xref: /openbmc/linux/arch/x86/include/asm/mshyperv.h (revision 7f2e85840871f199057e65232ebde846192ed989)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _ASM_X86_MSHYPER_H
3 #define _ASM_X86_MSHYPER_H
4 
5 #include <linux/types.h>
6 #include <linux/atomic.h>
7 #include <linux/nmi.h>
8 #include <asm/io.h>
9 #include <asm/hyperv.h>
10 #include <asm/nospec-branch.h>
11 
12 /*
13  * The below CPUID leaves are present if VersionAndFeatures.HypervisorPresent
14  * is set by CPUID(HVCPUID_VERSION_FEATURES).
15  */
16 enum hv_cpuid_function {
17 	HVCPUID_VERSION_FEATURES		= 0x00000001,
18 	HVCPUID_VENDOR_MAXFUNCTION		= 0x40000000,
19 	HVCPUID_INTERFACE			= 0x40000001,
20 
21 	/*
22 	 * The remaining functions depend on the value of
23 	 * HVCPUID_INTERFACE
24 	 */
25 	HVCPUID_VERSION				= 0x40000002,
26 	HVCPUID_FEATURES			= 0x40000003,
27 	HVCPUID_ENLIGHTENMENT_INFO		= 0x40000004,
28 	HVCPUID_IMPLEMENTATION_LIMITS		= 0x40000005,
29 };
30 
31 struct ms_hyperv_info {
32 	u32 features;
33 	u32 misc_features;
34 	u32 hints;
35 	u32 max_vp_index;
36 	u32 max_lp_index;
37 };
38 
39 extern struct ms_hyperv_info ms_hyperv;
40 
41 /*
42  * Declare the MSR used to setup pages used to communicate with the hypervisor.
43  */
44 union hv_x64_msr_hypercall_contents {
45 	u64 as_uint64;
46 	struct {
47 		u64 enable:1;
48 		u64 reserved:11;
49 		u64 guest_physical_address:52;
50 	};
51 };
52 
53 /*
54  * TSC page layout.
55  */
56 
57 struct ms_hyperv_tsc_page {
58 	volatile u32 tsc_sequence;
59 	u32 reserved1;
60 	volatile u64 tsc_scale;
61 	volatile s64 tsc_offset;
62 	u64 reserved2[509];
63 };
64 
65 /*
66  * The guest OS needs to register the guest ID with the hypervisor.
67  * The guest ID is a 64 bit entity and the structure of this ID is
68  * specified in the Hyper-V specification:
69  *
70  * msdn.microsoft.com/en-us/library/windows/hardware/ff542653%28v=vs.85%29.aspx
71  *
72  * While the current guideline does not specify how Linux guest ID(s)
73  * need to be generated, our plan is to publish the guidelines for
74  * Linux and other guest operating systems that currently are hosted
75  * on Hyper-V. The implementation here conforms to this yet
76  * unpublished guidelines.
77  *
78  *
79  * Bit(s)
80  * 63 - Indicates if the OS is Open Source or not; 1 is Open Source
81  * 62:56 - Os Type; Linux is 0x100
82  * 55:48 - Distro specific identification
83  * 47:16 - Linux kernel version number
84  * 15:0  - Distro specific identification
85  *
86  *
87  */
88 
89 #define HV_LINUX_VENDOR_ID              0x8100
90 
91 /*
92  * Generate the guest ID based on the guideline described above.
93  */
94 
95 static inline  __u64 generate_guest_id(__u64 d_info1, __u64 kernel_version,
96 				       __u64 d_info2)
97 {
98 	__u64 guest_id = 0;
99 
100 	guest_id = (((__u64)HV_LINUX_VENDOR_ID) << 48);
101 	guest_id |= (d_info1 << 48);
102 	guest_id |= (kernel_version << 16);
103 	guest_id |= d_info2;
104 
105 	return guest_id;
106 }
107 
108 
109 /* Free the message slot and signal end-of-message if required */
110 static inline void vmbus_signal_eom(struct hv_message *msg, u32 old_msg_type)
111 {
112 	/*
113 	 * On crash we're reading some other CPU's message page and we need
114 	 * to be careful: this other CPU may already had cleared the header
115 	 * and the host may already had delivered some other message there.
116 	 * In case we blindly write msg->header.message_type we're going
117 	 * to lose it. We can still lose a message of the same type but
118 	 * we count on the fact that there can only be one
119 	 * CHANNELMSG_UNLOAD_RESPONSE and we don't care about other messages
120 	 * on crash.
121 	 */
122 	if (cmpxchg(&msg->header.message_type, old_msg_type,
123 		    HVMSG_NONE) != old_msg_type)
124 		return;
125 
126 	/*
127 	 * Make sure the write to MessageType (ie set to
128 	 * HVMSG_NONE) happens before we read the
129 	 * MessagePending and EOMing. Otherwise, the EOMing
130 	 * will not deliver any more messages since there is
131 	 * no empty slot
132 	 */
133 	mb();
134 
135 	if (msg->header.message_flags.msg_pending) {
136 		/*
137 		 * This will cause message queue rescan to
138 		 * possibly deliver another msg from the
139 		 * hypervisor
140 		 */
141 		wrmsrl(HV_X64_MSR_EOM, 0);
142 	}
143 }
144 
145 #define hv_init_timer(timer, tick) wrmsrl(timer, tick)
146 #define hv_init_timer_config(config, val) wrmsrl(config, val)
147 
148 #define hv_get_simp(val) rdmsrl(HV_X64_MSR_SIMP, val)
149 #define hv_set_simp(val) wrmsrl(HV_X64_MSR_SIMP, val)
150 
151 #define hv_get_siefp(val) rdmsrl(HV_X64_MSR_SIEFP, val)
152 #define hv_set_siefp(val) wrmsrl(HV_X64_MSR_SIEFP, val)
153 
154 #define hv_get_synic_state(val) rdmsrl(HV_X64_MSR_SCONTROL, val)
155 #define hv_set_synic_state(val) wrmsrl(HV_X64_MSR_SCONTROL, val)
156 
157 #define hv_get_vp_index(index) rdmsrl(HV_X64_MSR_VP_INDEX, index)
158 
159 #define hv_get_synint_state(int_num, val) rdmsrl(int_num, val)
160 #define hv_set_synint_state(int_num, val) wrmsrl(int_num, val)
161 
162 void hyperv_callback_vector(void);
163 void hyperv_reenlightenment_vector(void);
164 #ifdef CONFIG_TRACING
165 #define trace_hyperv_callback_vector hyperv_callback_vector
166 #endif
167 void hyperv_vector_handler(struct pt_regs *regs);
168 void hv_setup_vmbus_irq(void (*handler)(void));
169 void hv_remove_vmbus_irq(void);
170 
171 void hv_setup_kexec_handler(void (*handler)(void));
172 void hv_remove_kexec_handler(void);
173 void hv_setup_crash_handler(void (*handler)(struct pt_regs *regs));
174 void hv_remove_crash_handler(void);
175 
176 #if IS_ENABLED(CONFIG_HYPERV)
177 extern struct clocksource *hyperv_cs;
178 extern void *hv_hypercall_pg;
179 
180 static inline u64 hv_do_hypercall(u64 control, void *input, void *output)
181 {
182 	u64 input_address = input ? virt_to_phys(input) : 0;
183 	u64 output_address = output ? virt_to_phys(output) : 0;
184 	u64 hv_status;
185 
186 #ifdef CONFIG_X86_64
187 	if (!hv_hypercall_pg)
188 		return U64_MAX;
189 
190 	__asm__ __volatile__("mov %4, %%r8\n"
191 			     CALL_NOSPEC
192 			     : "=a" (hv_status), ASM_CALL_CONSTRAINT,
193 			       "+c" (control), "+d" (input_address)
194 			     :  "r" (output_address),
195 				THUNK_TARGET(hv_hypercall_pg)
196 			     : "cc", "memory", "r8", "r9", "r10", "r11");
197 #else
198 	u32 input_address_hi = upper_32_bits(input_address);
199 	u32 input_address_lo = lower_32_bits(input_address);
200 	u32 output_address_hi = upper_32_bits(output_address);
201 	u32 output_address_lo = lower_32_bits(output_address);
202 
203 	if (!hv_hypercall_pg)
204 		return U64_MAX;
205 
206 	__asm__ __volatile__(CALL_NOSPEC
207 			     : "=A" (hv_status),
208 			       "+c" (input_address_lo), ASM_CALL_CONSTRAINT
209 			     : "A" (control),
210 			       "b" (input_address_hi),
211 			       "D"(output_address_hi), "S"(output_address_lo),
212 			       THUNK_TARGET(hv_hypercall_pg)
213 			     : "cc", "memory");
214 #endif /* !x86_64 */
215 	return hv_status;
216 }
217 
218 #define HV_HYPERCALL_RESULT_MASK	GENMASK_ULL(15, 0)
219 #define HV_HYPERCALL_FAST_BIT		BIT(16)
220 #define HV_HYPERCALL_VARHEAD_OFFSET	17
221 #define HV_HYPERCALL_REP_COMP_OFFSET	32
222 #define HV_HYPERCALL_REP_COMP_MASK	GENMASK_ULL(43, 32)
223 #define HV_HYPERCALL_REP_START_OFFSET	48
224 #define HV_HYPERCALL_REP_START_MASK	GENMASK_ULL(59, 48)
225 
226 /* Fast hypercall with 8 bytes of input and no output */
227 static inline u64 hv_do_fast_hypercall8(u16 code, u64 input1)
228 {
229 	u64 hv_status, control = (u64)code | HV_HYPERCALL_FAST_BIT;
230 
231 #ifdef CONFIG_X86_64
232 	{
233 		__asm__ __volatile__(CALL_NOSPEC
234 				     : "=a" (hv_status), ASM_CALL_CONSTRAINT,
235 				       "+c" (control), "+d" (input1)
236 				     : THUNK_TARGET(hv_hypercall_pg)
237 				     : "cc", "r8", "r9", "r10", "r11");
238 	}
239 #else
240 	{
241 		u32 input1_hi = upper_32_bits(input1);
242 		u32 input1_lo = lower_32_bits(input1);
243 
244 		__asm__ __volatile__ (CALL_NOSPEC
245 				      : "=A"(hv_status),
246 					"+c"(input1_lo),
247 					ASM_CALL_CONSTRAINT
248 				      :	"A" (control),
249 					"b" (input1_hi),
250 					THUNK_TARGET(hv_hypercall_pg)
251 				      : "cc", "edi", "esi");
252 	}
253 #endif
254 		return hv_status;
255 }
256 
257 /*
258  * Rep hypercalls. Callers of this functions are supposed to ensure that
259  * rep_count and varhead_size comply with Hyper-V hypercall definition.
260  */
261 static inline u64 hv_do_rep_hypercall(u16 code, u16 rep_count, u16 varhead_size,
262 				      void *input, void *output)
263 {
264 	u64 control = code;
265 	u64 status;
266 	u16 rep_comp;
267 
268 	control |= (u64)varhead_size << HV_HYPERCALL_VARHEAD_OFFSET;
269 	control |= (u64)rep_count << HV_HYPERCALL_REP_COMP_OFFSET;
270 
271 	do {
272 		status = hv_do_hypercall(control, input, output);
273 		if ((status & HV_HYPERCALL_RESULT_MASK) != HV_STATUS_SUCCESS)
274 			return status;
275 
276 		/* Bits 32-43 of status have 'Reps completed' data. */
277 		rep_comp = (status & HV_HYPERCALL_REP_COMP_MASK) >>
278 			HV_HYPERCALL_REP_COMP_OFFSET;
279 
280 		control &= ~HV_HYPERCALL_REP_START_MASK;
281 		control |= (u64)rep_comp << HV_HYPERCALL_REP_START_OFFSET;
282 
283 		touch_nmi_watchdog();
284 	} while (rep_comp < rep_count);
285 
286 	return status;
287 }
288 
289 /*
290  * Hypervisor's notion of virtual processor ID is different from
291  * Linux' notion of CPU ID. This information can only be retrieved
292  * in the context of the calling CPU. Setup a map for easy access
293  * to this information.
294  */
295 extern u32 *hv_vp_index;
296 extern u32 hv_max_vp_index;
297 
298 /**
299  * hv_cpu_number_to_vp_number() - Map CPU to VP.
300  * @cpu_number: CPU number in Linux terms
301  *
302  * This function returns the mapping between the Linux processor
303  * number and the hypervisor's virtual processor number, useful
304  * in making hypercalls and such that talk about specific
305  * processors.
306  *
307  * Return: Virtual processor number in Hyper-V terms
308  */
309 static inline int hv_cpu_number_to_vp_number(int cpu_number)
310 {
311 	return hv_vp_index[cpu_number];
312 }
313 
314 void hyperv_init(void);
315 void hyperv_setup_mmu_ops(void);
316 void hyper_alloc_mmu(void);
317 void hyperv_report_panic(struct pt_regs *regs, long err);
318 bool hv_is_hyperv_initialized(void);
319 void hyperv_cleanup(void);
320 
321 void hyperv_reenlightenment_intr(struct pt_regs *regs);
322 void set_hv_tscchange_cb(void (*cb)(void));
323 void clear_hv_tscchange_cb(void);
324 void hyperv_stop_tsc_emulation(void);
325 #else /* CONFIG_HYPERV */
326 static inline void hyperv_init(void) {}
327 static inline bool hv_is_hyperv_initialized(void) { return false; }
328 static inline void hyperv_cleanup(void) {}
329 static inline void hyperv_setup_mmu_ops(void) {}
330 static inline void set_hv_tscchange_cb(void (*cb)(void)) {}
331 static inline void clear_hv_tscchange_cb(void) {}
332 static inline void hyperv_stop_tsc_emulation(void) {};
333 #endif /* CONFIG_HYPERV */
334 
335 #ifdef CONFIG_HYPERV_TSCPAGE
336 struct ms_hyperv_tsc_page *hv_get_tsc_page(void);
337 static inline u64 hv_read_tsc_page_tsc(const struct ms_hyperv_tsc_page *tsc_pg,
338 				       u64 *cur_tsc)
339 {
340 	u64 scale, offset;
341 	u32 sequence;
342 
343 	/*
344 	 * The protocol for reading Hyper-V TSC page is specified in Hypervisor
345 	 * Top-Level Functional Specification ver. 3.0 and above. To get the
346 	 * reference time we must do the following:
347 	 * - READ ReferenceTscSequence
348 	 *   A special '0' value indicates the time source is unreliable and we
349 	 *   need to use something else. The currently published specification
350 	 *   versions (up to 4.0b) contain a mistake and wrongly claim '-1'
351 	 *   instead of '0' as the special value, see commit c35b82ef0294.
352 	 * - ReferenceTime =
353 	 *        ((RDTSC() * ReferenceTscScale) >> 64) + ReferenceTscOffset
354 	 * - READ ReferenceTscSequence again. In case its value has changed
355 	 *   since our first reading we need to discard ReferenceTime and repeat
356 	 *   the whole sequence as the hypervisor was updating the page in
357 	 *   between.
358 	 */
359 	do {
360 		sequence = READ_ONCE(tsc_pg->tsc_sequence);
361 		if (!sequence)
362 			return U64_MAX;
363 		/*
364 		 * Make sure we read sequence before we read other values from
365 		 * TSC page.
366 		 */
367 		smp_rmb();
368 
369 		scale = READ_ONCE(tsc_pg->tsc_scale);
370 		offset = READ_ONCE(tsc_pg->tsc_offset);
371 		*cur_tsc = rdtsc_ordered();
372 
373 		/*
374 		 * Make sure we read sequence after we read all other values
375 		 * from TSC page.
376 		 */
377 		smp_rmb();
378 
379 	} while (READ_ONCE(tsc_pg->tsc_sequence) != sequence);
380 
381 	return mul_u64_u64_shr(*cur_tsc, scale, 64) + offset;
382 }
383 
384 static inline u64 hv_read_tsc_page(const struct ms_hyperv_tsc_page *tsc_pg)
385 {
386 	u64 cur_tsc;
387 
388 	return hv_read_tsc_page_tsc(tsc_pg, &cur_tsc);
389 }
390 
391 #else
392 static inline struct ms_hyperv_tsc_page *hv_get_tsc_page(void)
393 {
394 	return NULL;
395 }
396 
397 static inline u64 hv_read_tsc_page_tsc(const struct ms_hyperv_tsc_page *tsc_pg,
398 				       u64 *cur_tsc)
399 {
400 	BUG();
401 	return U64_MAX;
402 }
403 #endif
404 #endif
405