xref: /openbmc/linux/arch/x86/include/asm/mshyperv.h (revision ba61bb17496d1664bf7c5c2fd650d5fd78bd0a92)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _ASM_X86_MSHYPER_H
3 #define _ASM_X86_MSHYPER_H
4 
5 #include <linux/types.h>
6 #include <linux/atomic.h>
7 #include <linux/nmi.h>
8 #include <asm/io.h>
9 #include <asm/hyperv-tlfs.h>
10 #include <asm/nospec-branch.h>
11 
12 struct ms_hyperv_info {
13 	u32 features;
14 	u32 misc_features;
15 	u32 hints;
16 	u32 nested_features;
17 	u32 max_vp_index;
18 	u32 max_lp_index;
19 };
20 
21 extern struct ms_hyperv_info ms_hyperv;
22 
23 
24 /*
25  * Generate the guest ID.
26  */
27 
28 static inline  __u64 generate_guest_id(__u64 d_info1, __u64 kernel_version,
29 				       __u64 d_info2)
30 {
31 	__u64 guest_id = 0;
32 
33 	guest_id = (((__u64)HV_LINUX_VENDOR_ID) << 48);
34 	guest_id |= (d_info1 << 48);
35 	guest_id |= (kernel_version << 16);
36 	guest_id |= d_info2;
37 
38 	return guest_id;
39 }
40 
41 
42 /* Free the message slot and signal end-of-message if required */
43 static inline void vmbus_signal_eom(struct hv_message *msg, u32 old_msg_type)
44 {
45 	/*
46 	 * On crash we're reading some other CPU's message page and we need
47 	 * to be careful: this other CPU may already had cleared the header
48 	 * and the host may already had delivered some other message there.
49 	 * In case we blindly write msg->header.message_type we're going
50 	 * to lose it. We can still lose a message of the same type but
51 	 * we count on the fact that there can only be one
52 	 * CHANNELMSG_UNLOAD_RESPONSE and we don't care about other messages
53 	 * on crash.
54 	 */
55 	if (cmpxchg(&msg->header.message_type, old_msg_type,
56 		    HVMSG_NONE) != old_msg_type)
57 		return;
58 
59 	/*
60 	 * Make sure the write to MessageType (ie set to
61 	 * HVMSG_NONE) happens before we read the
62 	 * MessagePending and EOMing. Otherwise, the EOMing
63 	 * will not deliver any more messages since there is
64 	 * no empty slot
65 	 */
66 	mb();
67 
68 	if (msg->header.message_flags.msg_pending) {
69 		/*
70 		 * This will cause message queue rescan to
71 		 * possibly deliver another msg from the
72 		 * hypervisor
73 		 */
74 		wrmsrl(HV_X64_MSR_EOM, 0);
75 	}
76 }
77 
78 #define hv_init_timer(timer, tick) wrmsrl(timer, tick)
79 #define hv_init_timer_config(config, val) wrmsrl(config, val)
80 
81 #define hv_get_simp(val) rdmsrl(HV_X64_MSR_SIMP, val)
82 #define hv_set_simp(val) wrmsrl(HV_X64_MSR_SIMP, val)
83 
84 #define hv_get_siefp(val) rdmsrl(HV_X64_MSR_SIEFP, val)
85 #define hv_set_siefp(val) wrmsrl(HV_X64_MSR_SIEFP, val)
86 
87 #define hv_get_synic_state(val) rdmsrl(HV_X64_MSR_SCONTROL, val)
88 #define hv_set_synic_state(val) wrmsrl(HV_X64_MSR_SCONTROL, val)
89 
90 #define hv_get_vp_index(index) rdmsrl(HV_X64_MSR_VP_INDEX, index)
91 
92 #define hv_get_synint_state(int_num, val) rdmsrl(int_num, val)
93 #define hv_set_synint_state(int_num, val) wrmsrl(int_num, val)
94 
95 void hyperv_callback_vector(void);
96 void hyperv_reenlightenment_vector(void);
97 #ifdef CONFIG_TRACING
98 #define trace_hyperv_callback_vector hyperv_callback_vector
99 #endif
100 void hyperv_vector_handler(struct pt_regs *regs);
101 void hv_setup_vmbus_irq(void (*handler)(void));
102 void hv_remove_vmbus_irq(void);
103 
104 void hv_setup_kexec_handler(void (*handler)(void));
105 void hv_remove_kexec_handler(void);
106 void hv_setup_crash_handler(void (*handler)(struct pt_regs *regs));
107 void hv_remove_crash_handler(void);
108 
109 /*
110  * Routines for stimer0 Direct Mode handling.
111  * On x86/x64, there are no percpu actions to take.
112  */
113 void hv_stimer0_vector_handler(struct pt_regs *regs);
114 void hv_stimer0_callback_vector(void);
115 int hv_setup_stimer0_irq(int *irq, int *vector, void (*handler)(void));
116 void hv_remove_stimer0_irq(int irq);
117 
118 static inline void hv_enable_stimer0_percpu_irq(int irq) {}
119 static inline void hv_disable_stimer0_percpu_irq(int irq) {}
120 
121 
122 #if IS_ENABLED(CONFIG_HYPERV)
123 extern struct clocksource *hyperv_cs;
124 extern void *hv_hypercall_pg;
125 extern void  __percpu  **hyperv_pcpu_input_arg;
126 
127 static inline u64 hv_do_hypercall(u64 control, void *input, void *output)
128 {
129 	u64 input_address = input ? virt_to_phys(input) : 0;
130 	u64 output_address = output ? virt_to_phys(output) : 0;
131 	u64 hv_status;
132 
133 #ifdef CONFIG_X86_64
134 	if (!hv_hypercall_pg)
135 		return U64_MAX;
136 
137 	__asm__ __volatile__("mov %4, %%r8\n"
138 			     CALL_NOSPEC
139 			     : "=a" (hv_status), ASM_CALL_CONSTRAINT,
140 			       "+c" (control), "+d" (input_address)
141 			     :  "r" (output_address),
142 				THUNK_TARGET(hv_hypercall_pg)
143 			     : "cc", "memory", "r8", "r9", "r10", "r11");
144 #else
145 	u32 input_address_hi = upper_32_bits(input_address);
146 	u32 input_address_lo = lower_32_bits(input_address);
147 	u32 output_address_hi = upper_32_bits(output_address);
148 	u32 output_address_lo = lower_32_bits(output_address);
149 
150 	if (!hv_hypercall_pg)
151 		return U64_MAX;
152 
153 	__asm__ __volatile__(CALL_NOSPEC
154 			     : "=A" (hv_status),
155 			       "+c" (input_address_lo), ASM_CALL_CONSTRAINT
156 			     : "A" (control),
157 			       "b" (input_address_hi),
158 			       "D"(output_address_hi), "S"(output_address_lo),
159 			       THUNK_TARGET(hv_hypercall_pg)
160 			     : "cc", "memory");
161 #endif /* !x86_64 */
162 	return hv_status;
163 }
164 
165 /* Fast hypercall with 8 bytes of input and no output */
166 static inline u64 hv_do_fast_hypercall8(u16 code, u64 input1)
167 {
168 	u64 hv_status, control = (u64)code | HV_HYPERCALL_FAST_BIT;
169 
170 #ifdef CONFIG_X86_64
171 	{
172 		__asm__ __volatile__(CALL_NOSPEC
173 				     : "=a" (hv_status), ASM_CALL_CONSTRAINT,
174 				       "+c" (control), "+d" (input1)
175 				     : THUNK_TARGET(hv_hypercall_pg)
176 				     : "cc", "r8", "r9", "r10", "r11");
177 	}
178 #else
179 	{
180 		u32 input1_hi = upper_32_bits(input1);
181 		u32 input1_lo = lower_32_bits(input1);
182 
183 		__asm__ __volatile__ (CALL_NOSPEC
184 				      : "=A"(hv_status),
185 					"+c"(input1_lo),
186 					ASM_CALL_CONSTRAINT
187 				      :	"A" (control),
188 					"b" (input1_hi),
189 					THUNK_TARGET(hv_hypercall_pg)
190 				      : "cc", "edi", "esi");
191 	}
192 #endif
193 		return hv_status;
194 }
195 
196 /*
197  * Rep hypercalls. Callers of this functions are supposed to ensure that
198  * rep_count and varhead_size comply with Hyper-V hypercall definition.
199  */
200 static inline u64 hv_do_rep_hypercall(u16 code, u16 rep_count, u16 varhead_size,
201 				      void *input, void *output)
202 {
203 	u64 control = code;
204 	u64 status;
205 	u16 rep_comp;
206 
207 	control |= (u64)varhead_size << HV_HYPERCALL_VARHEAD_OFFSET;
208 	control |= (u64)rep_count << HV_HYPERCALL_REP_COMP_OFFSET;
209 
210 	do {
211 		status = hv_do_hypercall(control, input, output);
212 		if ((status & HV_HYPERCALL_RESULT_MASK) != HV_STATUS_SUCCESS)
213 			return status;
214 
215 		/* Bits 32-43 of status have 'Reps completed' data. */
216 		rep_comp = (status & HV_HYPERCALL_REP_COMP_MASK) >>
217 			HV_HYPERCALL_REP_COMP_OFFSET;
218 
219 		control &= ~HV_HYPERCALL_REP_START_MASK;
220 		control |= (u64)rep_comp << HV_HYPERCALL_REP_START_OFFSET;
221 
222 		touch_nmi_watchdog();
223 	} while (rep_comp < rep_count);
224 
225 	return status;
226 }
227 
228 /*
229  * Hypervisor's notion of virtual processor ID is different from
230  * Linux' notion of CPU ID. This information can only be retrieved
231  * in the context of the calling CPU. Setup a map for easy access
232  * to this information.
233  */
234 extern u32 *hv_vp_index;
235 extern u32 hv_max_vp_index;
236 extern struct hv_vp_assist_page **hv_vp_assist_page;
237 
238 static inline struct hv_vp_assist_page *hv_get_vp_assist_page(unsigned int cpu)
239 {
240 	if (!hv_vp_assist_page)
241 		return NULL;
242 
243 	return hv_vp_assist_page[cpu];
244 }
245 
246 /**
247  * hv_cpu_number_to_vp_number() - Map CPU to VP.
248  * @cpu_number: CPU number in Linux terms
249  *
250  * This function returns the mapping between the Linux processor
251  * number and the hypervisor's virtual processor number, useful
252  * in making hypercalls and such that talk about specific
253  * processors.
254  *
255  * Return: Virtual processor number in Hyper-V terms
256  */
257 static inline int hv_cpu_number_to_vp_number(int cpu_number)
258 {
259 	return hv_vp_index[cpu_number];
260 }
261 
262 static inline int cpumask_to_vpset(struct hv_vpset *vpset,
263 				    const struct cpumask *cpus)
264 {
265 	int cpu, vcpu, vcpu_bank, vcpu_offset, nr_bank = 1;
266 
267 	/* valid_bank_mask can represent up to 64 banks */
268 	if (hv_max_vp_index / 64 >= 64)
269 		return 0;
270 
271 	/*
272 	 * Clear all banks up to the maximum possible bank as hv_tlb_flush_ex
273 	 * structs are not cleared between calls, we risk flushing unneeded
274 	 * vCPUs otherwise.
275 	 */
276 	for (vcpu_bank = 0; vcpu_bank <= hv_max_vp_index / 64; vcpu_bank++)
277 		vpset->bank_contents[vcpu_bank] = 0;
278 
279 	/*
280 	 * Some banks may end up being empty but this is acceptable.
281 	 */
282 	for_each_cpu(cpu, cpus) {
283 		vcpu = hv_cpu_number_to_vp_number(cpu);
284 		vcpu_bank = vcpu / 64;
285 		vcpu_offset = vcpu % 64;
286 		__set_bit(vcpu_offset, (unsigned long *)
287 			  &vpset->bank_contents[vcpu_bank]);
288 		if (vcpu_bank >= nr_bank)
289 			nr_bank = vcpu_bank + 1;
290 	}
291 	vpset->valid_bank_mask = GENMASK_ULL(nr_bank - 1, 0);
292 	return nr_bank;
293 }
294 
295 void __init hyperv_init(void);
296 void hyperv_setup_mmu_ops(void);
297 void hyperv_report_panic(struct pt_regs *regs, long err);
298 bool hv_is_hyperv_initialized(void);
299 void hyperv_cleanup(void);
300 
301 void hyperv_reenlightenment_intr(struct pt_regs *regs);
302 void set_hv_tscchange_cb(void (*cb)(void));
303 void clear_hv_tscchange_cb(void);
304 void hyperv_stop_tsc_emulation(void);
305 
306 #ifdef CONFIG_X86_64
307 void hv_apic_init(void);
308 #else
309 static inline void hv_apic_init(void) {}
310 #endif
311 
312 #else /* CONFIG_HYPERV */
313 static inline void hyperv_init(void) {}
314 static inline bool hv_is_hyperv_initialized(void) { return false; }
315 static inline void hyperv_cleanup(void) {}
316 static inline void hyperv_setup_mmu_ops(void) {}
317 static inline void set_hv_tscchange_cb(void (*cb)(void)) {}
318 static inline void clear_hv_tscchange_cb(void) {}
319 static inline void hyperv_stop_tsc_emulation(void) {};
320 static inline struct hv_vp_assist_page *hv_get_vp_assist_page(unsigned int cpu)
321 {
322 	return NULL;
323 }
324 #endif /* CONFIG_HYPERV */
325 
326 #ifdef CONFIG_HYPERV_TSCPAGE
327 struct ms_hyperv_tsc_page *hv_get_tsc_page(void);
328 static inline u64 hv_read_tsc_page_tsc(const struct ms_hyperv_tsc_page *tsc_pg,
329 				       u64 *cur_tsc)
330 {
331 	u64 scale, offset;
332 	u32 sequence;
333 
334 	/*
335 	 * The protocol for reading Hyper-V TSC page is specified in Hypervisor
336 	 * Top-Level Functional Specification ver. 3.0 and above. To get the
337 	 * reference time we must do the following:
338 	 * - READ ReferenceTscSequence
339 	 *   A special '0' value indicates the time source is unreliable and we
340 	 *   need to use something else. The currently published specification
341 	 *   versions (up to 4.0b) contain a mistake and wrongly claim '-1'
342 	 *   instead of '0' as the special value, see commit c35b82ef0294.
343 	 * - ReferenceTime =
344 	 *        ((RDTSC() * ReferenceTscScale) >> 64) + ReferenceTscOffset
345 	 * - READ ReferenceTscSequence again. In case its value has changed
346 	 *   since our first reading we need to discard ReferenceTime and repeat
347 	 *   the whole sequence as the hypervisor was updating the page in
348 	 *   between.
349 	 */
350 	do {
351 		sequence = READ_ONCE(tsc_pg->tsc_sequence);
352 		if (!sequence)
353 			return U64_MAX;
354 		/*
355 		 * Make sure we read sequence before we read other values from
356 		 * TSC page.
357 		 */
358 		smp_rmb();
359 
360 		scale = READ_ONCE(tsc_pg->tsc_scale);
361 		offset = READ_ONCE(tsc_pg->tsc_offset);
362 		*cur_tsc = rdtsc_ordered();
363 
364 		/*
365 		 * Make sure we read sequence after we read all other values
366 		 * from TSC page.
367 		 */
368 		smp_rmb();
369 
370 	} while (READ_ONCE(tsc_pg->tsc_sequence) != sequence);
371 
372 	return mul_u64_u64_shr(*cur_tsc, scale, 64) + offset;
373 }
374 
375 static inline u64 hv_read_tsc_page(const struct ms_hyperv_tsc_page *tsc_pg)
376 {
377 	u64 cur_tsc;
378 
379 	return hv_read_tsc_page_tsc(tsc_pg, &cur_tsc);
380 }
381 
382 #else
383 static inline struct ms_hyperv_tsc_page *hv_get_tsc_page(void)
384 {
385 	return NULL;
386 }
387 
388 static inline u64 hv_read_tsc_page_tsc(const struct ms_hyperv_tsc_page *tsc_pg,
389 				       u64 *cur_tsc)
390 {
391 	BUG();
392 	return U64_MAX;
393 }
394 #endif
395 #endif
396