1 /* SPDX-License-Identifier: GPL-2.0 */ 2 #ifndef _ASM_X86_MMU_CONTEXT_H 3 #define _ASM_X86_MMU_CONTEXT_H 4 5 #include <asm/desc.h> 6 #include <linux/atomic.h> 7 #include <linux/mm_types.h> 8 #include <linux/pkeys.h> 9 10 #include <trace/events/tlb.h> 11 12 #include <asm/pgalloc.h> 13 #include <asm/tlbflush.h> 14 #include <asm/paravirt.h> 15 #include <asm/mpx.h> 16 #include <asm/debugreg.h> 17 18 extern atomic64_t last_mm_ctx_id; 19 20 #ifndef CONFIG_PARAVIRT_XXL 21 static inline void paravirt_activate_mm(struct mm_struct *prev, 22 struct mm_struct *next) 23 { 24 } 25 #endif /* !CONFIG_PARAVIRT_XXL */ 26 27 #ifdef CONFIG_PERF_EVENTS 28 29 DECLARE_STATIC_KEY_FALSE(rdpmc_never_available_key); 30 DECLARE_STATIC_KEY_FALSE(rdpmc_always_available_key); 31 32 static inline void load_mm_cr4_irqsoff(struct mm_struct *mm) 33 { 34 if (static_branch_unlikely(&rdpmc_always_available_key) || 35 (!static_branch_unlikely(&rdpmc_never_available_key) && 36 atomic_read(&mm->context.perf_rdpmc_allowed))) 37 cr4_set_bits_irqsoff(X86_CR4_PCE); 38 else 39 cr4_clear_bits_irqsoff(X86_CR4_PCE); 40 } 41 #else 42 static inline void load_mm_cr4_irqsoff(struct mm_struct *mm) {} 43 #endif 44 45 #ifdef CONFIG_MODIFY_LDT_SYSCALL 46 /* 47 * ldt_structs can be allocated, used, and freed, but they are never 48 * modified while live. 49 */ 50 struct ldt_struct { 51 /* 52 * Xen requires page-aligned LDTs with special permissions. This is 53 * needed to prevent us from installing evil descriptors such as 54 * call gates. On native, we could merge the ldt_struct and LDT 55 * allocations, but it's not worth trying to optimize. 56 */ 57 struct desc_struct *entries; 58 unsigned int nr_entries; 59 60 /* 61 * If PTI is in use, then the entries array is not mapped while we're 62 * in user mode. The whole array will be aliased at the addressed 63 * given by ldt_slot_va(slot). We use two slots so that we can allocate 64 * and map, and enable a new LDT without invalidating the mapping 65 * of an older, still-in-use LDT. 66 * 67 * slot will be -1 if this LDT doesn't have an alias mapping. 68 */ 69 int slot; 70 }; 71 72 /* This is a multiple of PAGE_SIZE. */ 73 #define LDT_SLOT_STRIDE (LDT_ENTRIES * LDT_ENTRY_SIZE) 74 75 static inline void *ldt_slot_va(int slot) 76 { 77 return (void *)(LDT_BASE_ADDR + LDT_SLOT_STRIDE * slot); 78 } 79 80 /* 81 * Used for LDT copy/destruction. 82 */ 83 static inline void init_new_context_ldt(struct mm_struct *mm) 84 { 85 mm->context.ldt = NULL; 86 init_rwsem(&mm->context.ldt_usr_sem); 87 } 88 int ldt_dup_context(struct mm_struct *oldmm, struct mm_struct *mm); 89 void destroy_context_ldt(struct mm_struct *mm); 90 void ldt_arch_exit_mmap(struct mm_struct *mm); 91 #else /* CONFIG_MODIFY_LDT_SYSCALL */ 92 static inline void init_new_context_ldt(struct mm_struct *mm) { } 93 static inline int ldt_dup_context(struct mm_struct *oldmm, 94 struct mm_struct *mm) 95 { 96 return 0; 97 } 98 static inline void destroy_context_ldt(struct mm_struct *mm) { } 99 static inline void ldt_arch_exit_mmap(struct mm_struct *mm) { } 100 #endif 101 102 static inline void load_mm_ldt(struct mm_struct *mm) 103 { 104 #ifdef CONFIG_MODIFY_LDT_SYSCALL 105 struct ldt_struct *ldt; 106 107 /* READ_ONCE synchronizes with smp_store_release */ 108 ldt = READ_ONCE(mm->context.ldt); 109 110 /* 111 * Any change to mm->context.ldt is followed by an IPI to all 112 * CPUs with the mm active. The LDT will not be freed until 113 * after the IPI is handled by all such CPUs. This means that, 114 * if the ldt_struct changes before we return, the values we see 115 * will be safe, and the new values will be loaded before we run 116 * any user code. 117 * 118 * NB: don't try to convert this to use RCU without extreme care. 119 * We would still need IRQs off, because we don't want to change 120 * the local LDT after an IPI loaded a newer value than the one 121 * that we can see. 122 */ 123 124 if (unlikely(ldt)) { 125 if (static_cpu_has(X86_FEATURE_PTI)) { 126 if (WARN_ON_ONCE((unsigned long)ldt->slot > 1)) { 127 /* 128 * Whoops -- either the new LDT isn't mapped 129 * (if slot == -1) or is mapped into a bogus 130 * slot (if slot > 1). 131 */ 132 clear_LDT(); 133 return; 134 } 135 136 /* 137 * If page table isolation is enabled, ldt->entries 138 * will not be mapped in the userspace pagetables. 139 * Tell the CPU to access the LDT through the alias 140 * at ldt_slot_va(ldt->slot). 141 */ 142 set_ldt(ldt_slot_va(ldt->slot), ldt->nr_entries); 143 } else { 144 set_ldt(ldt->entries, ldt->nr_entries); 145 } 146 } else { 147 clear_LDT(); 148 } 149 #else 150 clear_LDT(); 151 #endif 152 } 153 154 static inline void switch_ldt(struct mm_struct *prev, struct mm_struct *next) 155 { 156 #ifdef CONFIG_MODIFY_LDT_SYSCALL 157 /* 158 * Load the LDT if either the old or new mm had an LDT. 159 * 160 * An mm will never go from having an LDT to not having an LDT. Two 161 * mms never share an LDT, so we don't gain anything by checking to 162 * see whether the LDT changed. There's also no guarantee that 163 * prev->context.ldt actually matches LDTR, but, if LDTR is non-NULL, 164 * then prev->context.ldt will also be non-NULL. 165 * 166 * If we really cared, we could optimize the case where prev == next 167 * and we're exiting lazy mode. Most of the time, if this happens, 168 * we don't actually need to reload LDTR, but modify_ldt() is mostly 169 * used by legacy code and emulators where we don't need this level of 170 * performance. 171 * 172 * This uses | instead of || because it generates better code. 173 */ 174 if (unlikely((unsigned long)prev->context.ldt | 175 (unsigned long)next->context.ldt)) 176 load_mm_ldt(next); 177 #endif 178 179 DEBUG_LOCKS_WARN_ON(preemptible()); 180 } 181 182 void enter_lazy_tlb(struct mm_struct *mm, struct task_struct *tsk); 183 184 /* 185 * Init a new mm. Used on mm copies, like at fork() 186 * and on mm's that are brand-new, like at execve(). 187 */ 188 static inline int init_new_context(struct task_struct *tsk, 189 struct mm_struct *mm) 190 { 191 mutex_init(&mm->context.lock); 192 193 mm->context.ctx_id = atomic64_inc_return(&last_mm_ctx_id); 194 atomic64_set(&mm->context.tlb_gen, 0); 195 196 #ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS 197 if (cpu_feature_enabled(X86_FEATURE_OSPKE)) { 198 /* pkey 0 is the default and allocated implicitly */ 199 mm->context.pkey_allocation_map = 0x1; 200 /* -1 means unallocated or invalid */ 201 mm->context.execute_only_pkey = -1; 202 } 203 #endif 204 init_new_context_ldt(mm); 205 return 0; 206 } 207 static inline void destroy_context(struct mm_struct *mm) 208 { 209 destroy_context_ldt(mm); 210 } 211 212 extern void switch_mm(struct mm_struct *prev, struct mm_struct *next, 213 struct task_struct *tsk); 214 215 extern void switch_mm_irqs_off(struct mm_struct *prev, struct mm_struct *next, 216 struct task_struct *tsk); 217 #define switch_mm_irqs_off switch_mm_irqs_off 218 219 #define activate_mm(prev, next) \ 220 do { \ 221 paravirt_activate_mm((prev), (next)); \ 222 switch_mm((prev), (next), NULL); \ 223 } while (0); 224 225 #ifdef CONFIG_X86_32 226 #define deactivate_mm(tsk, mm) \ 227 do { \ 228 lazy_load_gs(0); \ 229 } while (0) 230 #else 231 #define deactivate_mm(tsk, mm) \ 232 do { \ 233 load_gs_index(0); \ 234 loadsegment(fs, 0); \ 235 } while (0) 236 #endif 237 238 static inline void arch_dup_pkeys(struct mm_struct *oldmm, 239 struct mm_struct *mm) 240 { 241 #ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS 242 if (!cpu_feature_enabled(X86_FEATURE_OSPKE)) 243 return; 244 245 /* Duplicate the oldmm pkey state in mm: */ 246 mm->context.pkey_allocation_map = oldmm->context.pkey_allocation_map; 247 mm->context.execute_only_pkey = oldmm->context.execute_only_pkey; 248 #endif 249 } 250 251 static inline int arch_dup_mmap(struct mm_struct *oldmm, struct mm_struct *mm) 252 { 253 arch_dup_pkeys(oldmm, mm); 254 paravirt_arch_dup_mmap(oldmm, mm); 255 return ldt_dup_context(oldmm, mm); 256 } 257 258 static inline void arch_exit_mmap(struct mm_struct *mm) 259 { 260 paravirt_arch_exit_mmap(mm); 261 ldt_arch_exit_mmap(mm); 262 } 263 264 #ifdef CONFIG_X86_64 265 static inline bool is_64bit_mm(struct mm_struct *mm) 266 { 267 return !IS_ENABLED(CONFIG_IA32_EMULATION) || 268 !(mm->context.ia32_compat == TIF_IA32); 269 } 270 #else 271 static inline bool is_64bit_mm(struct mm_struct *mm) 272 { 273 return false; 274 } 275 #endif 276 277 static inline void arch_bprm_mm_init(struct mm_struct *mm, 278 struct vm_area_struct *vma) 279 { 280 mpx_mm_init(mm); 281 } 282 283 static inline void arch_unmap(struct mm_struct *mm, unsigned long start, 284 unsigned long end) 285 { 286 /* 287 * mpx_notify_unmap() goes and reads a rarely-hot 288 * cacheline in the mm_struct. That can be expensive 289 * enough to be seen in profiles. 290 * 291 * The mpx_notify_unmap() call and its contents have been 292 * observed to affect munmap() performance on hardware 293 * where MPX is not present. 294 * 295 * The unlikely() optimizes for the fast case: no MPX 296 * in the CPU, or no MPX use in the process. Even if 297 * we get this wrong (in the unlikely event that MPX 298 * is widely enabled on some system) the overhead of 299 * MPX itself (reading bounds tables) is expected to 300 * overwhelm the overhead of getting this unlikely() 301 * consistently wrong. 302 */ 303 if (unlikely(cpu_feature_enabled(X86_FEATURE_MPX))) 304 mpx_notify_unmap(mm, start, end); 305 } 306 307 /* 308 * We only want to enforce protection keys on the current process 309 * because we effectively have no access to PKRU for other 310 * processes or any way to tell *which * PKRU in a threaded 311 * process we could use. 312 * 313 * So do not enforce things if the VMA is not from the current 314 * mm, or if we are in a kernel thread. 315 */ 316 static inline bool vma_is_foreign(struct vm_area_struct *vma) 317 { 318 if (!current->mm) 319 return true; 320 /* 321 * Should PKRU be enforced on the access to this VMA? If 322 * the VMA is from another process, then PKRU has no 323 * relevance and should not be enforced. 324 */ 325 if (current->mm != vma->vm_mm) 326 return true; 327 328 return false; 329 } 330 331 static inline bool arch_vma_access_permitted(struct vm_area_struct *vma, 332 bool write, bool execute, bool foreign) 333 { 334 /* pkeys never affect instruction fetches */ 335 if (execute) 336 return true; 337 /* allow access if the VMA is not one from this process */ 338 if (foreign || vma_is_foreign(vma)) 339 return true; 340 return __pkru_allows_pkey(vma_pkey(vma), write); 341 } 342 343 /* 344 * This can be used from process context to figure out what the value of 345 * CR3 is without needing to do a (slow) __read_cr3(). 346 * 347 * It's intended to be used for code like KVM that sneakily changes CR3 348 * and needs to restore it. It needs to be used very carefully. 349 */ 350 static inline unsigned long __get_current_cr3_fast(void) 351 { 352 unsigned long cr3 = build_cr3(this_cpu_read(cpu_tlbstate.loaded_mm)->pgd, 353 this_cpu_read(cpu_tlbstate.loaded_mm_asid)); 354 355 /* For now, be very restrictive about when this can be called. */ 356 VM_WARN_ON(in_nmi() || preemptible()); 357 358 VM_BUG_ON(cr3 != __read_cr3()); 359 return cr3; 360 } 361 362 typedef struct { 363 struct mm_struct *mm; 364 } temp_mm_state_t; 365 366 /* 367 * Using a temporary mm allows to set temporary mappings that are not accessible 368 * by other CPUs. Such mappings are needed to perform sensitive memory writes 369 * that override the kernel memory protections (e.g., W^X), without exposing the 370 * temporary page-table mappings that are required for these write operations to 371 * other CPUs. Using a temporary mm also allows to avoid TLB shootdowns when the 372 * mapping is torn down. 373 * 374 * Context: The temporary mm needs to be used exclusively by a single core. To 375 * harden security IRQs must be disabled while the temporary mm is 376 * loaded, thereby preventing interrupt handler bugs from overriding 377 * the kernel memory protection. 378 */ 379 static inline temp_mm_state_t use_temporary_mm(struct mm_struct *mm) 380 { 381 temp_mm_state_t temp_state; 382 383 lockdep_assert_irqs_disabled(); 384 temp_state.mm = this_cpu_read(cpu_tlbstate.loaded_mm); 385 switch_mm_irqs_off(NULL, mm, current); 386 387 /* 388 * If breakpoints are enabled, disable them while the temporary mm is 389 * used. Userspace might set up watchpoints on addresses that are used 390 * in the temporary mm, which would lead to wrong signals being sent or 391 * crashes. 392 * 393 * Note that breakpoints are not disabled selectively, which also causes 394 * kernel breakpoints (e.g., perf's) to be disabled. This might be 395 * undesirable, but still seems reasonable as the code that runs in the 396 * temporary mm should be short. 397 */ 398 if (hw_breakpoint_active()) 399 hw_breakpoint_disable(); 400 401 return temp_state; 402 } 403 404 static inline void unuse_temporary_mm(temp_mm_state_t prev_state) 405 { 406 lockdep_assert_irqs_disabled(); 407 switch_mm_irqs_off(NULL, prev_state.mm, current); 408 409 /* 410 * Restore the breakpoints if they were disabled before the temporary mm 411 * was loaded. 412 */ 413 if (hw_breakpoint_active()) 414 hw_breakpoint_restore(); 415 } 416 417 #endif /* _ASM_X86_MMU_CONTEXT_H */ 418