1 /* SPDX-License-Identifier: GPL-2.0 */ 2 #ifndef _ASM_X86_MSHYPER_H 3 #define _ASM_X86_MSHYPER_H 4 5 #include <linux/types.h> 6 #include <linux/atomic.h> 7 #include <linux/nmi.h> 8 #include <asm/io.h> 9 #include <asm/hyperv-tlfs.h> 10 #include <asm/nospec-branch.h> 11 12 #define VP_INVAL U32_MAX 13 14 struct ms_hyperv_info { 15 u32 features; 16 u32 misc_features; 17 u32 hints; 18 u32 nested_features; 19 u32 max_vp_index; 20 u32 max_lp_index; 21 }; 22 23 extern struct ms_hyperv_info ms_hyperv; 24 25 26 typedef int (*hyperv_fill_flush_list_func)( 27 struct hv_guest_mapping_flush_list *flush, 28 void *data); 29 30 /* 31 * Generate the guest ID. 32 */ 33 34 static inline __u64 generate_guest_id(__u64 d_info1, __u64 kernel_version, 35 __u64 d_info2) 36 { 37 __u64 guest_id = 0; 38 39 guest_id = (((__u64)HV_LINUX_VENDOR_ID) << 48); 40 guest_id |= (d_info1 << 48); 41 guest_id |= (kernel_version << 16); 42 guest_id |= d_info2; 43 44 return guest_id; 45 } 46 47 48 /* Free the message slot and signal end-of-message if required */ 49 static inline void vmbus_signal_eom(struct hv_message *msg, u32 old_msg_type) 50 { 51 /* 52 * On crash we're reading some other CPU's message page and we need 53 * to be careful: this other CPU may already had cleared the header 54 * and the host may already had delivered some other message there. 55 * In case we blindly write msg->header.message_type we're going 56 * to lose it. We can still lose a message of the same type but 57 * we count on the fact that there can only be one 58 * CHANNELMSG_UNLOAD_RESPONSE and we don't care about other messages 59 * on crash. 60 */ 61 if (cmpxchg(&msg->header.message_type, old_msg_type, 62 HVMSG_NONE) != old_msg_type) 63 return; 64 65 /* 66 * Make sure the write to MessageType (ie set to 67 * HVMSG_NONE) happens before we read the 68 * MessagePending and EOMing. Otherwise, the EOMing 69 * will not deliver any more messages since there is 70 * no empty slot 71 */ 72 mb(); 73 74 if (msg->header.message_flags.msg_pending) { 75 /* 76 * This will cause message queue rescan to 77 * possibly deliver another msg from the 78 * hypervisor 79 */ 80 wrmsrl(HV_X64_MSR_EOM, 0); 81 } 82 } 83 84 #define hv_init_timer(timer, tick) \ 85 wrmsrl(HV_X64_MSR_STIMER0_COUNT + (2*timer), tick) 86 #define hv_init_timer_config(timer, val) \ 87 wrmsrl(HV_X64_MSR_STIMER0_CONFIG + (2*timer), val) 88 89 #define hv_get_simp(val) rdmsrl(HV_X64_MSR_SIMP, val) 90 #define hv_set_simp(val) wrmsrl(HV_X64_MSR_SIMP, val) 91 92 #define hv_get_siefp(val) rdmsrl(HV_X64_MSR_SIEFP, val) 93 #define hv_set_siefp(val) wrmsrl(HV_X64_MSR_SIEFP, val) 94 95 #define hv_get_synic_state(val) rdmsrl(HV_X64_MSR_SCONTROL, val) 96 #define hv_set_synic_state(val) wrmsrl(HV_X64_MSR_SCONTROL, val) 97 98 #define hv_get_vp_index(index) rdmsrl(HV_X64_MSR_VP_INDEX, index) 99 100 #define hv_get_synint_state(int_num, val) \ 101 rdmsrl(HV_X64_MSR_SINT0 + int_num, val) 102 #define hv_set_synint_state(int_num, val) \ 103 wrmsrl(HV_X64_MSR_SINT0 + int_num, val) 104 105 #define hv_get_crash_ctl(val) \ 106 rdmsrl(HV_X64_MSR_CRASH_CTL, val) 107 108 void hyperv_callback_vector(void); 109 void hyperv_reenlightenment_vector(void); 110 #ifdef CONFIG_TRACING 111 #define trace_hyperv_callback_vector hyperv_callback_vector 112 #endif 113 void hyperv_vector_handler(struct pt_regs *regs); 114 void hv_setup_vmbus_irq(void (*handler)(void)); 115 void hv_remove_vmbus_irq(void); 116 117 void hv_setup_kexec_handler(void (*handler)(void)); 118 void hv_remove_kexec_handler(void); 119 void hv_setup_crash_handler(void (*handler)(struct pt_regs *regs)); 120 void hv_remove_crash_handler(void); 121 122 /* 123 * Routines for stimer0 Direct Mode handling. 124 * On x86/x64, there are no percpu actions to take. 125 */ 126 void hv_stimer0_vector_handler(struct pt_regs *regs); 127 void hv_stimer0_callback_vector(void); 128 int hv_setup_stimer0_irq(int *irq, int *vector, void (*handler)(void)); 129 void hv_remove_stimer0_irq(int irq); 130 131 static inline void hv_enable_stimer0_percpu_irq(int irq) {} 132 static inline void hv_disable_stimer0_percpu_irq(int irq) {} 133 134 135 #if IS_ENABLED(CONFIG_HYPERV) 136 extern struct clocksource *hyperv_cs; 137 extern void *hv_hypercall_pg; 138 extern void __percpu **hyperv_pcpu_input_arg; 139 140 static inline u64 hv_do_hypercall(u64 control, void *input, void *output) 141 { 142 u64 input_address = input ? virt_to_phys(input) : 0; 143 u64 output_address = output ? virt_to_phys(output) : 0; 144 u64 hv_status; 145 146 #ifdef CONFIG_X86_64 147 if (!hv_hypercall_pg) 148 return U64_MAX; 149 150 __asm__ __volatile__("mov %4, %%r8\n" 151 CALL_NOSPEC 152 : "=a" (hv_status), ASM_CALL_CONSTRAINT, 153 "+c" (control), "+d" (input_address) 154 : "r" (output_address), 155 THUNK_TARGET(hv_hypercall_pg) 156 : "cc", "memory", "r8", "r9", "r10", "r11"); 157 #else 158 u32 input_address_hi = upper_32_bits(input_address); 159 u32 input_address_lo = lower_32_bits(input_address); 160 u32 output_address_hi = upper_32_bits(output_address); 161 u32 output_address_lo = lower_32_bits(output_address); 162 163 if (!hv_hypercall_pg) 164 return U64_MAX; 165 166 __asm__ __volatile__(CALL_NOSPEC 167 : "=A" (hv_status), 168 "+c" (input_address_lo), ASM_CALL_CONSTRAINT 169 : "A" (control), 170 "b" (input_address_hi), 171 "D"(output_address_hi), "S"(output_address_lo), 172 THUNK_TARGET(hv_hypercall_pg) 173 : "cc", "memory"); 174 #endif /* !x86_64 */ 175 return hv_status; 176 } 177 178 /* Fast hypercall with 8 bytes of input and no output */ 179 static inline u64 hv_do_fast_hypercall8(u16 code, u64 input1) 180 { 181 u64 hv_status, control = (u64)code | HV_HYPERCALL_FAST_BIT; 182 183 #ifdef CONFIG_X86_64 184 { 185 __asm__ __volatile__(CALL_NOSPEC 186 : "=a" (hv_status), ASM_CALL_CONSTRAINT, 187 "+c" (control), "+d" (input1) 188 : THUNK_TARGET(hv_hypercall_pg) 189 : "cc", "r8", "r9", "r10", "r11"); 190 } 191 #else 192 { 193 u32 input1_hi = upper_32_bits(input1); 194 u32 input1_lo = lower_32_bits(input1); 195 196 __asm__ __volatile__ (CALL_NOSPEC 197 : "=A"(hv_status), 198 "+c"(input1_lo), 199 ASM_CALL_CONSTRAINT 200 : "A" (control), 201 "b" (input1_hi), 202 THUNK_TARGET(hv_hypercall_pg) 203 : "cc", "edi", "esi"); 204 } 205 #endif 206 return hv_status; 207 } 208 209 /* Fast hypercall with 16 bytes of input */ 210 static inline u64 hv_do_fast_hypercall16(u16 code, u64 input1, u64 input2) 211 { 212 u64 hv_status, control = (u64)code | HV_HYPERCALL_FAST_BIT; 213 214 #ifdef CONFIG_X86_64 215 { 216 __asm__ __volatile__("mov %4, %%r8\n" 217 CALL_NOSPEC 218 : "=a" (hv_status), ASM_CALL_CONSTRAINT, 219 "+c" (control), "+d" (input1) 220 : "r" (input2), 221 THUNK_TARGET(hv_hypercall_pg) 222 : "cc", "r8", "r9", "r10", "r11"); 223 } 224 #else 225 { 226 u32 input1_hi = upper_32_bits(input1); 227 u32 input1_lo = lower_32_bits(input1); 228 u32 input2_hi = upper_32_bits(input2); 229 u32 input2_lo = lower_32_bits(input2); 230 231 __asm__ __volatile__ (CALL_NOSPEC 232 : "=A"(hv_status), 233 "+c"(input1_lo), ASM_CALL_CONSTRAINT 234 : "A" (control), "b" (input1_hi), 235 "D"(input2_hi), "S"(input2_lo), 236 THUNK_TARGET(hv_hypercall_pg) 237 : "cc"); 238 } 239 #endif 240 return hv_status; 241 } 242 243 /* 244 * Rep hypercalls. Callers of this functions are supposed to ensure that 245 * rep_count and varhead_size comply with Hyper-V hypercall definition. 246 */ 247 static inline u64 hv_do_rep_hypercall(u16 code, u16 rep_count, u16 varhead_size, 248 void *input, void *output) 249 { 250 u64 control = code; 251 u64 status; 252 u16 rep_comp; 253 254 control |= (u64)varhead_size << HV_HYPERCALL_VARHEAD_OFFSET; 255 control |= (u64)rep_count << HV_HYPERCALL_REP_COMP_OFFSET; 256 257 do { 258 status = hv_do_hypercall(control, input, output); 259 if ((status & HV_HYPERCALL_RESULT_MASK) != HV_STATUS_SUCCESS) 260 return status; 261 262 /* Bits 32-43 of status have 'Reps completed' data. */ 263 rep_comp = (status & HV_HYPERCALL_REP_COMP_MASK) >> 264 HV_HYPERCALL_REP_COMP_OFFSET; 265 266 control &= ~HV_HYPERCALL_REP_START_MASK; 267 control |= (u64)rep_comp << HV_HYPERCALL_REP_START_OFFSET; 268 269 touch_nmi_watchdog(); 270 } while (rep_comp < rep_count); 271 272 return status; 273 } 274 275 /* 276 * Hypervisor's notion of virtual processor ID is different from 277 * Linux' notion of CPU ID. This information can only be retrieved 278 * in the context of the calling CPU. Setup a map for easy access 279 * to this information. 280 */ 281 extern u32 *hv_vp_index; 282 extern u32 hv_max_vp_index; 283 extern struct hv_vp_assist_page **hv_vp_assist_page; 284 285 static inline struct hv_vp_assist_page *hv_get_vp_assist_page(unsigned int cpu) 286 { 287 if (!hv_vp_assist_page) 288 return NULL; 289 290 return hv_vp_assist_page[cpu]; 291 } 292 293 /** 294 * hv_cpu_number_to_vp_number() - Map CPU to VP. 295 * @cpu_number: CPU number in Linux terms 296 * 297 * This function returns the mapping between the Linux processor 298 * number and the hypervisor's virtual processor number, useful 299 * in making hypercalls and such that talk about specific 300 * processors. 301 * 302 * Return: Virtual processor number in Hyper-V terms 303 */ 304 static inline int hv_cpu_number_to_vp_number(int cpu_number) 305 { 306 return hv_vp_index[cpu_number]; 307 } 308 309 static inline int cpumask_to_vpset(struct hv_vpset *vpset, 310 const struct cpumask *cpus) 311 { 312 int cpu, vcpu, vcpu_bank, vcpu_offset, nr_bank = 1; 313 314 /* valid_bank_mask can represent up to 64 banks */ 315 if (hv_max_vp_index / 64 >= 64) 316 return 0; 317 318 /* 319 * Clear all banks up to the maximum possible bank as hv_tlb_flush_ex 320 * structs are not cleared between calls, we risk flushing unneeded 321 * vCPUs otherwise. 322 */ 323 for (vcpu_bank = 0; vcpu_bank <= hv_max_vp_index / 64; vcpu_bank++) 324 vpset->bank_contents[vcpu_bank] = 0; 325 326 /* 327 * Some banks may end up being empty but this is acceptable. 328 */ 329 for_each_cpu(cpu, cpus) { 330 vcpu = hv_cpu_number_to_vp_number(cpu); 331 if (vcpu == VP_INVAL) 332 return -1; 333 vcpu_bank = vcpu / 64; 334 vcpu_offset = vcpu % 64; 335 __set_bit(vcpu_offset, (unsigned long *) 336 &vpset->bank_contents[vcpu_bank]); 337 if (vcpu_bank >= nr_bank) 338 nr_bank = vcpu_bank + 1; 339 } 340 vpset->valid_bank_mask = GENMASK_ULL(nr_bank - 1, 0); 341 return nr_bank; 342 } 343 344 void __init hyperv_init(void); 345 void hyperv_setup_mmu_ops(void); 346 void hyperv_report_panic(struct pt_regs *regs, long err); 347 void hyperv_report_panic_msg(phys_addr_t pa, size_t size); 348 bool hv_is_hyperv_initialized(void); 349 void hyperv_cleanup(void); 350 351 void hyperv_reenlightenment_intr(struct pt_regs *regs); 352 void set_hv_tscchange_cb(void (*cb)(void)); 353 void clear_hv_tscchange_cb(void); 354 void hyperv_stop_tsc_emulation(void); 355 int hyperv_flush_guest_mapping(u64 as); 356 int hyperv_flush_guest_mapping_range(u64 as, 357 hyperv_fill_flush_list_func fill_func, void *data); 358 int hyperv_fill_flush_guest_mapping_list( 359 struct hv_guest_mapping_flush_list *flush, 360 u64 start_gfn, u64 end_gfn); 361 362 #ifdef CONFIG_X86_64 363 void hv_apic_init(void); 364 void __init hv_init_spinlocks(void); 365 bool hv_vcpu_is_preempted(int vcpu); 366 #else 367 static inline void hv_apic_init(void) {} 368 #endif 369 370 #else /* CONFIG_HYPERV */ 371 static inline void hyperv_init(void) {} 372 static inline bool hv_is_hyperv_initialized(void) { return false; } 373 static inline void hyperv_cleanup(void) {} 374 static inline void hyperv_setup_mmu_ops(void) {} 375 static inline void set_hv_tscchange_cb(void (*cb)(void)) {} 376 static inline void clear_hv_tscchange_cb(void) {} 377 static inline void hyperv_stop_tsc_emulation(void) {}; 378 static inline struct hv_vp_assist_page *hv_get_vp_assist_page(unsigned int cpu) 379 { 380 return NULL; 381 } 382 static inline int hyperv_flush_guest_mapping(u64 as) { return -1; } 383 static inline int hyperv_flush_guest_mapping_range(u64 as, 384 hyperv_fill_flush_list_func fill_func, void *data) 385 { 386 return -1; 387 } 388 #endif /* CONFIG_HYPERV */ 389 390 #ifdef CONFIG_HYPERV_TSCPAGE 391 struct ms_hyperv_tsc_page *hv_get_tsc_page(void); 392 static inline u64 hv_read_tsc_page_tsc(const struct ms_hyperv_tsc_page *tsc_pg, 393 u64 *cur_tsc) 394 { 395 u64 scale, offset; 396 u32 sequence; 397 398 /* 399 * The protocol for reading Hyper-V TSC page is specified in Hypervisor 400 * Top-Level Functional Specification ver. 3.0 and above. To get the 401 * reference time we must do the following: 402 * - READ ReferenceTscSequence 403 * A special '0' value indicates the time source is unreliable and we 404 * need to use something else. The currently published specification 405 * versions (up to 4.0b) contain a mistake and wrongly claim '-1' 406 * instead of '0' as the special value, see commit c35b82ef0294. 407 * - ReferenceTime = 408 * ((RDTSC() * ReferenceTscScale) >> 64) + ReferenceTscOffset 409 * - READ ReferenceTscSequence again. In case its value has changed 410 * since our first reading we need to discard ReferenceTime and repeat 411 * the whole sequence as the hypervisor was updating the page in 412 * between. 413 */ 414 do { 415 sequence = READ_ONCE(tsc_pg->tsc_sequence); 416 if (!sequence) 417 return U64_MAX; 418 /* 419 * Make sure we read sequence before we read other values from 420 * TSC page. 421 */ 422 smp_rmb(); 423 424 scale = READ_ONCE(tsc_pg->tsc_scale); 425 offset = READ_ONCE(tsc_pg->tsc_offset); 426 *cur_tsc = rdtsc_ordered(); 427 428 /* 429 * Make sure we read sequence after we read all other values 430 * from TSC page. 431 */ 432 smp_rmb(); 433 434 } while (READ_ONCE(tsc_pg->tsc_sequence) != sequence); 435 436 return mul_u64_u64_shr(*cur_tsc, scale, 64) + offset; 437 } 438 439 static inline u64 hv_read_tsc_page(const struct ms_hyperv_tsc_page *tsc_pg) 440 { 441 u64 cur_tsc; 442 443 return hv_read_tsc_page_tsc(tsc_pg, &cur_tsc); 444 } 445 446 #else 447 static inline struct ms_hyperv_tsc_page *hv_get_tsc_page(void) 448 { 449 return NULL; 450 } 451 452 static inline u64 hv_read_tsc_page_tsc(const struct ms_hyperv_tsc_page *tsc_pg, 453 u64 *cur_tsc) 454 { 455 BUG(); 456 return U64_MAX; 457 } 458 #endif 459 #endif 460