xref: /openbmc/linux/arch/x86/include/asm/msr.h (revision 56d06fa2)
1 #ifndef _ASM_X86_MSR_H
2 #define _ASM_X86_MSR_H
3 
4 #include "msr-index.h"
5 
6 #ifndef __ASSEMBLY__
7 
8 #include <asm/asm.h>
9 #include <asm/errno.h>
10 #include <asm/cpumask.h>
11 #include <uapi/asm/msr.h>
12 
13 struct msr {
14 	union {
15 		struct {
16 			u32 l;
17 			u32 h;
18 		};
19 		u64 q;
20 	};
21 };
22 
23 struct msr_info {
24 	u32 msr_no;
25 	struct msr reg;
26 	struct msr *msrs;
27 	int err;
28 };
29 
30 struct msr_regs_info {
31 	u32 *regs;
32 	int err;
33 };
34 
35 struct saved_msr {
36 	bool valid;
37 	struct msr_info info;
38 };
39 
40 struct saved_msrs {
41 	unsigned int num;
42 	struct saved_msr *array;
43 };
44 
45 /*
46  * both i386 and x86_64 returns 64-bit value in edx:eax, but gcc's "A"
47  * constraint has different meanings. For i386, "A" means exactly
48  * edx:eax, while for x86_64 it doesn't mean rdx:rax or edx:eax. Instead,
49  * it means rax *or* rdx.
50  */
51 #ifdef CONFIG_X86_64
52 /* Using 64-bit values saves one instruction clearing the high half of low */
53 #define DECLARE_ARGS(val, low, high)	unsigned long low, high
54 #define EAX_EDX_VAL(val, low, high)	((low) | (high) << 32)
55 #define EAX_EDX_RET(val, low, high)	"=a" (low), "=d" (high)
56 #else
57 #define DECLARE_ARGS(val, low, high)	unsigned long long val
58 #define EAX_EDX_VAL(val, low, high)	(val)
59 #define EAX_EDX_RET(val, low, high)	"=A" (val)
60 #endif
61 
62 #ifdef CONFIG_TRACEPOINTS
63 /*
64  * Be very careful with includes. This header is prone to include loops.
65  */
66 #include <asm/atomic.h>
67 #include <linux/tracepoint-defs.h>
68 
69 extern struct tracepoint __tracepoint_read_msr;
70 extern struct tracepoint __tracepoint_write_msr;
71 extern struct tracepoint __tracepoint_rdpmc;
72 #define msr_tracepoint_active(t) static_key_false(&(t).key)
73 extern void do_trace_write_msr(unsigned msr, u64 val, int failed);
74 extern void do_trace_read_msr(unsigned msr, u64 val, int failed);
75 extern void do_trace_rdpmc(unsigned msr, u64 val, int failed);
76 #else
77 #define msr_tracepoint_active(t) false
78 static inline void do_trace_write_msr(unsigned msr, u64 val, int failed) {}
79 static inline void do_trace_read_msr(unsigned msr, u64 val, int failed) {}
80 static inline void do_trace_rdpmc(unsigned msr, u64 val, int failed) {}
81 #endif
82 
83 static inline unsigned long long native_read_msr(unsigned int msr)
84 {
85 	DECLARE_ARGS(val, low, high);
86 
87 	asm volatile("rdmsr" : EAX_EDX_RET(val, low, high) : "c" (msr));
88 	if (msr_tracepoint_active(__tracepoint_read_msr))
89 		do_trace_read_msr(msr, EAX_EDX_VAL(val, low, high), 0);
90 	return EAX_EDX_VAL(val, low, high);
91 }
92 
93 static inline unsigned long long native_read_msr_safe(unsigned int msr,
94 						      int *err)
95 {
96 	DECLARE_ARGS(val, low, high);
97 
98 	asm volatile("2: rdmsr ; xor %[err],%[err]\n"
99 		     "1:\n\t"
100 		     ".section .fixup,\"ax\"\n\t"
101 		     "3:  mov %[fault],%[err] ; jmp 1b\n\t"
102 		     ".previous\n\t"
103 		     _ASM_EXTABLE(2b, 3b)
104 		     : [err] "=r" (*err), EAX_EDX_RET(val, low, high)
105 		     : "c" (msr), [fault] "i" (-EIO));
106 	if (msr_tracepoint_active(__tracepoint_read_msr))
107 		do_trace_read_msr(msr, EAX_EDX_VAL(val, low, high), *err);
108 	return EAX_EDX_VAL(val, low, high);
109 }
110 
111 static inline void native_write_msr(unsigned int msr,
112 				    unsigned low, unsigned high)
113 {
114 	asm volatile("wrmsr" : : "c" (msr), "a"(low), "d" (high) : "memory");
115 	if (msr_tracepoint_active(__tracepoint_read_msr))
116 		do_trace_write_msr(msr, ((u64)high << 32 | low), 0);
117 }
118 
119 /* Can be uninlined because referenced by paravirt */
120 notrace static inline int native_write_msr_safe(unsigned int msr,
121 					unsigned low, unsigned high)
122 {
123 	int err;
124 	asm volatile("2: wrmsr ; xor %[err],%[err]\n"
125 		     "1:\n\t"
126 		     ".section .fixup,\"ax\"\n\t"
127 		     "3:  mov %[fault],%[err] ; jmp 1b\n\t"
128 		     ".previous\n\t"
129 		     _ASM_EXTABLE(2b, 3b)
130 		     : [err] "=a" (err)
131 		     : "c" (msr), "0" (low), "d" (high),
132 		       [fault] "i" (-EIO)
133 		     : "memory");
134 	if (msr_tracepoint_active(__tracepoint_read_msr))
135 		do_trace_write_msr(msr, ((u64)high << 32 | low), err);
136 	return err;
137 }
138 
139 extern int rdmsr_safe_regs(u32 regs[8]);
140 extern int wrmsr_safe_regs(u32 regs[8]);
141 
142 /**
143  * rdtsc() - returns the current TSC without ordering constraints
144  *
145  * rdtsc() returns the result of RDTSC as a 64-bit integer.  The
146  * only ordering constraint it supplies is the ordering implied by
147  * "asm volatile": it will put the RDTSC in the place you expect.  The
148  * CPU can and will speculatively execute that RDTSC, though, so the
149  * results can be non-monotonic if compared on different CPUs.
150  */
151 static __always_inline unsigned long long rdtsc(void)
152 {
153 	DECLARE_ARGS(val, low, high);
154 
155 	asm volatile("rdtsc" : EAX_EDX_RET(val, low, high));
156 
157 	return EAX_EDX_VAL(val, low, high);
158 }
159 
160 /**
161  * rdtsc_ordered() - read the current TSC in program order
162  *
163  * rdtsc_ordered() returns the result of RDTSC as a 64-bit integer.
164  * It is ordered like a load to a global in-memory counter.  It should
165  * be impossible to observe non-monotonic rdtsc_unordered() behavior
166  * across multiple CPUs as long as the TSC is synced.
167  */
168 static __always_inline unsigned long long rdtsc_ordered(void)
169 {
170 	/*
171 	 * The RDTSC instruction is not ordered relative to memory
172 	 * access.  The Intel SDM and the AMD APM are both vague on this
173 	 * point, but empirically an RDTSC instruction can be
174 	 * speculatively executed before prior loads.  An RDTSC
175 	 * immediately after an appropriate barrier appears to be
176 	 * ordered as a normal load, that is, it provides the same
177 	 * ordering guarantees as reading from a global memory location
178 	 * that some other imaginary CPU is updating continuously with a
179 	 * time stamp.
180 	 */
181 	alternative_2("", "mfence", X86_FEATURE_MFENCE_RDTSC,
182 			  "lfence", X86_FEATURE_LFENCE_RDTSC);
183 	return rdtsc();
184 }
185 
186 /* Deprecated, keep it for a cycle for easier merging: */
187 #define rdtscll(now)	do { (now) = rdtsc_ordered(); } while (0)
188 
189 static inline unsigned long long native_read_pmc(int counter)
190 {
191 	DECLARE_ARGS(val, low, high);
192 
193 	asm volatile("rdpmc" : EAX_EDX_RET(val, low, high) : "c" (counter));
194 	if (msr_tracepoint_active(__tracepoint_rdpmc))
195 		do_trace_rdpmc(counter, EAX_EDX_VAL(val, low, high), 0);
196 	return EAX_EDX_VAL(val, low, high);
197 }
198 
199 #ifdef CONFIG_PARAVIRT
200 #include <asm/paravirt.h>
201 #else
202 #include <linux/errno.h>
203 /*
204  * Access to machine-specific registers (available on 586 and better only)
205  * Note: the rd* operations modify the parameters directly (without using
206  * pointer indirection), this allows gcc to optimize better
207  */
208 
209 #define rdmsr(msr, low, high)					\
210 do {								\
211 	u64 __val = native_read_msr((msr));			\
212 	(void)((low) = (u32)__val);				\
213 	(void)((high) = (u32)(__val >> 32));			\
214 } while (0)
215 
216 static inline void wrmsr(unsigned msr, unsigned low, unsigned high)
217 {
218 	native_write_msr(msr, low, high);
219 }
220 
221 #define rdmsrl(msr, val)			\
222 	((val) = native_read_msr((msr)))
223 
224 static inline void wrmsrl(unsigned msr, u64 val)
225 {
226 	native_write_msr(msr, (u32)(val & 0xffffffffULL), (u32)(val >> 32));
227 }
228 
229 /* wrmsr with exception handling */
230 static inline int wrmsr_safe(unsigned msr, unsigned low, unsigned high)
231 {
232 	return native_write_msr_safe(msr, low, high);
233 }
234 
235 /* rdmsr with exception handling */
236 #define rdmsr_safe(msr, low, high)				\
237 ({								\
238 	int __err;						\
239 	u64 __val = native_read_msr_safe((msr), &__err);	\
240 	(*low) = (u32)__val;					\
241 	(*high) = (u32)(__val >> 32);				\
242 	__err;							\
243 })
244 
245 static inline int rdmsrl_safe(unsigned msr, unsigned long long *p)
246 {
247 	int err;
248 
249 	*p = native_read_msr_safe(msr, &err);
250 	return err;
251 }
252 
253 #define rdpmc(counter, low, high)			\
254 do {							\
255 	u64 _l = native_read_pmc((counter));		\
256 	(low)  = (u32)_l;				\
257 	(high) = (u32)(_l >> 32);			\
258 } while (0)
259 
260 #define rdpmcl(counter, val) ((val) = native_read_pmc(counter))
261 
262 #endif	/* !CONFIG_PARAVIRT */
263 
264 /*
265  * 64-bit version of wrmsr_safe():
266  */
267 static inline int wrmsrl_safe(u32 msr, u64 val)
268 {
269 	return wrmsr_safe(msr, (u32)val,  (u32)(val >> 32));
270 }
271 
272 #define write_tsc(low, high) wrmsr(MSR_IA32_TSC, (low), (high))
273 
274 #define write_rdtscp_aux(val) wrmsr(MSR_TSC_AUX, (val), 0)
275 
276 struct msr *msrs_alloc(void);
277 void msrs_free(struct msr *msrs);
278 int msr_set_bit(u32 msr, u8 bit);
279 int msr_clear_bit(u32 msr, u8 bit);
280 
281 #ifdef CONFIG_SMP
282 int rdmsr_on_cpu(unsigned int cpu, u32 msr_no, u32 *l, u32 *h);
283 int wrmsr_on_cpu(unsigned int cpu, u32 msr_no, u32 l, u32 h);
284 int rdmsrl_on_cpu(unsigned int cpu, u32 msr_no, u64 *q);
285 int wrmsrl_on_cpu(unsigned int cpu, u32 msr_no, u64 q);
286 void rdmsr_on_cpus(const struct cpumask *mask, u32 msr_no, struct msr *msrs);
287 void wrmsr_on_cpus(const struct cpumask *mask, u32 msr_no, struct msr *msrs);
288 int rdmsr_safe_on_cpu(unsigned int cpu, u32 msr_no, u32 *l, u32 *h);
289 int wrmsr_safe_on_cpu(unsigned int cpu, u32 msr_no, u32 l, u32 h);
290 int rdmsrl_safe_on_cpu(unsigned int cpu, u32 msr_no, u64 *q);
291 int wrmsrl_safe_on_cpu(unsigned int cpu, u32 msr_no, u64 q);
292 int rdmsr_safe_regs_on_cpu(unsigned int cpu, u32 regs[8]);
293 int wrmsr_safe_regs_on_cpu(unsigned int cpu, u32 regs[8]);
294 #else  /*  CONFIG_SMP  */
295 static inline int rdmsr_on_cpu(unsigned int cpu, u32 msr_no, u32 *l, u32 *h)
296 {
297 	rdmsr(msr_no, *l, *h);
298 	return 0;
299 }
300 static inline int wrmsr_on_cpu(unsigned int cpu, u32 msr_no, u32 l, u32 h)
301 {
302 	wrmsr(msr_no, l, h);
303 	return 0;
304 }
305 static inline int rdmsrl_on_cpu(unsigned int cpu, u32 msr_no, u64 *q)
306 {
307 	rdmsrl(msr_no, *q);
308 	return 0;
309 }
310 static inline int wrmsrl_on_cpu(unsigned int cpu, u32 msr_no, u64 q)
311 {
312 	wrmsrl(msr_no, q);
313 	return 0;
314 }
315 static inline void rdmsr_on_cpus(const struct cpumask *m, u32 msr_no,
316 				struct msr *msrs)
317 {
318        rdmsr_on_cpu(0, msr_no, &(msrs[0].l), &(msrs[0].h));
319 }
320 static inline void wrmsr_on_cpus(const struct cpumask *m, u32 msr_no,
321 				struct msr *msrs)
322 {
323        wrmsr_on_cpu(0, msr_no, msrs[0].l, msrs[0].h);
324 }
325 static inline int rdmsr_safe_on_cpu(unsigned int cpu, u32 msr_no,
326 				    u32 *l, u32 *h)
327 {
328 	return rdmsr_safe(msr_no, l, h);
329 }
330 static inline int wrmsr_safe_on_cpu(unsigned int cpu, u32 msr_no, u32 l, u32 h)
331 {
332 	return wrmsr_safe(msr_no, l, h);
333 }
334 static inline int rdmsrl_safe_on_cpu(unsigned int cpu, u32 msr_no, u64 *q)
335 {
336 	return rdmsrl_safe(msr_no, q);
337 }
338 static inline int wrmsrl_safe_on_cpu(unsigned int cpu, u32 msr_no, u64 q)
339 {
340 	return wrmsrl_safe(msr_no, q);
341 }
342 static inline int rdmsr_safe_regs_on_cpu(unsigned int cpu, u32 regs[8])
343 {
344 	return rdmsr_safe_regs(regs);
345 }
346 static inline int wrmsr_safe_regs_on_cpu(unsigned int cpu, u32 regs[8])
347 {
348 	return wrmsr_safe_regs(regs);
349 }
350 #endif  /* CONFIG_SMP */
351 #endif /* __ASSEMBLY__ */
352 #endif /* _ASM_X86_MSR_H */
353