xref: /openbmc/linux/arch/x86/include/asm/mmu_context.h (revision 93707cbabcc8baf2b2b5f4a99c1f08ee83eb7abd)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _ASM_X86_MMU_CONTEXT_H
3 #define _ASM_X86_MMU_CONTEXT_H
4 
5 #include <asm/desc.h>
6 #include <linux/atomic.h>
7 #include <linux/mm_types.h>
8 #include <linux/pkeys.h>
9 
10 #include <trace/events/tlb.h>
11 
12 #include <asm/pgalloc.h>
13 #include <asm/tlbflush.h>
14 #include <asm/paravirt.h>
15 #include <asm/mpx.h>
16 
17 extern atomic64_t last_mm_ctx_id;
18 
19 #ifndef CONFIG_PARAVIRT
20 static inline void paravirt_activate_mm(struct mm_struct *prev,
21 					struct mm_struct *next)
22 {
23 }
24 #endif	/* !CONFIG_PARAVIRT */
25 
26 #ifdef CONFIG_PERF_EVENTS
27 extern struct static_key rdpmc_always_available;
28 
29 static inline void load_mm_cr4(struct mm_struct *mm)
30 {
31 	if (static_key_false(&rdpmc_always_available) ||
32 	    atomic_read(&mm->context.perf_rdpmc_allowed))
33 		cr4_set_bits(X86_CR4_PCE);
34 	else
35 		cr4_clear_bits(X86_CR4_PCE);
36 }
37 #else
38 static inline void load_mm_cr4(struct mm_struct *mm) {}
39 #endif
40 
41 #ifdef CONFIG_MODIFY_LDT_SYSCALL
42 /*
43  * ldt_structs can be allocated, used, and freed, but they are never
44  * modified while live.
45  */
46 struct ldt_struct {
47 	/*
48 	 * Xen requires page-aligned LDTs with special permissions.  This is
49 	 * needed to prevent us from installing evil descriptors such as
50 	 * call gates.  On native, we could merge the ldt_struct and LDT
51 	 * allocations, but it's not worth trying to optimize.
52 	 */
53 	struct desc_struct	*entries;
54 	unsigned int		nr_entries;
55 
56 	/*
57 	 * If PTI is in use, then the entries array is not mapped while we're
58 	 * in user mode.  The whole array will be aliased at the addressed
59 	 * given by ldt_slot_va(slot).  We use two slots so that we can allocate
60 	 * and map, and enable a new LDT without invalidating the mapping
61 	 * of an older, still-in-use LDT.
62 	 *
63 	 * slot will be -1 if this LDT doesn't have an alias mapping.
64 	 */
65 	int			slot;
66 };
67 
68 /* This is a multiple of PAGE_SIZE. */
69 #define LDT_SLOT_STRIDE (LDT_ENTRIES * LDT_ENTRY_SIZE)
70 
71 static inline void *ldt_slot_va(int slot)
72 {
73 #ifdef CONFIG_X86_64
74 	return (void *)(LDT_BASE_ADDR + LDT_SLOT_STRIDE * slot);
75 #else
76 	BUG();
77 #endif
78 }
79 
80 /*
81  * Used for LDT copy/destruction.
82  */
83 static inline void init_new_context_ldt(struct mm_struct *mm)
84 {
85 	mm->context.ldt = NULL;
86 	init_rwsem(&mm->context.ldt_usr_sem);
87 }
88 int ldt_dup_context(struct mm_struct *oldmm, struct mm_struct *mm);
89 void destroy_context_ldt(struct mm_struct *mm);
90 void ldt_arch_exit_mmap(struct mm_struct *mm);
91 #else	/* CONFIG_MODIFY_LDT_SYSCALL */
92 static inline void init_new_context_ldt(struct mm_struct *mm) { }
93 static inline int ldt_dup_context(struct mm_struct *oldmm,
94 				  struct mm_struct *mm)
95 {
96 	return 0;
97 }
98 static inline void destroy_context_ldt(struct mm_struct *mm) { }
99 static inline void ldt_arch_exit_mmap(struct mm_struct *mm) { }
100 #endif
101 
102 static inline void load_mm_ldt(struct mm_struct *mm)
103 {
104 #ifdef CONFIG_MODIFY_LDT_SYSCALL
105 	struct ldt_struct *ldt;
106 
107 	/* READ_ONCE synchronizes with smp_store_release */
108 	ldt = READ_ONCE(mm->context.ldt);
109 
110 	/*
111 	 * Any change to mm->context.ldt is followed by an IPI to all
112 	 * CPUs with the mm active.  The LDT will not be freed until
113 	 * after the IPI is handled by all such CPUs.  This means that,
114 	 * if the ldt_struct changes before we return, the values we see
115 	 * will be safe, and the new values will be loaded before we run
116 	 * any user code.
117 	 *
118 	 * NB: don't try to convert this to use RCU without extreme care.
119 	 * We would still need IRQs off, because we don't want to change
120 	 * the local LDT after an IPI loaded a newer value than the one
121 	 * that we can see.
122 	 */
123 
124 	if (unlikely(ldt)) {
125 		if (static_cpu_has(X86_FEATURE_PTI)) {
126 			if (WARN_ON_ONCE((unsigned long)ldt->slot > 1)) {
127 				/*
128 				 * Whoops -- either the new LDT isn't mapped
129 				 * (if slot == -1) or is mapped into a bogus
130 				 * slot (if slot > 1).
131 				 */
132 				clear_LDT();
133 				return;
134 			}
135 
136 			/*
137 			 * If page table isolation is enabled, ldt->entries
138 			 * will not be mapped in the userspace pagetables.
139 			 * Tell the CPU to access the LDT through the alias
140 			 * at ldt_slot_va(ldt->slot).
141 			 */
142 			set_ldt(ldt_slot_va(ldt->slot), ldt->nr_entries);
143 		} else {
144 			set_ldt(ldt->entries, ldt->nr_entries);
145 		}
146 	} else {
147 		clear_LDT();
148 	}
149 #else
150 	clear_LDT();
151 #endif
152 }
153 
154 static inline void switch_ldt(struct mm_struct *prev, struct mm_struct *next)
155 {
156 #ifdef CONFIG_MODIFY_LDT_SYSCALL
157 	/*
158 	 * Load the LDT if either the old or new mm had an LDT.
159 	 *
160 	 * An mm will never go from having an LDT to not having an LDT.  Two
161 	 * mms never share an LDT, so we don't gain anything by checking to
162 	 * see whether the LDT changed.  There's also no guarantee that
163 	 * prev->context.ldt actually matches LDTR, but, if LDTR is non-NULL,
164 	 * then prev->context.ldt will also be non-NULL.
165 	 *
166 	 * If we really cared, we could optimize the case where prev == next
167 	 * and we're exiting lazy mode.  Most of the time, if this happens,
168 	 * we don't actually need to reload LDTR, but modify_ldt() is mostly
169 	 * used by legacy code and emulators where we don't need this level of
170 	 * performance.
171 	 *
172 	 * This uses | instead of || because it generates better code.
173 	 */
174 	if (unlikely((unsigned long)prev->context.ldt |
175 		     (unsigned long)next->context.ldt))
176 		load_mm_ldt(next);
177 #endif
178 
179 	DEBUG_LOCKS_WARN_ON(preemptible());
180 }
181 
182 void enter_lazy_tlb(struct mm_struct *mm, struct task_struct *tsk);
183 
184 static inline int init_new_context(struct task_struct *tsk,
185 				   struct mm_struct *mm)
186 {
187 	mutex_init(&mm->context.lock);
188 
189 	mm->context.ctx_id = atomic64_inc_return(&last_mm_ctx_id);
190 	atomic64_set(&mm->context.tlb_gen, 0);
191 
192 #ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS
193 	if (cpu_feature_enabled(X86_FEATURE_OSPKE)) {
194 		/* pkey 0 is the default and always allocated */
195 		mm->context.pkey_allocation_map = 0x1;
196 		/* -1 means unallocated or invalid */
197 		mm->context.execute_only_pkey = -1;
198 	}
199 #endif
200 	init_new_context_ldt(mm);
201 	return 0;
202 }
203 static inline void destroy_context(struct mm_struct *mm)
204 {
205 	destroy_context_ldt(mm);
206 }
207 
208 extern void switch_mm(struct mm_struct *prev, struct mm_struct *next,
209 		      struct task_struct *tsk);
210 
211 extern void switch_mm_irqs_off(struct mm_struct *prev, struct mm_struct *next,
212 			       struct task_struct *tsk);
213 #define switch_mm_irqs_off switch_mm_irqs_off
214 
215 #define activate_mm(prev, next)			\
216 do {						\
217 	paravirt_activate_mm((prev), (next));	\
218 	switch_mm((prev), (next), NULL);	\
219 } while (0);
220 
221 #ifdef CONFIG_X86_32
222 #define deactivate_mm(tsk, mm)			\
223 do {						\
224 	lazy_load_gs(0);			\
225 } while (0)
226 #else
227 #define deactivate_mm(tsk, mm)			\
228 do {						\
229 	load_gs_index(0);			\
230 	loadsegment(fs, 0);			\
231 } while (0)
232 #endif
233 
234 static inline int arch_dup_mmap(struct mm_struct *oldmm, struct mm_struct *mm)
235 {
236 	paravirt_arch_dup_mmap(oldmm, mm);
237 	return ldt_dup_context(oldmm, mm);
238 }
239 
240 static inline void arch_exit_mmap(struct mm_struct *mm)
241 {
242 	paravirt_arch_exit_mmap(mm);
243 	ldt_arch_exit_mmap(mm);
244 }
245 
246 #ifdef CONFIG_X86_64
247 static inline bool is_64bit_mm(struct mm_struct *mm)
248 {
249 	return	!IS_ENABLED(CONFIG_IA32_EMULATION) ||
250 		!(mm->context.ia32_compat == TIF_IA32);
251 }
252 #else
253 static inline bool is_64bit_mm(struct mm_struct *mm)
254 {
255 	return false;
256 }
257 #endif
258 
259 static inline void arch_bprm_mm_init(struct mm_struct *mm,
260 		struct vm_area_struct *vma)
261 {
262 	mpx_mm_init(mm);
263 }
264 
265 static inline void arch_unmap(struct mm_struct *mm, struct vm_area_struct *vma,
266 			      unsigned long start, unsigned long end)
267 {
268 	/*
269 	 * mpx_notify_unmap() goes and reads a rarely-hot
270 	 * cacheline in the mm_struct.  That can be expensive
271 	 * enough to be seen in profiles.
272 	 *
273 	 * The mpx_notify_unmap() call and its contents have been
274 	 * observed to affect munmap() performance on hardware
275 	 * where MPX is not present.
276 	 *
277 	 * The unlikely() optimizes for the fast case: no MPX
278 	 * in the CPU, or no MPX use in the process.  Even if
279 	 * we get this wrong (in the unlikely event that MPX
280 	 * is widely enabled on some system) the overhead of
281 	 * MPX itself (reading bounds tables) is expected to
282 	 * overwhelm the overhead of getting this unlikely()
283 	 * consistently wrong.
284 	 */
285 	if (unlikely(cpu_feature_enabled(X86_FEATURE_MPX)))
286 		mpx_notify_unmap(mm, vma, start, end);
287 }
288 
289 #ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS
290 static inline int vma_pkey(struct vm_area_struct *vma)
291 {
292 	unsigned long vma_pkey_mask = VM_PKEY_BIT0 | VM_PKEY_BIT1 |
293 				      VM_PKEY_BIT2 | VM_PKEY_BIT3;
294 
295 	return (vma->vm_flags & vma_pkey_mask) >> VM_PKEY_SHIFT;
296 }
297 #else
298 static inline int vma_pkey(struct vm_area_struct *vma)
299 {
300 	return 0;
301 }
302 #endif
303 
304 /*
305  * We only want to enforce protection keys on the current process
306  * because we effectively have no access to PKRU for other
307  * processes or any way to tell *which * PKRU in a threaded
308  * process we could use.
309  *
310  * So do not enforce things if the VMA is not from the current
311  * mm, or if we are in a kernel thread.
312  */
313 static inline bool vma_is_foreign(struct vm_area_struct *vma)
314 {
315 	if (!current->mm)
316 		return true;
317 	/*
318 	 * Should PKRU be enforced on the access to this VMA?  If
319 	 * the VMA is from another process, then PKRU has no
320 	 * relevance and should not be enforced.
321 	 */
322 	if (current->mm != vma->vm_mm)
323 		return true;
324 
325 	return false;
326 }
327 
328 static inline bool arch_vma_access_permitted(struct vm_area_struct *vma,
329 		bool write, bool execute, bool foreign)
330 {
331 	/* pkeys never affect instruction fetches */
332 	if (execute)
333 		return true;
334 	/* allow access if the VMA is not one from this process */
335 	if (foreign || vma_is_foreign(vma))
336 		return true;
337 	return __pkru_allows_pkey(vma_pkey(vma), write);
338 }
339 
340 /*
341  * This can be used from process context to figure out what the value of
342  * CR3 is without needing to do a (slow) __read_cr3().
343  *
344  * It's intended to be used for code like KVM that sneakily changes CR3
345  * and needs to restore it.  It needs to be used very carefully.
346  */
347 static inline unsigned long __get_current_cr3_fast(void)
348 {
349 	unsigned long cr3 = build_cr3(this_cpu_read(cpu_tlbstate.loaded_mm)->pgd,
350 		this_cpu_read(cpu_tlbstate.loaded_mm_asid));
351 
352 	/* For now, be very restrictive about when this can be called. */
353 	VM_WARN_ON(in_nmi() || preemptible());
354 
355 	VM_BUG_ON(cr3 != __read_cr3());
356 	return cr3;
357 }
358 
359 #endif /* _ASM_X86_MMU_CONTEXT_H */
360