xref: /openbmc/linux/arch/x86/include/asm/mmu_context.h (revision dce8efa0575c8d9b5f9f9ae41437200c6d3e0bf3)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _ASM_X86_MMU_CONTEXT_H
3 #define _ASM_X86_MMU_CONTEXT_H
4 
5 #include <asm/desc.h>
6 #include <linux/atomic.h>
7 #include <linux/mm_types.h>
8 #include <linux/pkeys.h>
9 
10 #include <trace/events/tlb.h>
11 
12 #include <asm/pgalloc.h>
13 #include <asm/tlbflush.h>
14 #include <asm/paravirt.h>
15 #include <asm/mpx.h>
16 
17 extern atomic64_t last_mm_ctx_id;
18 
19 #ifndef CONFIG_PARAVIRT
20 static inline void paravirt_activate_mm(struct mm_struct *prev,
21 					struct mm_struct *next)
22 {
23 }
24 #endif	/* !CONFIG_PARAVIRT */
25 
26 #ifdef CONFIG_PERF_EVENTS
27 extern struct static_key rdpmc_always_available;
28 
29 static inline void load_mm_cr4(struct mm_struct *mm)
30 {
31 	if (static_key_false(&rdpmc_always_available) ||
32 	    atomic_read(&mm->context.perf_rdpmc_allowed))
33 		cr4_set_bits(X86_CR4_PCE);
34 	else
35 		cr4_clear_bits(X86_CR4_PCE);
36 }
37 #else
38 static inline void load_mm_cr4(struct mm_struct *mm) {}
39 #endif
40 
41 #ifdef CONFIG_MODIFY_LDT_SYSCALL
42 /*
43  * ldt_structs can be allocated, used, and freed, but they are never
44  * modified while live.
45  */
46 struct ldt_struct {
47 	/*
48 	 * Xen requires page-aligned LDTs with special permissions.  This is
49 	 * needed to prevent us from installing evil descriptors such as
50 	 * call gates.  On native, we could merge the ldt_struct and LDT
51 	 * allocations, but it's not worth trying to optimize.
52 	 */
53 	struct desc_struct	*entries;
54 	unsigned int		nr_entries;
55 
56 	/*
57 	 * If PTI is in use, then the entries array is not mapped while we're
58 	 * in user mode.  The whole array will be aliased at the addressed
59 	 * given by ldt_slot_va(slot).  We use two slots so that we can allocate
60 	 * and map, and enable a new LDT without invalidating the mapping
61 	 * of an older, still-in-use LDT.
62 	 *
63 	 * slot will be -1 if this LDT doesn't have an alias mapping.
64 	 */
65 	int			slot;
66 };
67 
68 /* This is a multiple of PAGE_SIZE. */
69 #define LDT_SLOT_STRIDE (LDT_ENTRIES * LDT_ENTRY_SIZE)
70 
71 static inline void *ldt_slot_va(int slot)
72 {
73 #ifdef CONFIG_X86_64
74 	return (void *)(LDT_BASE_ADDR + LDT_SLOT_STRIDE * slot);
75 #else
76 	BUG();
77 	return (void *)fix_to_virt(FIX_HOLE);
78 #endif
79 }
80 
81 /*
82  * Used for LDT copy/destruction.
83  */
84 static inline void init_new_context_ldt(struct mm_struct *mm)
85 {
86 	mm->context.ldt = NULL;
87 	init_rwsem(&mm->context.ldt_usr_sem);
88 }
89 int ldt_dup_context(struct mm_struct *oldmm, struct mm_struct *mm);
90 void destroy_context_ldt(struct mm_struct *mm);
91 void ldt_arch_exit_mmap(struct mm_struct *mm);
92 #else	/* CONFIG_MODIFY_LDT_SYSCALL */
93 static inline void init_new_context_ldt(struct mm_struct *mm) { }
94 static inline int ldt_dup_context(struct mm_struct *oldmm,
95 				  struct mm_struct *mm)
96 {
97 	return 0;
98 }
99 static inline void destroy_context_ldt(struct mm_struct *mm) { }
100 static inline void ldt_arch_exit_mmap(struct mm_struct *mm) { }
101 #endif
102 
103 static inline void load_mm_ldt(struct mm_struct *mm)
104 {
105 #ifdef CONFIG_MODIFY_LDT_SYSCALL
106 	struct ldt_struct *ldt;
107 
108 	/* READ_ONCE synchronizes with smp_store_release */
109 	ldt = READ_ONCE(mm->context.ldt);
110 
111 	/*
112 	 * Any change to mm->context.ldt is followed by an IPI to all
113 	 * CPUs with the mm active.  The LDT will not be freed until
114 	 * after the IPI is handled by all such CPUs.  This means that,
115 	 * if the ldt_struct changes before we return, the values we see
116 	 * will be safe, and the new values will be loaded before we run
117 	 * any user code.
118 	 *
119 	 * NB: don't try to convert this to use RCU without extreme care.
120 	 * We would still need IRQs off, because we don't want to change
121 	 * the local LDT after an IPI loaded a newer value than the one
122 	 * that we can see.
123 	 */
124 
125 	if (unlikely(ldt)) {
126 		if (static_cpu_has(X86_FEATURE_PTI)) {
127 			if (WARN_ON_ONCE((unsigned long)ldt->slot > 1)) {
128 				/*
129 				 * Whoops -- either the new LDT isn't mapped
130 				 * (if slot == -1) or is mapped into a bogus
131 				 * slot (if slot > 1).
132 				 */
133 				clear_LDT();
134 				return;
135 			}
136 
137 			/*
138 			 * If page table isolation is enabled, ldt->entries
139 			 * will not be mapped in the userspace pagetables.
140 			 * Tell the CPU to access the LDT through the alias
141 			 * at ldt_slot_va(ldt->slot).
142 			 */
143 			set_ldt(ldt_slot_va(ldt->slot), ldt->nr_entries);
144 		} else {
145 			set_ldt(ldt->entries, ldt->nr_entries);
146 		}
147 	} else {
148 		clear_LDT();
149 	}
150 #else
151 	clear_LDT();
152 #endif
153 }
154 
155 static inline void switch_ldt(struct mm_struct *prev, struct mm_struct *next)
156 {
157 #ifdef CONFIG_MODIFY_LDT_SYSCALL
158 	/*
159 	 * Load the LDT if either the old or new mm had an LDT.
160 	 *
161 	 * An mm will never go from having an LDT to not having an LDT.  Two
162 	 * mms never share an LDT, so we don't gain anything by checking to
163 	 * see whether the LDT changed.  There's also no guarantee that
164 	 * prev->context.ldt actually matches LDTR, but, if LDTR is non-NULL,
165 	 * then prev->context.ldt will also be non-NULL.
166 	 *
167 	 * If we really cared, we could optimize the case where prev == next
168 	 * and we're exiting lazy mode.  Most of the time, if this happens,
169 	 * we don't actually need to reload LDTR, but modify_ldt() is mostly
170 	 * used by legacy code and emulators where we don't need this level of
171 	 * performance.
172 	 *
173 	 * This uses | instead of || because it generates better code.
174 	 */
175 	if (unlikely((unsigned long)prev->context.ldt |
176 		     (unsigned long)next->context.ldt))
177 		load_mm_ldt(next);
178 #endif
179 
180 	DEBUG_LOCKS_WARN_ON(preemptible());
181 }
182 
183 void enter_lazy_tlb(struct mm_struct *mm, struct task_struct *tsk);
184 
185 static inline int init_new_context(struct task_struct *tsk,
186 				   struct mm_struct *mm)
187 {
188 	mutex_init(&mm->context.lock);
189 
190 	mm->context.ctx_id = atomic64_inc_return(&last_mm_ctx_id);
191 	atomic64_set(&mm->context.tlb_gen, 0);
192 
193 #ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS
194 	if (cpu_feature_enabled(X86_FEATURE_OSPKE)) {
195 		/* pkey 0 is the default and always allocated */
196 		mm->context.pkey_allocation_map = 0x1;
197 		/* -1 means unallocated or invalid */
198 		mm->context.execute_only_pkey = -1;
199 	}
200 #endif
201 	init_new_context_ldt(mm);
202 	return 0;
203 }
204 static inline void destroy_context(struct mm_struct *mm)
205 {
206 	destroy_context_ldt(mm);
207 }
208 
209 extern void switch_mm(struct mm_struct *prev, struct mm_struct *next,
210 		      struct task_struct *tsk);
211 
212 extern void switch_mm_irqs_off(struct mm_struct *prev, struct mm_struct *next,
213 			       struct task_struct *tsk);
214 #define switch_mm_irqs_off switch_mm_irqs_off
215 
216 #define activate_mm(prev, next)			\
217 do {						\
218 	paravirt_activate_mm((prev), (next));	\
219 	switch_mm((prev), (next), NULL);	\
220 } while (0);
221 
222 #ifdef CONFIG_X86_32
223 #define deactivate_mm(tsk, mm)			\
224 do {						\
225 	lazy_load_gs(0);			\
226 } while (0)
227 #else
228 #define deactivate_mm(tsk, mm)			\
229 do {						\
230 	load_gs_index(0);			\
231 	loadsegment(fs, 0);			\
232 } while (0)
233 #endif
234 
235 static inline int arch_dup_mmap(struct mm_struct *oldmm, struct mm_struct *mm)
236 {
237 	paravirt_arch_dup_mmap(oldmm, mm);
238 	return ldt_dup_context(oldmm, mm);
239 }
240 
241 static inline void arch_exit_mmap(struct mm_struct *mm)
242 {
243 	paravirt_arch_exit_mmap(mm);
244 	ldt_arch_exit_mmap(mm);
245 }
246 
247 #ifdef CONFIG_X86_64
248 static inline bool is_64bit_mm(struct mm_struct *mm)
249 {
250 	return	!IS_ENABLED(CONFIG_IA32_EMULATION) ||
251 		!(mm->context.ia32_compat == TIF_IA32);
252 }
253 #else
254 static inline bool is_64bit_mm(struct mm_struct *mm)
255 {
256 	return false;
257 }
258 #endif
259 
260 static inline void arch_bprm_mm_init(struct mm_struct *mm,
261 		struct vm_area_struct *vma)
262 {
263 	mpx_mm_init(mm);
264 }
265 
266 static inline void arch_unmap(struct mm_struct *mm, struct vm_area_struct *vma,
267 			      unsigned long start, unsigned long end)
268 {
269 	/*
270 	 * mpx_notify_unmap() goes and reads a rarely-hot
271 	 * cacheline in the mm_struct.  That can be expensive
272 	 * enough to be seen in profiles.
273 	 *
274 	 * The mpx_notify_unmap() call and its contents have been
275 	 * observed to affect munmap() performance on hardware
276 	 * where MPX is not present.
277 	 *
278 	 * The unlikely() optimizes for the fast case: no MPX
279 	 * in the CPU, or no MPX use in the process.  Even if
280 	 * we get this wrong (in the unlikely event that MPX
281 	 * is widely enabled on some system) the overhead of
282 	 * MPX itself (reading bounds tables) is expected to
283 	 * overwhelm the overhead of getting this unlikely()
284 	 * consistently wrong.
285 	 */
286 	if (unlikely(cpu_feature_enabled(X86_FEATURE_MPX)))
287 		mpx_notify_unmap(mm, vma, start, end);
288 }
289 
290 #ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS
291 static inline int vma_pkey(struct vm_area_struct *vma)
292 {
293 	unsigned long vma_pkey_mask = VM_PKEY_BIT0 | VM_PKEY_BIT1 |
294 				      VM_PKEY_BIT2 | VM_PKEY_BIT3;
295 
296 	return (vma->vm_flags & vma_pkey_mask) >> VM_PKEY_SHIFT;
297 }
298 #else
299 static inline int vma_pkey(struct vm_area_struct *vma)
300 {
301 	return 0;
302 }
303 #endif
304 
305 /*
306  * We only want to enforce protection keys on the current process
307  * because we effectively have no access to PKRU for other
308  * processes or any way to tell *which * PKRU in a threaded
309  * process we could use.
310  *
311  * So do not enforce things if the VMA is not from the current
312  * mm, or if we are in a kernel thread.
313  */
314 static inline bool vma_is_foreign(struct vm_area_struct *vma)
315 {
316 	if (!current->mm)
317 		return true;
318 	/*
319 	 * Should PKRU be enforced on the access to this VMA?  If
320 	 * the VMA is from another process, then PKRU has no
321 	 * relevance and should not be enforced.
322 	 */
323 	if (current->mm != vma->vm_mm)
324 		return true;
325 
326 	return false;
327 }
328 
329 static inline bool arch_vma_access_permitted(struct vm_area_struct *vma,
330 		bool write, bool execute, bool foreign)
331 {
332 	/* pkeys never affect instruction fetches */
333 	if (execute)
334 		return true;
335 	/* allow access if the VMA is not one from this process */
336 	if (foreign || vma_is_foreign(vma))
337 		return true;
338 	return __pkru_allows_pkey(vma_pkey(vma), write);
339 }
340 
341 /*
342  * This can be used from process context to figure out what the value of
343  * CR3 is without needing to do a (slow) __read_cr3().
344  *
345  * It's intended to be used for code like KVM that sneakily changes CR3
346  * and needs to restore it.  It needs to be used very carefully.
347  */
348 static inline unsigned long __get_current_cr3_fast(void)
349 {
350 	unsigned long cr3 = build_cr3(this_cpu_read(cpu_tlbstate.loaded_mm)->pgd,
351 		this_cpu_read(cpu_tlbstate.loaded_mm_asid));
352 
353 	/* For now, be very restrictive about when this can be called. */
354 	VM_WARN_ON(in_nmi() || preemptible());
355 
356 	VM_BUG_ON(cr3 != __read_cr3());
357 	return cr3;
358 }
359 
360 #endif /* _ASM_X86_MMU_CONTEXT_H */
361