xref: /openbmc/linux/arch/x86/include/asm/mshyperv.h (revision f79e4d5f)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _ASM_X86_MSHYPER_H
3 #define _ASM_X86_MSHYPER_H
4 
5 #include <linux/types.h>
6 #include <linux/atomic.h>
7 #include <linux/nmi.h>
8 #include <asm/io.h>
9 #include <asm/hyperv-tlfs.h>
10 #include <asm/nospec-branch.h>
11 
12 #define VP_INVAL	U32_MAX
13 
14 struct ms_hyperv_info {
15 	u32 features;
16 	u32 misc_features;
17 	u32 hints;
18 	u32 nested_features;
19 	u32 max_vp_index;
20 	u32 max_lp_index;
21 };
22 
23 extern struct ms_hyperv_info ms_hyperv;
24 
25 /*
26  * Generate the guest ID.
27  */
28 
29 static inline  __u64 generate_guest_id(__u64 d_info1, __u64 kernel_version,
30 				       __u64 d_info2)
31 {
32 	__u64 guest_id = 0;
33 
34 	guest_id = (((__u64)HV_LINUX_VENDOR_ID) << 48);
35 	guest_id |= (d_info1 << 48);
36 	guest_id |= (kernel_version << 16);
37 	guest_id |= d_info2;
38 
39 	return guest_id;
40 }
41 
42 
43 /* Free the message slot and signal end-of-message if required */
44 static inline void vmbus_signal_eom(struct hv_message *msg, u32 old_msg_type)
45 {
46 	/*
47 	 * On crash we're reading some other CPU's message page and we need
48 	 * to be careful: this other CPU may already had cleared the header
49 	 * and the host may already had delivered some other message there.
50 	 * In case we blindly write msg->header.message_type we're going
51 	 * to lose it. We can still lose a message of the same type but
52 	 * we count on the fact that there can only be one
53 	 * CHANNELMSG_UNLOAD_RESPONSE and we don't care about other messages
54 	 * on crash.
55 	 */
56 	if (cmpxchg(&msg->header.message_type, old_msg_type,
57 		    HVMSG_NONE) != old_msg_type)
58 		return;
59 
60 	/*
61 	 * Make sure the write to MessageType (ie set to
62 	 * HVMSG_NONE) happens before we read the
63 	 * MessagePending and EOMing. Otherwise, the EOMing
64 	 * will not deliver any more messages since there is
65 	 * no empty slot
66 	 */
67 	mb();
68 
69 	if (msg->header.message_flags.msg_pending) {
70 		/*
71 		 * This will cause message queue rescan to
72 		 * possibly deliver another msg from the
73 		 * hypervisor
74 		 */
75 		wrmsrl(HV_X64_MSR_EOM, 0);
76 	}
77 }
78 
79 #define hv_init_timer(timer, tick) wrmsrl(timer, tick)
80 #define hv_init_timer_config(config, val) wrmsrl(config, val)
81 
82 #define hv_get_simp(val) rdmsrl(HV_X64_MSR_SIMP, val)
83 #define hv_set_simp(val) wrmsrl(HV_X64_MSR_SIMP, val)
84 
85 #define hv_get_siefp(val) rdmsrl(HV_X64_MSR_SIEFP, val)
86 #define hv_set_siefp(val) wrmsrl(HV_X64_MSR_SIEFP, val)
87 
88 #define hv_get_synic_state(val) rdmsrl(HV_X64_MSR_SCONTROL, val)
89 #define hv_set_synic_state(val) wrmsrl(HV_X64_MSR_SCONTROL, val)
90 
91 #define hv_get_vp_index(index) rdmsrl(HV_X64_MSR_VP_INDEX, index)
92 
93 #define hv_get_synint_state(int_num, val) rdmsrl(int_num, val)
94 #define hv_set_synint_state(int_num, val) wrmsrl(int_num, val)
95 
96 void hyperv_callback_vector(void);
97 void hyperv_reenlightenment_vector(void);
98 #ifdef CONFIG_TRACING
99 #define trace_hyperv_callback_vector hyperv_callback_vector
100 #endif
101 void hyperv_vector_handler(struct pt_regs *regs);
102 void hv_setup_vmbus_irq(void (*handler)(void));
103 void hv_remove_vmbus_irq(void);
104 
105 void hv_setup_kexec_handler(void (*handler)(void));
106 void hv_remove_kexec_handler(void);
107 void hv_setup_crash_handler(void (*handler)(struct pt_regs *regs));
108 void hv_remove_crash_handler(void);
109 
110 /*
111  * Routines for stimer0 Direct Mode handling.
112  * On x86/x64, there are no percpu actions to take.
113  */
114 void hv_stimer0_vector_handler(struct pt_regs *regs);
115 void hv_stimer0_callback_vector(void);
116 int hv_setup_stimer0_irq(int *irq, int *vector, void (*handler)(void));
117 void hv_remove_stimer0_irq(int irq);
118 
119 static inline void hv_enable_stimer0_percpu_irq(int irq) {}
120 static inline void hv_disable_stimer0_percpu_irq(int irq) {}
121 
122 
123 #if IS_ENABLED(CONFIG_HYPERV)
124 extern struct clocksource *hyperv_cs;
125 extern void *hv_hypercall_pg;
126 extern void  __percpu  **hyperv_pcpu_input_arg;
127 
128 static inline u64 hv_do_hypercall(u64 control, void *input, void *output)
129 {
130 	u64 input_address = input ? virt_to_phys(input) : 0;
131 	u64 output_address = output ? virt_to_phys(output) : 0;
132 	u64 hv_status;
133 
134 #ifdef CONFIG_X86_64
135 	if (!hv_hypercall_pg)
136 		return U64_MAX;
137 
138 	__asm__ __volatile__("mov %4, %%r8\n"
139 			     CALL_NOSPEC
140 			     : "=a" (hv_status), ASM_CALL_CONSTRAINT,
141 			       "+c" (control), "+d" (input_address)
142 			     :  "r" (output_address),
143 				THUNK_TARGET(hv_hypercall_pg)
144 			     : "cc", "memory", "r8", "r9", "r10", "r11");
145 #else
146 	u32 input_address_hi = upper_32_bits(input_address);
147 	u32 input_address_lo = lower_32_bits(input_address);
148 	u32 output_address_hi = upper_32_bits(output_address);
149 	u32 output_address_lo = lower_32_bits(output_address);
150 
151 	if (!hv_hypercall_pg)
152 		return U64_MAX;
153 
154 	__asm__ __volatile__(CALL_NOSPEC
155 			     : "=A" (hv_status),
156 			       "+c" (input_address_lo), ASM_CALL_CONSTRAINT
157 			     : "A" (control),
158 			       "b" (input_address_hi),
159 			       "D"(output_address_hi), "S"(output_address_lo),
160 			       THUNK_TARGET(hv_hypercall_pg)
161 			     : "cc", "memory");
162 #endif /* !x86_64 */
163 	return hv_status;
164 }
165 
166 /* Fast hypercall with 8 bytes of input and no output */
167 static inline u64 hv_do_fast_hypercall8(u16 code, u64 input1)
168 {
169 	u64 hv_status, control = (u64)code | HV_HYPERCALL_FAST_BIT;
170 
171 #ifdef CONFIG_X86_64
172 	{
173 		__asm__ __volatile__(CALL_NOSPEC
174 				     : "=a" (hv_status), ASM_CALL_CONSTRAINT,
175 				       "+c" (control), "+d" (input1)
176 				     : THUNK_TARGET(hv_hypercall_pg)
177 				     : "cc", "r8", "r9", "r10", "r11");
178 	}
179 #else
180 	{
181 		u32 input1_hi = upper_32_bits(input1);
182 		u32 input1_lo = lower_32_bits(input1);
183 
184 		__asm__ __volatile__ (CALL_NOSPEC
185 				      : "=A"(hv_status),
186 					"+c"(input1_lo),
187 					ASM_CALL_CONSTRAINT
188 				      :	"A" (control),
189 					"b" (input1_hi),
190 					THUNK_TARGET(hv_hypercall_pg)
191 				      : "cc", "edi", "esi");
192 	}
193 #endif
194 		return hv_status;
195 }
196 
197 /*
198  * Rep hypercalls. Callers of this functions are supposed to ensure that
199  * rep_count and varhead_size comply with Hyper-V hypercall definition.
200  */
201 static inline u64 hv_do_rep_hypercall(u16 code, u16 rep_count, u16 varhead_size,
202 				      void *input, void *output)
203 {
204 	u64 control = code;
205 	u64 status;
206 	u16 rep_comp;
207 
208 	control |= (u64)varhead_size << HV_HYPERCALL_VARHEAD_OFFSET;
209 	control |= (u64)rep_count << HV_HYPERCALL_REP_COMP_OFFSET;
210 
211 	do {
212 		status = hv_do_hypercall(control, input, output);
213 		if ((status & HV_HYPERCALL_RESULT_MASK) != HV_STATUS_SUCCESS)
214 			return status;
215 
216 		/* Bits 32-43 of status have 'Reps completed' data. */
217 		rep_comp = (status & HV_HYPERCALL_REP_COMP_MASK) >>
218 			HV_HYPERCALL_REP_COMP_OFFSET;
219 
220 		control &= ~HV_HYPERCALL_REP_START_MASK;
221 		control |= (u64)rep_comp << HV_HYPERCALL_REP_START_OFFSET;
222 
223 		touch_nmi_watchdog();
224 	} while (rep_comp < rep_count);
225 
226 	return status;
227 }
228 
229 /*
230  * Hypervisor's notion of virtual processor ID is different from
231  * Linux' notion of CPU ID. This information can only be retrieved
232  * in the context of the calling CPU. Setup a map for easy access
233  * to this information.
234  */
235 extern u32 *hv_vp_index;
236 extern u32 hv_max_vp_index;
237 extern struct hv_vp_assist_page **hv_vp_assist_page;
238 
239 static inline struct hv_vp_assist_page *hv_get_vp_assist_page(unsigned int cpu)
240 {
241 	if (!hv_vp_assist_page)
242 		return NULL;
243 
244 	return hv_vp_assist_page[cpu];
245 }
246 
247 /**
248  * hv_cpu_number_to_vp_number() - Map CPU to VP.
249  * @cpu_number: CPU number in Linux terms
250  *
251  * This function returns the mapping between the Linux processor
252  * number and the hypervisor's virtual processor number, useful
253  * in making hypercalls and such that talk about specific
254  * processors.
255  *
256  * Return: Virtual processor number in Hyper-V terms
257  */
258 static inline int hv_cpu_number_to_vp_number(int cpu_number)
259 {
260 	return hv_vp_index[cpu_number];
261 }
262 
263 static inline int cpumask_to_vpset(struct hv_vpset *vpset,
264 				    const struct cpumask *cpus)
265 {
266 	int cpu, vcpu, vcpu_bank, vcpu_offset, nr_bank = 1;
267 
268 	/* valid_bank_mask can represent up to 64 banks */
269 	if (hv_max_vp_index / 64 >= 64)
270 		return 0;
271 
272 	/*
273 	 * Clear all banks up to the maximum possible bank as hv_tlb_flush_ex
274 	 * structs are not cleared between calls, we risk flushing unneeded
275 	 * vCPUs otherwise.
276 	 */
277 	for (vcpu_bank = 0; vcpu_bank <= hv_max_vp_index / 64; vcpu_bank++)
278 		vpset->bank_contents[vcpu_bank] = 0;
279 
280 	/*
281 	 * Some banks may end up being empty but this is acceptable.
282 	 */
283 	for_each_cpu(cpu, cpus) {
284 		vcpu = hv_cpu_number_to_vp_number(cpu);
285 		if (vcpu == VP_INVAL)
286 			return -1;
287 		vcpu_bank = vcpu / 64;
288 		vcpu_offset = vcpu % 64;
289 		__set_bit(vcpu_offset, (unsigned long *)
290 			  &vpset->bank_contents[vcpu_bank]);
291 		if (vcpu_bank >= nr_bank)
292 			nr_bank = vcpu_bank + 1;
293 	}
294 	vpset->valid_bank_mask = GENMASK_ULL(nr_bank - 1, 0);
295 	return nr_bank;
296 }
297 
298 void __init hyperv_init(void);
299 void hyperv_setup_mmu_ops(void);
300 void hyperv_report_panic(struct pt_regs *regs, long err);
301 bool hv_is_hyperv_initialized(void);
302 void hyperv_cleanup(void);
303 
304 void hyperv_reenlightenment_intr(struct pt_regs *regs);
305 void set_hv_tscchange_cb(void (*cb)(void));
306 void clear_hv_tscchange_cb(void);
307 void hyperv_stop_tsc_emulation(void);
308 
309 #ifdef CONFIG_X86_64
310 void hv_apic_init(void);
311 #else
312 static inline void hv_apic_init(void) {}
313 #endif
314 
315 #else /* CONFIG_HYPERV */
316 static inline void hyperv_init(void) {}
317 static inline bool hv_is_hyperv_initialized(void) { return false; }
318 static inline void hyperv_cleanup(void) {}
319 static inline void hyperv_setup_mmu_ops(void) {}
320 static inline void set_hv_tscchange_cb(void (*cb)(void)) {}
321 static inline void clear_hv_tscchange_cb(void) {}
322 static inline void hyperv_stop_tsc_emulation(void) {};
323 static inline struct hv_vp_assist_page *hv_get_vp_assist_page(unsigned int cpu)
324 {
325 	return NULL;
326 }
327 #endif /* CONFIG_HYPERV */
328 
329 #ifdef CONFIG_HYPERV_TSCPAGE
330 struct ms_hyperv_tsc_page *hv_get_tsc_page(void);
331 static inline u64 hv_read_tsc_page_tsc(const struct ms_hyperv_tsc_page *tsc_pg,
332 				       u64 *cur_tsc)
333 {
334 	u64 scale, offset;
335 	u32 sequence;
336 
337 	/*
338 	 * The protocol for reading Hyper-V TSC page is specified in Hypervisor
339 	 * Top-Level Functional Specification ver. 3.0 and above. To get the
340 	 * reference time we must do the following:
341 	 * - READ ReferenceTscSequence
342 	 *   A special '0' value indicates the time source is unreliable and we
343 	 *   need to use something else. The currently published specification
344 	 *   versions (up to 4.0b) contain a mistake and wrongly claim '-1'
345 	 *   instead of '0' as the special value, see commit c35b82ef0294.
346 	 * - ReferenceTime =
347 	 *        ((RDTSC() * ReferenceTscScale) >> 64) + ReferenceTscOffset
348 	 * - READ ReferenceTscSequence again. In case its value has changed
349 	 *   since our first reading we need to discard ReferenceTime and repeat
350 	 *   the whole sequence as the hypervisor was updating the page in
351 	 *   between.
352 	 */
353 	do {
354 		sequence = READ_ONCE(tsc_pg->tsc_sequence);
355 		if (!sequence)
356 			return U64_MAX;
357 		/*
358 		 * Make sure we read sequence before we read other values from
359 		 * TSC page.
360 		 */
361 		smp_rmb();
362 
363 		scale = READ_ONCE(tsc_pg->tsc_scale);
364 		offset = READ_ONCE(tsc_pg->tsc_offset);
365 		*cur_tsc = rdtsc_ordered();
366 
367 		/*
368 		 * Make sure we read sequence after we read all other values
369 		 * from TSC page.
370 		 */
371 		smp_rmb();
372 
373 	} while (READ_ONCE(tsc_pg->tsc_sequence) != sequence);
374 
375 	return mul_u64_u64_shr(*cur_tsc, scale, 64) + offset;
376 }
377 
378 static inline u64 hv_read_tsc_page(const struct ms_hyperv_tsc_page *tsc_pg)
379 {
380 	u64 cur_tsc;
381 
382 	return hv_read_tsc_page_tsc(tsc_pg, &cur_tsc);
383 }
384 
385 #else
386 static inline struct ms_hyperv_tsc_page *hv_get_tsc_page(void)
387 {
388 	return NULL;
389 }
390 
391 static inline u64 hv_read_tsc_page_tsc(const struct ms_hyperv_tsc_page *tsc_pg,
392 				       u64 *cur_tsc)
393 {
394 	BUG();
395 	return U64_MAX;
396 }
397 #endif
398 #endif
399