xref: /openbmc/linux/arch/x86/include/asm/mshyperv.h (revision d0e22329)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _ASM_X86_MSHYPER_H
3 #define _ASM_X86_MSHYPER_H
4 
5 #include <linux/types.h>
6 #include <linux/atomic.h>
7 #include <linux/nmi.h>
8 #include <asm/io.h>
9 #include <asm/hyperv-tlfs.h>
10 #include <asm/nospec-branch.h>
11 
12 #define VP_INVAL	U32_MAX
13 
14 struct ms_hyperv_info {
15 	u32 features;
16 	u32 misc_features;
17 	u32 hints;
18 	u32 nested_features;
19 	u32 max_vp_index;
20 	u32 max_lp_index;
21 };
22 
23 extern struct ms_hyperv_info ms_hyperv;
24 
25 
26 typedef int (*hyperv_fill_flush_list_func)(
27 		struct hv_guest_mapping_flush_list *flush,
28 		void *data);
29 
30 /*
31  * Generate the guest ID.
32  */
33 
34 static inline  __u64 generate_guest_id(__u64 d_info1, __u64 kernel_version,
35 				       __u64 d_info2)
36 {
37 	__u64 guest_id = 0;
38 
39 	guest_id = (((__u64)HV_LINUX_VENDOR_ID) << 48);
40 	guest_id |= (d_info1 << 48);
41 	guest_id |= (kernel_version << 16);
42 	guest_id |= d_info2;
43 
44 	return guest_id;
45 }
46 
47 
48 /* Free the message slot and signal end-of-message if required */
49 static inline void vmbus_signal_eom(struct hv_message *msg, u32 old_msg_type)
50 {
51 	/*
52 	 * On crash we're reading some other CPU's message page and we need
53 	 * to be careful: this other CPU may already had cleared the header
54 	 * and the host may already had delivered some other message there.
55 	 * In case we blindly write msg->header.message_type we're going
56 	 * to lose it. We can still lose a message of the same type but
57 	 * we count on the fact that there can only be one
58 	 * CHANNELMSG_UNLOAD_RESPONSE and we don't care about other messages
59 	 * on crash.
60 	 */
61 	if (cmpxchg(&msg->header.message_type, old_msg_type,
62 		    HVMSG_NONE) != old_msg_type)
63 		return;
64 
65 	/*
66 	 * Make sure the write to MessageType (ie set to
67 	 * HVMSG_NONE) happens before we read the
68 	 * MessagePending and EOMing. Otherwise, the EOMing
69 	 * will not deliver any more messages since there is
70 	 * no empty slot
71 	 */
72 	mb();
73 
74 	if (msg->header.message_flags.msg_pending) {
75 		/*
76 		 * This will cause message queue rescan to
77 		 * possibly deliver another msg from the
78 		 * hypervisor
79 		 */
80 		wrmsrl(HV_X64_MSR_EOM, 0);
81 	}
82 }
83 
84 #define hv_init_timer(timer, tick) \
85 	wrmsrl(HV_X64_MSR_STIMER0_COUNT + (2*timer), tick)
86 #define hv_init_timer_config(timer, val) \
87 	wrmsrl(HV_X64_MSR_STIMER0_CONFIG + (2*timer), val)
88 
89 #define hv_get_simp(val) rdmsrl(HV_X64_MSR_SIMP, val)
90 #define hv_set_simp(val) wrmsrl(HV_X64_MSR_SIMP, val)
91 
92 #define hv_get_siefp(val) rdmsrl(HV_X64_MSR_SIEFP, val)
93 #define hv_set_siefp(val) wrmsrl(HV_X64_MSR_SIEFP, val)
94 
95 #define hv_get_synic_state(val) rdmsrl(HV_X64_MSR_SCONTROL, val)
96 #define hv_set_synic_state(val) wrmsrl(HV_X64_MSR_SCONTROL, val)
97 
98 #define hv_get_vp_index(index) rdmsrl(HV_X64_MSR_VP_INDEX, index)
99 
100 #define hv_get_synint_state(int_num, val) \
101 	rdmsrl(HV_X64_MSR_SINT0 + int_num, val)
102 #define hv_set_synint_state(int_num, val) \
103 	wrmsrl(HV_X64_MSR_SINT0 + int_num, val)
104 
105 #define hv_get_crash_ctl(val) \
106 	rdmsrl(HV_X64_MSR_CRASH_CTL, val)
107 
108 void hyperv_callback_vector(void);
109 void hyperv_reenlightenment_vector(void);
110 #ifdef CONFIG_TRACING
111 #define trace_hyperv_callback_vector hyperv_callback_vector
112 #endif
113 void hyperv_vector_handler(struct pt_regs *regs);
114 void hv_setup_vmbus_irq(void (*handler)(void));
115 void hv_remove_vmbus_irq(void);
116 
117 void hv_setup_kexec_handler(void (*handler)(void));
118 void hv_remove_kexec_handler(void);
119 void hv_setup_crash_handler(void (*handler)(struct pt_regs *regs));
120 void hv_remove_crash_handler(void);
121 
122 /*
123  * Routines for stimer0 Direct Mode handling.
124  * On x86/x64, there are no percpu actions to take.
125  */
126 void hv_stimer0_vector_handler(struct pt_regs *regs);
127 void hv_stimer0_callback_vector(void);
128 int hv_setup_stimer0_irq(int *irq, int *vector, void (*handler)(void));
129 void hv_remove_stimer0_irq(int irq);
130 
131 static inline void hv_enable_stimer0_percpu_irq(int irq) {}
132 static inline void hv_disable_stimer0_percpu_irq(int irq) {}
133 
134 
135 #if IS_ENABLED(CONFIG_HYPERV)
136 extern struct clocksource *hyperv_cs;
137 extern void *hv_hypercall_pg;
138 extern void  __percpu  **hyperv_pcpu_input_arg;
139 
140 static inline u64 hv_do_hypercall(u64 control, void *input, void *output)
141 {
142 	u64 input_address = input ? virt_to_phys(input) : 0;
143 	u64 output_address = output ? virt_to_phys(output) : 0;
144 	u64 hv_status;
145 
146 #ifdef CONFIG_X86_64
147 	if (!hv_hypercall_pg)
148 		return U64_MAX;
149 
150 	__asm__ __volatile__("mov %4, %%r8\n"
151 			     CALL_NOSPEC
152 			     : "=a" (hv_status), ASM_CALL_CONSTRAINT,
153 			       "+c" (control), "+d" (input_address)
154 			     :  "r" (output_address),
155 				THUNK_TARGET(hv_hypercall_pg)
156 			     : "cc", "memory", "r8", "r9", "r10", "r11");
157 #else
158 	u32 input_address_hi = upper_32_bits(input_address);
159 	u32 input_address_lo = lower_32_bits(input_address);
160 	u32 output_address_hi = upper_32_bits(output_address);
161 	u32 output_address_lo = lower_32_bits(output_address);
162 
163 	if (!hv_hypercall_pg)
164 		return U64_MAX;
165 
166 	__asm__ __volatile__(CALL_NOSPEC
167 			     : "=A" (hv_status),
168 			       "+c" (input_address_lo), ASM_CALL_CONSTRAINT
169 			     : "A" (control),
170 			       "b" (input_address_hi),
171 			       "D"(output_address_hi), "S"(output_address_lo),
172 			       THUNK_TARGET(hv_hypercall_pg)
173 			     : "cc", "memory");
174 #endif /* !x86_64 */
175 	return hv_status;
176 }
177 
178 /* Fast hypercall with 8 bytes of input and no output */
179 static inline u64 hv_do_fast_hypercall8(u16 code, u64 input1)
180 {
181 	u64 hv_status, control = (u64)code | HV_HYPERCALL_FAST_BIT;
182 
183 #ifdef CONFIG_X86_64
184 	{
185 		__asm__ __volatile__(CALL_NOSPEC
186 				     : "=a" (hv_status), ASM_CALL_CONSTRAINT,
187 				       "+c" (control), "+d" (input1)
188 				     : THUNK_TARGET(hv_hypercall_pg)
189 				     : "cc", "r8", "r9", "r10", "r11");
190 	}
191 #else
192 	{
193 		u32 input1_hi = upper_32_bits(input1);
194 		u32 input1_lo = lower_32_bits(input1);
195 
196 		__asm__ __volatile__ (CALL_NOSPEC
197 				      : "=A"(hv_status),
198 					"+c"(input1_lo),
199 					ASM_CALL_CONSTRAINT
200 				      :	"A" (control),
201 					"b" (input1_hi),
202 					THUNK_TARGET(hv_hypercall_pg)
203 				      : "cc", "edi", "esi");
204 	}
205 #endif
206 		return hv_status;
207 }
208 
209 /* Fast hypercall with 16 bytes of input */
210 static inline u64 hv_do_fast_hypercall16(u16 code, u64 input1, u64 input2)
211 {
212 	u64 hv_status, control = (u64)code | HV_HYPERCALL_FAST_BIT;
213 
214 #ifdef CONFIG_X86_64
215 	{
216 		__asm__ __volatile__("mov %4, %%r8\n"
217 				     CALL_NOSPEC
218 				     : "=a" (hv_status), ASM_CALL_CONSTRAINT,
219 				       "+c" (control), "+d" (input1)
220 				     : "r" (input2),
221 				       THUNK_TARGET(hv_hypercall_pg)
222 				     : "cc", "r8", "r9", "r10", "r11");
223 	}
224 #else
225 	{
226 		u32 input1_hi = upper_32_bits(input1);
227 		u32 input1_lo = lower_32_bits(input1);
228 		u32 input2_hi = upper_32_bits(input2);
229 		u32 input2_lo = lower_32_bits(input2);
230 
231 		__asm__ __volatile__ (CALL_NOSPEC
232 				      : "=A"(hv_status),
233 					"+c"(input1_lo), ASM_CALL_CONSTRAINT
234 				      :	"A" (control), "b" (input1_hi),
235 					"D"(input2_hi), "S"(input2_lo),
236 					THUNK_TARGET(hv_hypercall_pg)
237 				      : "cc");
238 	}
239 #endif
240 	return hv_status;
241 }
242 
243 /*
244  * Rep hypercalls. Callers of this functions are supposed to ensure that
245  * rep_count and varhead_size comply with Hyper-V hypercall definition.
246  */
247 static inline u64 hv_do_rep_hypercall(u16 code, u16 rep_count, u16 varhead_size,
248 				      void *input, void *output)
249 {
250 	u64 control = code;
251 	u64 status;
252 	u16 rep_comp;
253 
254 	control |= (u64)varhead_size << HV_HYPERCALL_VARHEAD_OFFSET;
255 	control |= (u64)rep_count << HV_HYPERCALL_REP_COMP_OFFSET;
256 
257 	do {
258 		status = hv_do_hypercall(control, input, output);
259 		if ((status & HV_HYPERCALL_RESULT_MASK) != HV_STATUS_SUCCESS)
260 			return status;
261 
262 		/* Bits 32-43 of status have 'Reps completed' data. */
263 		rep_comp = (status & HV_HYPERCALL_REP_COMP_MASK) >>
264 			HV_HYPERCALL_REP_COMP_OFFSET;
265 
266 		control &= ~HV_HYPERCALL_REP_START_MASK;
267 		control |= (u64)rep_comp << HV_HYPERCALL_REP_START_OFFSET;
268 
269 		touch_nmi_watchdog();
270 	} while (rep_comp < rep_count);
271 
272 	return status;
273 }
274 
275 /*
276  * Hypervisor's notion of virtual processor ID is different from
277  * Linux' notion of CPU ID. This information can only be retrieved
278  * in the context of the calling CPU. Setup a map for easy access
279  * to this information.
280  */
281 extern u32 *hv_vp_index;
282 extern u32 hv_max_vp_index;
283 extern struct hv_vp_assist_page **hv_vp_assist_page;
284 
285 static inline struct hv_vp_assist_page *hv_get_vp_assist_page(unsigned int cpu)
286 {
287 	if (!hv_vp_assist_page)
288 		return NULL;
289 
290 	return hv_vp_assist_page[cpu];
291 }
292 
293 /**
294  * hv_cpu_number_to_vp_number() - Map CPU to VP.
295  * @cpu_number: CPU number in Linux terms
296  *
297  * This function returns the mapping between the Linux processor
298  * number and the hypervisor's virtual processor number, useful
299  * in making hypercalls and such that talk about specific
300  * processors.
301  *
302  * Return: Virtual processor number in Hyper-V terms
303  */
304 static inline int hv_cpu_number_to_vp_number(int cpu_number)
305 {
306 	return hv_vp_index[cpu_number];
307 }
308 
309 static inline int cpumask_to_vpset(struct hv_vpset *vpset,
310 				    const struct cpumask *cpus)
311 {
312 	int cpu, vcpu, vcpu_bank, vcpu_offset, nr_bank = 1;
313 
314 	/* valid_bank_mask can represent up to 64 banks */
315 	if (hv_max_vp_index / 64 >= 64)
316 		return 0;
317 
318 	/*
319 	 * Clear all banks up to the maximum possible bank as hv_tlb_flush_ex
320 	 * structs are not cleared between calls, we risk flushing unneeded
321 	 * vCPUs otherwise.
322 	 */
323 	for (vcpu_bank = 0; vcpu_bank <= hv_max_vp_index / 64; vcpu_bank++)
324 		vpset->bank_contents[vcpu_bank] = 0;
325 
326 	/*
327 	 * Some banks may end up being empty but this is acceptable.
328 	 */
329 	for_each_cpu(cpu, cpus) {
330 		vcpu = hv_cpu_number_to_vp_number(cpu);
331 		if (vcpu == VP_INVAL)
332 			return -1;
333 		vcpu_bank = vcpu / 64;
334 		vcpu_offset = vcpu % 64;
335 		__set_bit(vcpu_offset, (unsigned long *)
336 			  &vpset->bank_contents[vcpu_bank]);
337 		if (vcpu_bank >= nr_bank)
338 			nr_bank = vcpu_bank + 1;
339 	}
340 	vpset->valid_bank_mask = GENMASK_ULL(nr_bank - 1, 0);
341 	return nr_bank;
342 }
343 
344 void __init hyperv_init(void);
345 void hyperv_setup_mmu_ops(void);
346 void hyperv_report_panic(struct pt_regs *regs, long err);
347 void hyperv_report_panic_msg(phys_addr_t pa, size_t size);
348 bool hv_is_hyperv_initialized(void);
349 void hyperv_cleanup(void);
350 
351 void hyperv_reenlightenment_intr(struct pt_regs *regs);
352 void set_hv_tscchange_cb(void (*cb)(void));
353 void clear_hv_tscchange_cb(void);
354 void hyperv_stop_tsc_emulation(void);
355 int hyperv_flush_guest_mapping(u64 as);
356 int hyperv_flush_guest_mapping_range(u64 as,
357 		hyperv_fill_flush_list_func fill_func, void *data);
358 int hyperv_fill_flush_guest_mapping_list(
359 		struct hv_guest_mapping_flush_list *flush,
360 		u64 start_gfn, u64 end_gfn);
361 
362 #ifdef CONFIG_X86_64
363 void hv_apic_init(void);
364 void __init hv_init_spinlocks(void);
365 bool hv_vcpu_is_preempted(int vcpu);
366 #else
367 static inline void hv_apic_init(void) {}
368 #endif
369 
370 #else /* CONFIG_HYPERV */
371 static inline void hyperv_init(void) {}
372 static inline bool hv_is_hyperv_initialized(void) { return false; }
373 static inline void hyperv_cleanup(void) {}
374 static inline void hyperv_setup_mmu_ops(void) {}
375 static inline void set_hv_tscchange_cb(void (*cb)(void)) {}
376 static inline void clear_hv_tscchange_cb(void) {}
377 static inline void hyperv_stop_tsc_emulation(void) {};
378 static inline struct hv_vp_assist_page *hv_get_vp_assist_page(unsigned int cpu)
379 {
380 	return NULL;
381 }
382 static inline int hyperv_flush_guest_mapping(u64 as) { return -1; }
383 static inline int hyperv_flush_guest_mapping_range(u64 as,
384 		hyperv_fill_flush_list_func fill_func, void *data)
385 {
386 	return -1;
387 }
388 #endif /* CONFIG_HYPERV */
389 
390 #ifdef CONFIG_HYPERV_TSCPAGE
391 struct ms_hyperv_tsc_page *hv_get_tsc_page(void);
392 static inline u64 hv_read_tsc_page_tsc(const struct ms_hyperv_tsc_page *tsc_pg,
393 				       u64 *cur_tsc)
394 {
395 	u64 scale, offset;
396 	u32 sequence;
397 
398 	/*
399 	 * The protocol for reading Hyper-V TSC page is specified in Hypervisor
400 	 * Top-Level Functional Specification ver. 3.0 and above. To get the
401 	 * reference time we must do the following:
402 	 * - READ ReferenceTscSequence
403 	 *   A special '0' value indicates the time source is unreliable and we
404 	 *   need to use something else. The currently published specification
405 	 *   versions (up to 4.0b) contain a mistake and wrongly claim '-1'
406 	 *   instead of '0' as the special value, see commit c35b82ef0294.
407 	 * - ReferenceTime =
408 	 *        ((RDTSC() * ReferenceTscScale) >> 64) + ReferenceTscOffset
409 	 * - READ ReferenceTscSequence again. In case its value has changed
410 	 *   since our first reading we need to discard ReferenceTime and repeat
411 	 *   the whole sequence as the hypervisor was updating the page in
412 	 *   between.
413 	 */
414 	do {
415 		sequence = READ_ONCE(tsc_pg->tsc_sequence);
416 		if (!sequence)
417 			return U64_MAX;
418 		/*
419 		 * Make sure we read sequence before we read other values from
420 		 * TSC page.
421 		 */
422 		smp_rmb();
423 
424 		scale = READ_ONCE(tsc_pg->tsc_scale);
425 		offset = READ_ONCE(tsc_pg->tsc_offset);
426 		*cur_tsc = rdtsc_ordered();
427 
428 		/*
429 		 * Make sure we read sequence after we read all other values
430 		 * from TSC page.
431 		 */
432 		smp_rmb();
433 
434 	} while (READ_ONCE(tsc_pg->tsc_sequence) != sequence);
435 
436 	return mul_u64_u64_shr(*cur_tsc, scale, 64) + offset;
437 }
438 
439 static inline u64 hv_read_tsc_page(const struct ms_hyperv_tsc_page *tsc_pg)
440 {
441 	u64 cur_tsc;
442 
443 	return hv_read_tsc_page_tsc(tsc_pg, &cur_tsc);
444 }
445 
446 #else
447 static inline struct ms_hyperv_tsc_page *hv_get_tsc_page(void)
448 {
449 	return NULL;
450 }
451 
452 static inline u64 hv_read_tsc_page_tsc(const struct ms_hyperv_tsc_page *tsc_pg,
453 				       u64 *cur_tsc)
454 {
455 	BUG();
456 	return U64_MAX;
457 }
458 #endif
459 #endif
460