xref: /openbmc/linux/arch/x86/include/asm/mmu_context.h (revision a8fe58ce)
1 #ifndef _ASM_X86_MMU_CONTEXT_H
2 #define _ASM_X86_MMU_CONTEXT_H
3 
4 #include <asm/desc.h>
5 #include <linux/atomic.h>
6 #include <linux/mm_types.h>
7 
8 #include <trace/events/tlb.h>
9 
10 #include <asm/pgalloc.h>
11 #include <asm/tlbflush.h>
12 #include <asm/paravirt.h>
13 #include <asm/mpx.h>
14 #ifndef CONFIG_PARAVIRT
15 static inline void paravirt_activate_mm(struct mm_struct *prev,
16 					struct mm_struct *next)
17 {
18 }
19 #endif	/* !CONFIG_PARAVIRT */
20 
21 #ifdef CONFIG_PERF_EVENTS
22 extern struct static_key rdpmc_always_available;
23 
24 static inline void load_mm_cr4(struct mm_struct *mm)
25 {
26 	if (static_key_false(&rdpmc_always_available) ||
27 	    atomic_read(&mm->context.perf_rdpmc_allowed))
28 		cr4_set_bits(X86_CR4_PCE);
29 	else
30 		cr4_clear_bits(X86_CR4_PCE);
31 }
32 #else
33 static inline void load_mm_cr4(struct mm_struct *mm) {}
34 #endif
35 
36 #ifdef CONFIG_MODIFY_LDT_SYSCALL
37 /*
38  * ldt_structs can be allocated, used, and freed, but they are never
39  * modified while live.
40  */
41 struct ldt_struct {
42 	/*
43 	 * Xen requires page-aligned LDTs with special permissions.  This is
44 	 * needed to prevent us from installing evil descriptors such as
45 	 * call gates.  On native, we could merge the ldt_struct and LDT
46 	 * allocations, but it's not worth trying to optimize.
47 	 */
48 	struct desc_struct *entries;
49 	int size;
50 };
51 
52 /*
53  * Used for LDT copy/destruction.
54  */
55 int init_new_context(struct task_struct *tsk, struct mm_struct *mm);
56 void destroy_context(struct mm_struct *mm);
57 #else	/* CONFIG_MODIFY_LDT_SYSCALL */
58 static inline int init_new_context(struct task_struct *tsk,
59 				   struct mm_struct *mm)
60 {
61 	return 0;
62 }
63 static inline void destroy_context(struct mm_struct *mm) {}
64 #endif
65 
66 static inline void load_mm_ldt(struct mm_struct *mm)
67 {
68 #ifdef CONFIG_MODIFY_LDT_SYSCALL
69 	struct ldt_struct *ldt;
70 
71 	/* lockless_dereference synchronizes with smp_store_release */
72 	ldt = lockless_dereference(mm->context.ldt);
73 
74 	/*
75 	 * Any change to mm->context.ldt is followed by an IPI to all
76 	 * CPUs with the mm active.  The LDT will not be freed until
77 	 * after the IPI is handled by all such CPUs.  This means that,
78 	 * if the ldt_struct changes before we return, the values we see
79 	 * will be safe, and the new values will be loaded before we run
80 	 * any user code.
81 	 *
82 	 * NB: don't try to convert this to use RCU without extreme care.
83 	 * We would still need IRQs off, because we don't want to change
84 	 * the local LDT after an IPI loaded a newer value than the one
85 	 * that we can see.
86 	 */
87 
88 	if (unlikely(ldt))
89 		set_ldt(ldt->entries, ldt->size);
90 	else
91 		clear_LDT();
92 #else
93 	clear_LDT();
94 #endif
95 
96 	DEBUG_LOCKS_WARN_ON(preemptible());
97 }
98 
99 static inline void enter_lazy_tlb(struct mm_struct *mm, struct task_struct *tsk)
100 {
101 #ifdef CONFIG_SMP
102 	if (this_cpu_read(cpu_tlbstate.state) == TLBSTATE_OK)
103 		this_cpu_write(cpu_tlbstate.state, TLBSTATE_LAZY);
104 #endif
105 }
106 
107 static inline void switch_mm(struct mm_struct *prev, struct mm_struct *next,
108 			     struct task_struct *tsk)
109 {
110 	unsigned cpu = smp_processor_id();
111 
112 	if (likely(prev != next)) {
113 #ifdef CONFIG_SMP
114 		this_cpu_write(cpu_tlbstate.state, TLBSTATE_OK);
115 		this_cpu_write(cpu_tlbstate.active_mm, next);
116 #endif
117 		cpumask_set_cpu(cpu, mm_cpumask(next));
118 
119 		/*
120 		 * Re-load page tables.
121 		 *
122 		 * This logic has an ordering constraint:
123 		 *
124 		 *  CPU 0: Write to a PTE for 'next'
125 		 *  CPU 0: load bit 1 in mm_cpumask.  if nonzero, send IPI.
126 		 *  CPU 1: set bit 1 in next's mm_cpumask
127 		 *  CPU 1: load from the PTE that CPU 0 writes (implicit)
128 		 *
129 		 * We need to prevent an outcome in which CPU 1 observes
130 		 * the new PTE value and CPU 0 observes bit 1 clear in
131 		 * mm_cpumask.  (If that occurs, then the IPI will never
132 		 * be sent, and CPU 0's TLB will contain a stale entry.)
133 		 *
134 		 * The bad outcome can occur if either CPU's load is
135 		 * reordered before that CPU's store, so both CPUs must
136 		 * execute full barriers to prevent this from happening.
137 		 *
138 		 * Thus, switch_mm needs a full barrier between the
139 		 * store to mm_cpumask and any operation that could load
140 		 * from next->pgd.  TLB fills are special and can happen
141 		 * due to instruction fetches or for no reason at all,
142 		 * and neither LOCK nor MFENCE orders them.
143 		 * Fortunately, load_cr3() is serializing and gives the
144 		 * ordering guarantee we need.
145 		 *
146 		 */
147 		load_cr3(next->pgd);
148 
149 		trace_tlb_flush(TLB_FLUSH_ON_TASK_SWITCH, TLB_FLUSH_ALL);
150 
151 		/* Stop flush ipis for the previous mm */
152 		cpumask_clear_cpu(cpu, mm_cpumask(prev));
153 
154 		/* Load per-mm CR4 state */
155 		load_mm_cr4(next);
156 
157 #ifdef CONFIG_MODIFY_LDT_SYSCALL
158 		/*
159 		 * Load the LDT, if the LDT is different.
160 		 *
161 		 * It's possible that prev->context.ldt doesn't match
162 		 * the LDT register.  This can happen if leave_mm(prev)
163 		 * was called and then modify_ldt changed
164 		 * prev->context.ldt but suppressed an IPI to this CPU.
165 		 * In this case, prev->context.ldt != NULL, because we
166 		 * never set context.ldt to NULL while the mm still
167 		 * exists.  That means that next->context.ldt !=
168 		 * prev->context.ldt, because mms never share an LDT.
169 		 */
170 		if (unlikely(prev->context.ldt != next->context.ldt))
171 			load_mm_ldt(next);
172 #endif
173 	}
174 #ifdef CONFIG_SMP
175 	  else {
176 		this_cpu_write(cpu_tlbstate.state, TLBSTATE_OK);
177 		BUG_ON(this_cpu_read(cpu_tlbstate.active_mm) != next);
178 
179 		if (!cpumask_test_cpu(cpu, mm_cpumask(next))) {
180 			/*
181 			 * On established mms, the mm_cpumask is only changed
182 			 * from irq context, from ptep_clear_flush() while in
183 			 * lazy tlb mode, and here. Irqs are blocked during
184 			 * schedule, protecting us from simultaneous changes.
185 			 */
186 			cpumask_set_cpu(cpu, mm_cpumask(next));
187 
188 			/*
189 			 * We were in lazy tlb mode and leave_mm disabled
190 			 * tlb flush IPI delivery. We must reload CR3
191 			 * to make sure to use no freed page tables.
192 			 *
193 			 * As above, load_cr3() is serializing and orders TLB
194 			 * fills with respect to the mm_cpumask write.
195 			 */
196 			load_cr3(next->pgd);
197 			trace_tlb_flush(TLB_FLUSH_ON_TASK_SWITCH, TLB_FLUSH_ALL);
198 			load_mm_cr4(next);
199 			load_mm_ldt(next);
200 		}
201 	}
202 #endif
203 }
204 
205 #define activate_mm(prev, next)			\
206 do {						\
207 	paravirt_activate_mm((prev), (next));	\
208 	switch_mm((prev), (next), NULL);	\
209 } while (0);
210 
211 #ifdef CONFIG_X86_32
212 #define deactivate_mm(tsk, mm)			\
213 do {						\
214 	lazy_load_gs(0);			\
215 } while (0)
216 #else
217 #define deactivate_mm(tsk, mm)			\
218 do {						\
219 	load_gs_index(0);			\
220 	loadsegment(fs, 0);			\
221 } while (0)
222 #endif
223 
224 static inline void arch_dup_mmap(struct mm_struct *oldmm,
225 				 struct mm_struct *mm)
226 {
227 	paravirt_arch_dup_mmap(oldmm, mm);
228 }
229 
230 static inline void arch_exit_mmap(struct mm_struct *mm)
231 {
232 	paravirt_arch_exit_mmap(mm);
233 }
234 
235 #ifdef CONFIG_X86_64
236 static inline bool is_64bit_mm(struct mm_struct *mm)
237 {
238 	return	!config_enabled(CONFIG_IA32_EMULATION) ||
239 		!(mm->context.ia32_compat == TIF_IA32);
240 }
241 #else
242 static inline bool is_64bit_mm(struct mm_struct *mm)
243 {
244 	return false;
245 }
246 #endif
247 
248 static inline void arch_bprm_mm_init(struct mm_struct *mm,
249 		struct vm_area_struct *vma)
250 {
251 	mpx_mm_init(mm);
252 }
253 
254 static inline void arch_unmap(struct mm_struct *mm, struct vm_area_struct *vma,
255 			      unsigned long start, unsigned long end)
256 {
257 	/*
258 	 * mpx_notify_unmap() goes and reads a rarely-hot
259 	 * cacheline in the mm_struct.  That can be expensive
260 	 * enough to be seen in profiles.
261 	 *
262 	 * The mpx_notify_unmap() call and its contents have been
263 	 * observed to affect munmap() performance on hardware
264 	 * where MPX is not present.
265 	 *
266 	 * The unlikely() optimizes for the fast case: no MPX
267 	 * in the CPU, or no MPX use in the process.  Even if
268 	 * we get this wrong (in the unlikely event that MPX
269 	 * is widely enabled on some system) the overhead of
270 	 * MPX itself (reading bounds tables) is expected to
271 	 * overwhelm the overhead of getting this unlikely()
272 	 * consistently wrong.
273 	 */
274 	if (unlikely(cpu_feature_enabled(X86_FEATURE_MPX)))
275 		mpx_notify_unmap(mm, vma, start, end);
276 }
277 
278 #endif /* _ASM_X86_MMU_CONTEXT_H */
279