1 /* SPDX-License-Identifier: GPL-2.0 */ 2 #ifndef _ASM_X86_MSHYPER_H 3 #define _ASM_X86_MSHYPER_H 4 5 #include <linux/types.h> 6 #include <linux/atomic.h> 7 #include <linux/nmi.h> 8 #include <asm/io.h> 9 #include <asm/hyperv-tlfs.h> 10 #include <asm/nospec-branch.h> 11 12 #define VP_INVAL U32_MAX 13 14 struct ms_hyperv_info { 15 u32 features; 16 u32 misc_features; 17 u32 hints; 18 u32 nested_features; 19 u32 max_vp_index; 20 u32 max_lp_index; 21 }; 22 23 extern struct ms_hyperv_info ms_hyperv; 24 25 /* 26 * Generate the guest ID. 27 */ 28 29 static inline __u64 generate_guest_id(__u64 d_info1, __u64 kernel_version, 30 __u64 d_info2) 31 { 32 __u64 guest_id = 0; 33 34 guest_id = (((__u64)HV_LINUX_VENDOR_ID) << 48); 35 guest_id |= (d_info1 << 48); 36 guest_id |= (kernel_version << 16); 37 guest_id |= d_info2; 38 39 return guest_id; 40 } 41 42 43 /* Free the message slot and signal end-of-message if required */ 44 static inline void vmbus_signal_eom(struct hv_message *msg, u32 old_msg_type) 45 { 46 /* 47 * On crash we're reading some other CPU's message page and we need 48 * to be careful: this other CPU may already had cleared the header 49 * and the host may already had delivered some other message there. 50 * In case we blindly write msg->header.message_type we're going 51 * to lose it. We can still lose a message of the same type but 52 * we count on the fact that there can only be one 53 * CHANNELMSG_UNLOAD_RESPONSE and we don't care about other messages 54 * on crash. 55 */ 56 if (cmpxchg(&msg->header.message_type, old_msg_type, 57 HVMSG_NONE) != old_msg_type) 58 return; 59 60 /* 61 * Make sure the write to MessageType (ie set to 62 * HVMSG_NONE) happens before we read the 63 * MessagePending and EOMing. Otherwise, the EOMing 64 * will not deliver any more messages since there is 65 * no empty slot 66 */ 67 mb(); 68 69 if (msg->header.message_flags.msg_pending) { 70 /* 71 * This will cause message queue rescan to 72 * possibly deliver another msg from the 73 * hypervisor 74 */ 75 wrmsrl(HV_X64_MSR_EOM, 0); 76 } 77 } 78 79 #define hv_init_timer(timer, tick) \ 80 wrmsrl(HV_X64_MSR_STIMER0_COUNT + (2*timer), tick) 81 #define hv_init_timer_config(timer, val) \ 82 wrmsrl(HV_X64_MSR_STIMER0_CONFIG + (2*timer), val) 83 84 #define hv_get_simp(val) rdmsrl(HV_X64_MSR_SIMP, val) 85 #define hv_set_simp(val) wrmsrl(HV_X64_MSR_SIMP, val) 86 87 #define hv_get_siefp(val) rdmsrl(HV_X64_MSR_SIEFP, val) 88 #define hv_set_siefp(val) wrmsrl(HV_X64_MSR_SIEFP, val) 89 90 #define hv_get_synic_state(val) rdmsrl(HV_X64_MSR_SCONTROL, val) 91 #define hv_set_synic_state(val) wrmsrl(HV_X64_MSR_SCONTROL, val) 92 93 #define hv_get_vp_index(index) rdmsrl(HV_X64_MSR_VP_INDEX, index) 94 95 #define hv_get_synint_state(int_num, val) \ 96 rdmsrl(HV_X64_MSR_SINT0 + int_num, val) 97 #define hv_set_synint_state(int_num, val) \ 98 wrmsrl(HV_X64_MSR_SINT0 + int_num, val) 99 100 #define hv_get_crash_ctl(val) \ 101 rdmsrl(HV_X64_MSR_CRASH_CTL, val) 102 103 void hyperv_callback_vector(void); 104 void hyperv_reenlightenment_vector(void); 105 #ifdef CONFIG_TRACING 106 #define trace_hyperv_callback_vector hyperv_callback_vector 107 #endif 108 void hyperv_vector_handler(struct pt_regs *regs); 109 void hv_setup_vmbus_irq(void (*handler)(void)); 110 void hv_remove_vmbus_irq(void); 111 112 void hv_setup_kexec_handler(void (*handler)(void)); 113 void hv_remove_kexec_handler(void); 114 void hv_setup_crash_handler(void (*handler)(struct pt_regs *regs)); 115 void hv_remove_crash_handler(void); 116 117 /* 118 * Routines for stimer0 Direct Mode handling. 119 * On x86/x64, there are no percpu actions to take. 120 */ 121 void hv_stimer0_vector_handler(struct pt_regs *regs); 122 void hv_stimer0_callback_vector(void); 123 int hv_setup_stimer0_irq(int *irq, int *vector, void (*handler)(void)); 124 void hv_remove_stimer0_irq(int irq); 125 126 static inline void hv_enable_stimer0_percpu_irq(int irq) {} 127 static inline void hv_disable_stimer0_percpu_irq(int irq) {} 128 129 130 #if IS_ENABLED(CONFIG_HYPERV) 131 extern struct clocksource *hyperv_cs; 132 extern void *hv_hypercall_pg; 133 extern void __percpu **hyperv_pcpu_input_arg; 134 135 static inline u64 hv_do_hypercall(u64 control, void *input, void *output) 136 { 137 u64 input_address = input ? virt_to_phys(input) : 0; 138 u64 output_address = output ? virt_to_phys(output) : 0; 139 u64 hv_status; 140 141 #ifdef CONFIG_X86_64 142 if (!hv_hypercall_pg) 143 return U64_MAX; 144 145 __asm__ __volatile__("mov %4, %%r8\n" 146 CALL_NOSPEC 147 : "=a" (hv_status), ASM_CALL_CONSTRAINT, 148 "+c" (control), "+d" (input_address) 149 : "r" (output_address), 150 THUNK_TARGET(hv_hypercall_pg) 151 : "cc", "memory", "r8", "r9", "r10", "r11"); 152 #else 153 u32 input_address_hi = upper_32_bits(input_address); 154 u32 input_address_lo = lower_32_bits(input_address); 155 u32 output_address_hi = upper_32_bits(output_address); 156 u32 output_address_lo = lower_32_bits(output_address); 157 158 if (!hv_hypercall_pg) 159 return U64_MAX; 160 161 __asm__ __volatile__(CALL_NOSPEC 162 : "=A" (hv_status), 163 "+c" (input_address_lo), ASM_CALL_CONSTRAINT 164 : "A" (control), 165 "b" (input_address_hi), 166 "D"(output_address_hi), "S"(output_address_lo), 167 THUNK_TARGET(hv_hypercall_pg) 168 : "cc", "memory"); 169 #endif /* !x86_64 */ 170 return hv_status; 171 } 172 173 /* Fast hypercall with 8 bytes of input and no output */ 174 static inline u64 hv_do_fast_hypercall8(u16 code, u64 input1) 175 { 176 u64 hv_status, control = (u64)code | HV_HYPERCALL_FAST_BIT; 177 178 #ifdef CONFIG_X86_64 179 { 180 __asm__ __volatile__(CALL_NOSPEC 181 : "=a" (hv_status), ASM_CALL_CONSTRAINT, 182 "+c" (control), "+d" (input1) 183 : THUNK_TARGET(hv_hypercall_pg) 184 : "cc", "r8", "r9", "r10", "r11"); 185 } 186 #else 187 { 188 u32 input1_hi = upper_32_bits(input1); 189 u32 input1_lo = lower_32_bits(input1); 190 191 __asm__ __volatile__ (CALL_NOSPEC 192 : "=A"(hv_status), 193 "+c"(input1_lo), 194 ASM_CALL_CONSTRAINT 195 : "A" (control), 196 "b" (input1_hi), 197 THUNK_TARGET(hv_hypercall_pg) 198 : "cc", "edi", "esi"); 199 } 200 #endif 201 return hv_status; 202 } 203 204 /* Fast hypercall with 16 bytes of input */ 205 static inline u64 hv_do_fast_hypercall16(u16 code, u64 input1, u64 input2) 206 { 207 u64 hv_status, control = (u64)code | HV_HYPERCALL_FAST_BIT; 208 209 #ifdef CONFIG_X86_64 210 { 211 __asm__ __volatile__("mov %4, %%r8\n" 212 CALL_NOSPEC 213 : "=a" (hv_status), ASM_CALL_CONSTRAINT, 214 "+c" (control), "+d" (input1) 215 : "r" (input2), 216 THUNK_TARGET(hv_hypercall_pg) 217 : "cc", "r8", "r9", "r10", "r11"); 218 } 219 #else 220 { 221 u32 input1_hi = upper_32_bits(input1); 222 u32 input1_lo = lower_32_bits(input1); 223 u32 input2_hi = upper_32_bits(input2); 224 u32 input2_lo = lower_32_bits(input2); 225 226 __asm__ __volatile__ (CALL_NOSPEC 227 : "=A"(hv_status), 228 "+c"(input1_lo), ASM_CALL_CONSTRAINT 229 : "A" (control), "b" (input1_hi), 230 "D"(input2_hi), "S"(input2_lo), 231 THUNK_TARGET(hv_hypercall_pg) 232 : "cc"); 233 } 234 #endif 235 return hv_status; 236 } 237 238 /* 239 * Rep hypercalls. Callers of this functions are supposed to ensure that 240 * rep_count and varhead_size comply with Hyper-V hypercall definition. 241 */ 242 static inline u64 hv_do_rep_hypercall(u16 code, u16 rep_count, u16 varhead_size, 243 void *input, void *output) 244 { 245 u64 control = code; 246 u64 status; 247 u16 rep_comp; 248 249 control |= (u64)varhead_size << HV_HYPERCALL_VARHEAD_OFFSET; 250 control |= (u64)rep_count << HV_HYPERCALL_REP_COMP_OFFSET; 251 252 do { 253 status = hv_do_hypercall(control, input, output); 254 if ((status & HV_HYPERCALL_RESULT_MASK) != HV_STATUS_SUCCESS) 255 return status; 256 257 /* Bits 32-43 of status have 'Reps completed' data. */ 258 rep_comp = (status & HV_HYPERCALL_REP_COMP_MASK) >> 259 HV_HYPERCALL_REP_COMP_OFFSET; 260 261 control &= ~HV_HYPERCALL_REP_START_MASK; 262 control |= (u64)rep_comp << HV_HYPERCALL_REP_START_OFFSET; 263 264 touch_nmi_watchdog(); 265 } while (rep_comp < rep_count); 266 267 return status; 268 } 269 270 /* 271 * Hypervisor's notion of virtual processor ID is different from 272 * Linux' notion of CPU ID. This information can only be retrieved 273 * in the context of the calling CPU. Setup a map for easy access 274 * to this information. 275 */ 276 extern u32 *hv_vp_index; 277 extern u32 hv_max_vp_index; 278 extern struct hv_vp_assist_page **hv_vp_assist_page; 279 280 static inline struct hv_vp_assist_page *hv_get_vp_assist_page(unsigned int cpu) 281 { 282 if (!hv_vp_assist_page) 283 return NULL; 284 285 return hv_vp_assist_page[cpu]; 286 } 287 288 /** 289 * hv_cpu_number_to_vp_number() - Map CPU to VP. 290 * @cpu_number: CPU number in Linux terms 291 * 292 * This function returns the mapping between the Linux processor 293 * number and the hypervisor's virtual processor number, useful 294 * in making hypercalls and such that talk about specific 295 * processors. 296 * 297 * Return: Virtual processor number in Hyper-V terms 298 */ 299 static inline int hv_cpu_number_to_vp_number(int cpu_number) 300 { 301 return hv_vp_index[cpu_number]; 302 } 303 304 static inline int cpumask_to_vpset(struct hv_vpset *vpset, 305 const struct cpumask *cpus) 306 { 307 int cpu, vcpu, vcpu_bank, vcpu_offset, nr_bank = 1; 308 309 /* valid_bank_mask can represent up to 64 banks */ 310 if (hv_max_vp_index / 64 >= 64) 311 return 0; 312 313 /* 314 * Clear all banks up to the maximum possible bank as hv_tlb_flush_ex 315 * structs are not cleared between calls, we risk flushing unneeded 316 * vCPUs otherwise. 317 */ 318 for (vcpu_bank = 0; vcpu_bank <= hv_max_vp_index / 64; vcpu_bank++) 319 vpset->bank_contents[vcpu_bank] = 0; 320 321 /* 322 * Some banks may end up being empty but this is acceptable. 323 */ 324 for_each_cpu(cpu, cpus) { 325 vcpu = hv_cpu_number_to_vp_number(cpu); 326 if (vcpu == VP_INVAL) 327 return -1; 328 vcpu_bank = vcpu / 64; 329 vcpu_offset = vcpu % 64; 330 __set_bit(vcpu_offset, (unsigned long *) 331 &vpset->bank_contents[vcpu_bank]); 332 if (vcpu_bank >= nr_bank) 333 nr_bank = vcpu_bank + 1; 334 } 335 vpset->valid_bank_mask = GENMASK_ULL(nr_bank - 1, 0); 336 return nr_bank; 337 } 338 339 void __init hyperv_init(void); 340 void hyperv_setup_mmu_ops(void); 341 void hyperv_report_panic(struct pt_regs *regs, long err); 342 void hyperv_report_panic_msg(phys_addr_t pa, size_t size); 343 bool hv_is_hyperv_initialized(void); 344 void hyperv_cleanup(void); 345 346 void hyperv_reenlightenment_intr(struct pt_regs *regs); 347 void set_hv_tscchange_cb(void (*cb)(void)); 348 void clear_hv_tscchange_cb(void); 349 void hyperv_stop_tsc_emulation(void); 350 int hyperv_flush_guest_mapping(u64 as); 351 352 #ifdef CONFIG_X86_64 353 void hv_apic_init(void); 354 #else 355 static inline void hv_apic_init(void) {} 356 #endif 357 358 #else /* CONFIG_HYPERV */ 359 static inline void hyperv_init(void) {} 360 static inline bool hv_is_hyperv_initialized(void) { return false; } 361 static inline void hyperv_cleanup(void) {} 362 static inline void hyperv_setup_mmu_ops(void) {} 363 static inline void set_hv_tscchange_cb(void (*cb)(void)) {} 364 static inline void clear_hv_tscchange_cb(void) {} 365 static inline void hyperv_stop_tsc_emulation(void) {}; 366 static inline struct hv_vp_assist_page *hv_get_vp_assist_page(unsigned int cpu) 367 { 368 return NULL; 369 } 370 static inline int hyperv_flush_guest_mapping(u64 as) { return -1; } 371 #endif /* CONFIG_HYPERV */ 372 373 #ifdef CONFIG_HYPERV_TSCPAGE 374 struct ms_hyperv_tsc_page *hv_get_tsc_page(void); 375 static inline u64 hv_read_tsc_page_tsc(const struct ms_hyperv_tsc_page *tsc_pg, 376 u64 *cur_tsc) 377 { 378 u64 scale, offset; 379 u32 sequence; 380 381 /* 382 * The protocol for reading Hyper-V TSC page is specified in Hypervisor 383 * Top-Level Functional Specification ver. 3.0 and above. To get the 384 * reference time we must do the following: 385 * - READ ReferenceTscSequence 386 * A special '0' value indicates the time source is unreliable and we 387 * need to use something else. The currently published specification 388 * versions (up to 4.0b) contain a mistake and wrongly claim '-1' 389 * instead of '0' as the special value, see commit c35b82ef0294. 390 * - ReferenceTime = 391 * ((RDTSC() * ReferenceTscScale) >> 64) + ReferenceTscOffset 392 * - READ ReferenceTscSequence again. In case its value has changed 393 * since our first reading we need to discard ReferenceTime and repeat 394 * the whole sequence as the hypervisor was updating the page in 395 * between. 396 */ 397 do { 398 sequence = READ_ONCE(tsc_pg->tsc_sequence); 399 if (!sequence) 400 return U64_MAX; 401 /* 402 * Make sure we read sequence before we read other values from 403 * TSC page. 404 */ 405 smp_rmb(); 406 407 scale = READ_ONCE(tsc_pg->tsc_scale); 408 offset = READ_ONCE(tsc_pg->tsc_offset); 409 *cur_tsc = rdtsc_ordered(); 410 411 /* 412 * Make sure we read sequence after we read all other values 413 * from TSC page. 414 */ 415 smp_rmb(); 416 417 } while (READ_ONCE(tsc_pg->tsc_sequence) != sequence); 418 419 return mul_u64_u64_shr(*cur_tsc, scale, 64) + offset; 420 } 421 422 static inline u64 hv_read_tsc_page(const struct ms_hyperv_tsc_page *tsc_pg) 423 { 424 u64 cur_tsc; 425 426 return hv_read_tsc_page_tsc(tsc_pg, &cur_tsc); 427 } 428 429 #else 430 static inline struct ms_hyperv_tsc_page *hv_get_tsc_page(void) 431 { 432 return NULL; 433 } 434 435 static inline u64 hv_read_tsc_page_tsc(const struct ms_hyperv_tsc_page *tsc_pg, 436 u64 *cur_tsc) 437 { 438 BUG(); 439 return U64_MAX; 440 } 441 #endif 442 #endif 443