xref: /openbmc/linux/arch/x86/include/asm/mmu_context.h (revision aeb64ff3)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _ASM_X86_MMU_CONTEXT_H
3 #define _ASM_X86_MMU_CONTEXT_H
4 
5 #include <asm/desc.h>
6 #include <linux/atomic.h>
7 #include <linux/mm_types.h>
8 #include <linux/pkeys.h>
9 
10 #include <trace/events/tlb.h>
11 
12 #include <asm/pgalloc.h>
13 #include <asm/tlbflush.h>
14 #include <asm/paravirt.h>
15 #include <asm/mpx.h>
16 #include <asm/debugreg.h>
17 
18 extern atomic64_t last_mm_ctx_id;
19 
20 #ifndef CONFIG_PARAVIRT_XXL
21 static inline void paravirt_activate_mm(struct mm_struct *prev,
22 					struct mm_struct *next)
23 {
24 }
25 #endif	/* !CONFIG_PARAVIRT_XXL */
26 
27 #ifdef CONFIG_PERF_EVENTS
28 
29 DECLARE_STATIC_KEY_FALSE(rdpmc_never_available_key);
30 DECLARE_STATIC_KEY_FALSE(rdpmc_always_available_key);
31 
32 static inline void load_mm_cr4_irqsoff(struct mm_struct *mm)
33 {
34 	if (static_branch_unlikely(&rdpmc_always_available_key) ||
35 	    (!static_branch_unlikely(&rdpmc_never_available_key) &&
36 	     atomic_read(&mm->context.perf_rdpmc_allowed)))
37 		cr4_set_bits_irqsoff(X86_CR4_PCE);
38 	else
39 		cr4_clear_bits_irqsoff(X86_CR4_PCE);
40 }
41 #else
42 static inline void load_mm_cr4_irqsoff(struct mm_struct *mm) {}
43 #endif
44 
45 #ifdef CONFIG_MODIFY_LDT_SYSCALL
46 /*
47  * ldt_structs can be allocated, used, and freed, but they are never
48  * modified while live.
49  */
50 struct ldt_struct {
51 	/*
52 	 * Xen requires page-aligned LDTs with special permissions.  This is
53 	 * needed to prevent us from installing evil descriptors such as
54 	 * call gates.  On native, we could merge the ldt_struct and LDT
55 	 * allocations, but it's not worth trying to optimize.
56 	 */
57 	struct desc_struct	*entries;
58 	unsigned int		nr_entries;
59 
60 	/*
61 	 * If PTI is in use, then the entries array is not mapped while we're
62 	 * in user mode.  The whole array will be aliased at the addressed
63 	 * given by ldt_slot_va(slot).  We use two slots so that we can allocate
64 	 * and map, and enable a new LDT without invalidating the mapping
65 	 * of an older, still-in-use LDT.
66 	 *
67 	 * slot will be -1 if this LDT doesn't have an alias mapping.
68 	 */
69 	int			slot;
70 };
71 
72 /* This is a multiple of PAGE_SIZE. */
73 #define LDT_SLOT_STRIDE (LDT_ENTRIES * LDT_ENTRY_SIZE)
74 
75 static inline void *ldt_slot_va(int slot)
76 {
77 	return (void *)(LDT_BASE_ADDR + LDT_SLOT_STRIDE * slot);
78 }
79 
80 /*
81  * Used for LDT copy/destruction.
82  */
83 static inline void init_new_context_ldt(struct mm_struct *mm)
84 {
85 	mm->context.ldt = NULL;
86 	init_rwsem(&mm->context.ldt_usr_sem);
87 }
88 int ldt_dup_context(struct mm_struct *oldmm, struct mm_struct *mm);
89 void destroy_context_ldt(struct mm_struct *mm);
90 void ldt_arch_exit_mmap(struct mm_struct *mm);
91 #else	/* CONFIG_MODIFY_LDT_SYSCALL */
92 static inline void init_new_context_ldt(struct mm_struct *mm) { }
93 static inline int ldt_dup_context(struct mm_struct *oldmm,
94 				  struct mm_struct *mm)
95 {
96 	return 0;
97 }
98 static inline void destroy_context_ldt(struct mm_struct *mm) { }
99 static inline void ldt_arch_exit_mmap(struct mm_struct *mm) { }
100 #endif
101 
102 static inline void load_mm_ldt(struct mm_struct *mm)
103 {
104 #ifdef CONFIG_MODIFY_LDT_SYSCALL
105 	struct ldt_struct *ldt;
106 
107 	/* READ_ONCE synchronizes with smp_store_release */
108 	ldt = READ_ONCE(mm->context.ldt);
109 
110 	/*
111 	 * Any change to mm->context.ldt is followed by an IPI to all
112 	 * CPUs with the mm active.  The LDT will not be freed until
113 	 * after the IPI is handled by all such CPUs.  This means that,
114 	 * if the ldt_struct changes before we return, the values we see
115 	 * will be safe, and the new values will be loaded before we run
116 	 * any user code.
117 	 *
118 	 * NB: don't try to convert this to use RCU without extreme care.
119 	 * We would still need IRQs off, because we don't want to change
120 	 * the local LDT after an IPI loaded a newer value than the one
121 	 * that we can see.
122 	 */
123 
124 	if (unlikely(ldt)) {
125 		if (static_cpu_has(X86_FEATURE_PTI)) {
126 			if (WARN_ON_ONCE((unsigned long)ldt->slot > 1)) {
127 				/*
128 				 * Whoops -- either the new LDT isn't mapped
129 				 * (if slot == -1) or is mapped into a bogus
130 				 * slot (if slot > 1).
131 				 */
132 				clear_LDT();
133 				return;
134 			}
135 
136 			/*
137 			 * If page table isolation is enabled, ldt->entries
138 			 * will not be mapped in the userspace pagetables.
139 			 * Tell the CPU to access the LDT through the alias
140 			 * at ldt_slot_va(ldt->slot).
141 			 */
142 			set_ldt(ldt_slot_va(ldt->slot), ldt->nr_entries);
143 		} else {
144 			set_ldt(ldt->entries, ldt->nr_entries);
145 		}
146 	} else {
147 		clear_LDT();
148 	}
149 #else
150 	clear_LDT();
151 #endif
152 }
153 
154 static inline void switch_ldt(struct mm_struct *prev, struct mm_struct *next)
155 {
156 #ifdef CONFIG_MODIFY_LDT_SYSCALL
157 	/*
158 	 * Load the LDT if either the old or new mm had an LDT.
159 	 *
160 	 * An mm will never go from having an LDT to not having an LDT.  Two
161 	 * mms never share an LDT, so we don't gain anything by checking to
162 	 * see whether the LDT changed.  There's also no guarantee that
163 	 * prev->context.ldt actually matches LDTR, but, if LDTR is non-NULL,
164 	 * then prev->context.ldt will also be non-NULL.
165 	 *
166 	 * If we really cared, we could optimize the case where prev == next
167 	 * and we're exiting lazy mode.  Most of the time, if this happens,
168 	 * we don't actually need to reload LDTR, but modify_ldt() is mostly
169 	 * used by legacy code and emulators where we don't need this level of
170 	 * performance.
171 	 *
172 	 * This uses | instead of || because it generates better code.
173 	 */
174 	if (unlikely((unsigned long)prev->context.ldt |
175 		     (unsigned long)next->context.ldt))
176 		load_mm_ldt(next);
177 #endif
178 
179 	DEBUG_LOCKS_WARN_ON(preemptible());
180 }
181 
182 void enter_lazy_tlb(struct mm_struct *mm, struct task_struct *tsk);
183 
184 /*
185  * Init a new mm.  Used on mm copies, like at fork()
186  * and on mm's that are brand-new, like at execve().
187  */
188 static inline int init_new_context(struct task_struct *tsk,
189 				   struct mm_struct *mm)
190 {
191 	mutex_init(&mm->context.lock);
192 
193 	mm->context.ctx_id = atomic64_inc_return(&last_mm_ctx_id);
194 	atomic64_set(&mm->context.tlb_gen, 0);
195 
196 #ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS
197 	if (cpu_feature_enabled(X86_FEATURE_OSPKE)) {
198 		/* pkey 0 is the default and allocated implicitly */
199 		mm->context.pkey_allocation_map = 0x1;
200 		/* -1 means unallocated or invalid */
201 		mm->context.execute_only_pkey = -1;
202 	}
203 #endif
204 	init_new_context_ldt(mm);
205 	return 0;
206 }
207 static inline void destroy_context(struct mm_struct *mm)
208 {
209 	destroy_context_ldt(mm);
210 }
211 
212 extern void switch_mm(struct mm_struct *prev, struct mm_struct *next,
213 		      struct task_struct *tsk);
214 
215 extern void switch_mm_irqs_off(struct mm_struct *prev, struct mm_struct *next,
216 			       struct task_struct *tsk);
217 #define switch_mm_irqs_off switch_mm_irqs_off
218 
219 #define activate_mm(prev, next)			\
220 do {						\
221 	paravirt_activate_mm((prev), (next));	\
222 	switch_mm((prev), (next), NULL);	\
223 } while (0);
224 
225 #ifdef CONFIG_X86_32
226 #define deactivate_mm(tsk, mm)			\
227 do {						\
228 	lazy_load_gs(0);			\
229 } while (0)
230 #else
231 #define deactivate_mm(tsk, mm)			\
232 do {						\
233 	load_gs_index(0);			\
234 	loadsegment(fs, 0);			\
235 } while (0)
236 #endif
237 
238 static inline void arch_dup_pkeys(struct mm_struct *oldmm,
239 				  struct mm_struct *mm)
240 {
241 #ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS
242 	if (!cpu_feature_enabled(X86_FEATURE_OSPKE))
243 		return;
244 
245 	/* Duplicate the oldmm pkey state in mm: */
246 	mm->context.pkey_allocation_map = oldmm->context.pkey_allocation_map;
247 	mm->context.execute_only_pkey   = oldmm->context.execute_only_pkey;
248 #endif
249 }
250 
251 static inline int arch_dup_mmap(struct mm_struct *oldmm, struct mm_struct *mm)
252 {
253 	arch_dup_pkeys(oldmm, mm);
254 	paravirt_arch_dup_mmap(oldmm, mm);
255 	return ldt_dup_context(oldmm, mm);
256 }
257 
258 static inline void arch_exit_mmap(struct mm_struct *mm)
259 {
260 	paravirt_arch_exit_mmap(mm);
261 	ldt_arch_exit_mmap(mm);
262 }
263 
264 #ifdef CONFIG_X86_64
265 static inline bool is_64bit_mm(struct mm_struct *mm)
266 {
267 	return	!IS_ENABLED(CONFIG_IA32_EMULATION) ||
268 		!(mm->context.ia32_compat == TIF_IA32);
269 }
270 #else
271 static inline bool is_64bit_mm(struct mm_struct *mm)
272 {
273 	return false;
274 }
275 #endif
276 
277 static inline void arch_bprm_mm_init(struct mm_struct *mm,
278 		struct vm_area_struct *vma)
279 {
280 	mpx_mm_init(mm);
281 }
282 
283 static inline void arch_unmap(struct mm_struct *mm, unsigned long start,
284 			      unsigned long end)
285 {
286 	/*
287 	 * mpx_notify_unmap() goes and reads a rarely-hot
288 	 * cacheline in the mm_struct.  That can be expensive
289 	 * enough to be seen in profiles.
290 	 *
291 	 * The mpx_notify_unmap() call and its contents have been
292 	 * observed to affect munmap() performance on hardware
293 	 * where MPX is not present.
294 	 *
295 	 * The unlikely() optimizes for the fast case: no MPX
296 	 * in the CPU, or no MPX use in the process.  Even if
297 	 * we get this wrong (in the unlikely event that MPX
298 	 * is widely enabled on some system) the overhead of
299 	 * MPX itself (reading bounds tables) is expected to
300 	 * overwhelm the overhead of getting this unlikely()
301 	 * consistently wrong.
302 	 */
303 	if (unlikely(cpu_feature_enabled(X86_FEATURE_MPX)))
304 		mpx_notify_unmap(mm, start, end);
305 }
306 
307 /*
308  * We only want to enforce protection keys on the current process
309  * because we effectively have no access to PKRU for other
310  * processes or any way to tell *which * PKRU in a threaded
311  * process we could use.
312  *
313  * So do not enforce things if the VMA is not from the current
314  * mm, or if we are in a kernel thread.
315  */
316 static inline bool vma_is_foreign(struct vm_area_struct *vma)
317 {
318 	if (!current->mm)
319 		return true;
320 	/*
321 	 * Should PKRU be enforced on the access to this VMA?  If
322 	 * the VMA is from another process, then PKRU has no
323 	 * relevance and should not be enforced.
324 	 */
325 	if (current->mm != vma->vm_mm)
326 		return true;
327 
328 	return false;
329 }
330 
331 static inline bool arch_vma_access_permitted(struct vm_area_struct *vma,
332 		bool write, bool execute, bool foreign)
333 {
334 	/* pkeys never affect instruction fetches */
335 	if (execute)
336 		return true;
337 	/* allow access if the VMA is not one from this process */
338 	if (foreign || vma_is_foreign(vma))
339 		return true;
340 	return __pkru_allows_pkey(vma_pkey(vma), write);
341 }
342 
343 /*
344  * This can be used from process context to figure out what the value of
345  * CR3 is without needing to do a (slow) __read_cr3().
346  *
347  * It's intended to be used for code like KVM that sneakily changes CR3
348  * and needs to restore it.  It needs to be used very carefully.
349  */
350 static inline unsigned long __get_current_cr3_fast(void)
351 {
352 	unsigned long cr3 = build_cr3(this_cpu_read(cpu_tlbstate.loaded_mm)->pgd,
353 		this_cpu_read(cpu_tlbstate.loaded_mm_asid));
354 
355 	/* For now, be very restrictive about when this can be called. */
356 	VM_WARN_ON(in_nmi() || preemptible());
357 
358 	VM_BUG_ON(cr3 != __read_cr3());
359 	return cr3;
360 }
361 
362 typedef struct {
363 	struct mm_struct *mm;
364 } temp_mm_state_t;
365 
366 /*
367  * Using a temporary mm allows to set temporary mappings that are not accessible
368  * by other CPUs. Such mappings are needed to perform sensitive memory writes
369  * that override the kernel memory protections (e.g., W^X), without exposing the
370  * temporary page-table mappings that are required for these write operations to
371  * other CPUs. Using a temporary mm also allows to avoid TLB shootdowns when the
372  * mapping is torn down.
373  *
374  * Context: The temporary mm needs to be used exclusively by a single core. To
375  *          harden security IRQs must be disabled while the temporary mm is
376  *          loaded, thereby preventing interrupt handler bugs from overriding
377  *          the kernel memory protection.
378  */
379 static inline temp_mm_state_t use_temporary_mm(struct mm_struct *mm)
380 {
381 	temp_mm_state_t temp_state;
382 
383 	lockdep_assert_irqs_disabled();
384 	temp_state.mm = this_cpu_read(cpu_tlbstate.loaded_mm);
385 	switch_mm_irqs_off(NULL, mm, current);
386 
387 	/*
388 	 * If breakpoints are enabled, disable them while the temporary mm is
389 	 * used. Userspace might set up watchpoints on addresses that are used
390 	 * in the temporary mm, which would lead to wrong signals being sent or
391 	 * crashes.
392 	 *
393 	 * Note that breakpoints are not disabled selectively, which also causes
394 	 * kernel breakpoints (e.g., perf's) to be disabled. This might be
395 	 * undesirable, but still seems reasonable as the code that runs in the
396 	 * temporary mm should be short.
397 	 */
398 	if (hw_breakpoint_active())
399 		hw_breakpoint_disable();
400 
401 	return temp_state;
402 }
403 
404 static inline void unuse_temporary_mm(temp_mm_state_t prev_state)
405 {
406 	lockdep_assert_irqs_disabled();
407 	switch_mm_irqs_off(NULL, prev_state.mm, current);
408 
409 	/*
410 	 * Restore the breakpoints if they were disabled before the temporary mm
411 	 * was loaded.
412 	 */
413 	if (hw_breakpoint_active())
414 		hw_breakpoint_restore();
415 }
416 
417 #endif /* _ASM_X86_MMU_CONTEXT_H */
418