "1:\n\t"
75 		     ".section .fixup,\"ax\"\n\t"
76 		     "3:  mov %[fault],%[err] ; jmp 1b\n\t"
77 		     ".previous\n\t"
78 		     _ASM_EXTABLE(2b, 3b)
79 		     : [err] "=r" (*err), EAX_EDX_RET(val, low, high)
80 		     : "c" (msr), [fault] "i" (-EIO));
81 	return EAX_EDX_VAL(val, low, high);
82 }
83 
84 static inline void native_write_msr(unsigned int msr,
85 				    unsigned low, unsigned high)
86 {
87 	asm volatile("wrmsr" : : "c" (msr), "a"(low), "d" (high) : "memory");
88 }
89 
90 /* Can be uninlined because referenced by paravirt */
91 notrace static inline int native_write_msr_safe(unsigned int msr,
92 					unsigned low, unsigned high)
93 {
94 	int err;
95 	asm volatile("2: wrmsr ; xor %[err],%[err]\n"
96 		     "1:\n\t"
97 		     ".section .fixup,\"ax\"\n\t"
98 		     "3:  mov %[fault],%[err] ; jmp 1b\n\t"
99 		     ".previous\n\t"
100 		     _ASM_EXTABLE(2b, 3b)
101 		     : [err] "=a" (err)
102 		     : "c" (msr), "0" (low), "d" (high),
103 		       [fault] "i" (-EIO)
104 		     : "memory");
105 	return err;
106 }
107 
108 extern int rdmsr_safe_regs(u32 regs[8]);
109 extern int wrmsr_safe_regs(u32 regs[8]);
110 
111 /**
112  * rdtsc() - returns the current TSC without ordering constraints
113  *
114  * rdtsc() returns the result of RDTSC as a 64-bit integer.  The
115  * only ordering constraint it supplies is the ordering implied by
116  * "asm volatile": it will put the RDTSC in the place you expect.  The
117  * CPU can and will speculatively execute that RDTSC, though, so the
118  * results can be non-monotonic if compared on different CPUs.
119  */
120 static __always_inline unsigned long long rdtsc(void)
121 {
122 	DECLARE_ARGS(val, low, high);
123 
124 	asm volatile("rdtsc" : EAX_EDX_RET(val, low, high));
125 
126 	return EAX_EDX_VAL(val, low, high);
127 }
128 
129 /**
130  * rdtsc_ordered() - read the current TSC in program order
131  *
132  * rdtsc_ordered() returns the result of RDTSC as a 64-bit integer.
133  * It is ordered like a load to a global in-memory counter.  It should
134  * be impossible to observe non-monotonic rdtsc_unordered() behavior
135  * across multiple CPUs as long as the TSC is synced.
136  */
137 static __always_inline unsigned long long rdtsc_ordered(void)
138 {
139 	/*
140 	 * The RDTSC instruction is not ordered relative to memory
141 	 * access.  The Intel SDM and the AMD APM are both vague on this
142 	 * point, but empirically an RDTSC instruction can be
143 	 * speculatively executed before prior loads.  An RDTSC
144 	 * immediately after an appropriate barrier appears to be
145 	 * ordered as a normal load, that is, it provides the same
146 	 * ordering guarantees as reading from a global memory location
147 	 * that some other imaginary CPU is updating continuously with a
148 	 * time stamp.
149 	 */
150 	alternative_2("", "mfence", X86_FEATURE_MFENCE_RDTSC,
151 			  "lfence", X86_FEATURE_LFENCE_RDTSC);
152 	return rdtsc();
153 }
154 
155 /* Deprecated, keep it for a cycle for easier merging: */
156 #define rdtscll(now)	do { (now) = rdtsc_ordered(); } while (0)
157 
158 static inline unsigned long long native_read_pmc(int counter)
159 {
160 	DECLARE_ARGS(val, low, high);
161 
162 	asm volatile("rdpmc" : EAX_EDX_RET(val, low, high) : "c" (counter));
163 	return EAX_EDX_VAL(val, low, high);
164 }
165 
166 #ifdef CONFIG_PARAVIRT
167 #include <asm/paravirt.h>
168 #else
169 #include <linux/errno.h>
170 /*
171  * Access to machine-specific registers (available on 586 and better only)
172  * Note: the rd* operations modify the parameters directly (without using
173  * pointer indirection), this allows gcc to optimize better
174  */
175 
176 #define rdmsr(msr, low, high)					\
177 do {								\
178 	u64 __val = native_read_msr((msr));			\
179 	(void)((low) = (u32)__val);				\
180 	(void)((high) = (u32)(__val >> 32));			\
181 } while (0)
182 
183 static inline void wrmsr(unsigned msr, unsigned low, unsigned high)
184 {
185 	native_write_msr(msr, low, high);
186 }
187 
188 #define rdmsrl(msr, val)			\
189 	((val) = native_read_msr((msr)))
190 
191 static inline void wrmsrl(unsigned msr, u64 val)
192 {
193 	native_write_msr(msr, (u32)val, (u32)(val >> 32));
194 }
195 
196 /* wrmsr with exception handling */
197 static inline int wrmsr_safe(unsigned msr, unsigned low, unsigned high)
198 {
199 	return native_write_msr_safe(msr, low, high);
200 }
201 
202 /* rdmsr with exception handling */
203 #define rdmsr_safe(msr, low, high)				\
204 ({								\
205 	int __err;						\
206 	u64 __val = native_read_msr_safe((msr), &__err);	\
207 	(*low) = (u32)__val;					\
208 	(*high) = (u32)(__val >> 32);				\
209 	__err;							\
210 })
211 
212 static inline int rdmsrl_safe(unsigned msr, unsigned long long *p)
213 {
214 	int err;
215 
216 	*p = native_read_msr_safe(msr, &err);
217 	return err;
218 }
219 
220 #define rdpmc(counter, low, high)			\
221 do {							\
222 	u64 _l = native_read_pmc((counter));		\
223 	(low)  = (u32)_l;				\
224 	(high) = (u32)(_l >> 32);			\
225 } while (0)
226 
227 #define rdpmcl(counter, val) ((val) = native_read_pmc(counter))
228 
229 #endif	/* !CONFIG_PARAVIRT */
230 
231 /*
232  * 64-bit version of wrmsr_safe():
233  */
234 static inline int wrmsrl_safe(u32 msr, u64 val)
235 {
236 	return wrmsr_safe(msr, (u32)val,  (u32)(val >> 32));
237 }
238 
239 #define write_tsc(low, high) wrmsr(MSR_IA32_TSC, (low), (high))
240 
241 #define write_rdtscp_aux(val) wrmsr(MSR_TSC_AUX, (val), 0)
242 
243 struct msr *msrs_alloc(void);
244 void msrs_free(struct msr *msrs);
245 int msr_set_bit(u32 msr, u8 bit);
246 int msr_clear_bit(u32 msr, u8 bit);
247 
248 #ifdef CONFIG_SMP
249 int rdmsr_on_cpu(unsigned int cpu, u32 msr_no, u32 *l, u32 *h);
250 int wrmsr_on_cpu(unsigned int cpu, u32 msr_no, u32 l, u32 h);
251 int rdmsrl_on_cpu(unsigned int cpu, u32 msr_no, u64 *q);
252 int wrmsrl_on_cpu(unsigned int cpu, u32 msr_no, u64 q);
253 void rdmsr_on_cpus(const struct cpumask *mask, u32 msr_no, struct msr *msrs);
254 void wrmsr_on_cpus(const struct cpumask *mask, u32 msr_no, struct msr *msrs);
255 int rdmsr_safe_on_cpu(unsigned int cpu, u32 msr_no, u32 *l, u32 *h);
256 int wrmsr_safe_on_cpu(unsigned int cpu, u32 msr_no, u32 l, u32 h);
257 int rdmsrl_safe_on_cpu(unsigned int cpu, u32 msr_no, u64 *q);
258 int wrmsrl_safe_on_cpu(unsigned int cpu, u32 msr_no, u64 q);
259 int rdmsr_safe_regs_on_cpu(unsigned int cpu, u32 regs[8]);
260 int wrmsr_safe_regs_on_cpu(unsigned int cpu, u32 regs[8]);
261 #else  /*  CONFIG_SMP  */
262 static inline int rdmsr_on_cpu(unsigned int cpu, u32 msr_no, u32 *l, u32 *h)
263 {
264 	rdmsr(msr_no, *l, *h);
265 	return 0;
266 }
267 static inline int wrmsr_on_cpu(unsigned int cpu, u32 msr_no, u32 l, u32 h)
268 {
269 	wrmsr(msr_no, l, h);
270 	return 0;
271 }
272 static inline int rdmsrl_on_cpu(unsigned int cpu, u32 msr_no, u64 *q)
273 {
274 	rdmsrl(msr_no, *q);
275 	return 0;
276 }
277 static inline int wrmsrl_on_cpu(unsigned int cpu, u32 msr_no, u64 q)
278 {
279 	wrmsrl(msr_no, q);
280 	return 0;
281 }
282 static inline void rdmsr_on_cpus(const struct cpumask *m, u32 msr_no,
283 				struct msr *msrs)
284 {
285        rdmsr_on_cpu(0, msr_no, &(msrs[0].l), &(msrs[0].h));
286 }
287 static inline void wrmsr_on_cpus(const struct cpumask *m, u32 msr_no,
288 				struct msr *msrs)
289 {
290        wrmsr_on_cpu(0, msr_no, msrs[0].l, msrs[0].h);
291 }
292 static inline int rdmsr_safe_on_cpu(unsigned int cpu, u32 msr_no,
293 				    u32 *l, u32 *h)
294 {
295 	return rdmsr_safe(msr_no, l, h);
296 }
297 static inline int wrmsr_safe_on_cpu(unsigned int cpu, u32 msr_no, u32 l, u32 h)
298 {
299 	return wrmsr_safe(msr_no, l, h);
300 }
301 static inline int rdmsrl_safe_on_cpu(unsigned int cpu, u32 msr_no, u64 *q)
302 {
303 	return rdmsrl_safe(msr_no, q);
304 }
305 static inline int wrmsrl_safe_on_cpu(unsigned int cpu, u32 msr_no, u64 q)
306 {
307 	return wrmsrl_safe(msr_no, q);
308 }
309 static inline int rdmsr_safe_regs_on_cpu(unsigned int cpu, u32 regs[8])
310 {
311 	return rdmsr_safe_regs(regs);
312 }
313 static inline int wrmsr_safe_regs_on_cpu(unsigned int cpu, u32 regs[8])
314 {
315 	return wrmsr_safe_regs(regs);
316 }
317 #endif  /* CONFIG_SMP */
318 #endif /* __ASSEMBLY__ */
319 #endif /* _ASM_X86_MSR_H */
320