xref: /openbmc/linux/arch/x86/include/asm/mmu_context.h (revision 680ef72a)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _ASM_X86_MMU_CONTEXT_H
3 #define _ASM_X86_MMU_CONTEXT_H
4 
5 #include <asm/desc.h>
6 #include <linux/atomic.h>
7 #include <linux/mm_types.h>
8 #include <linux/pkeys.h>
9 
10 #include <trace/events/tlb.h>
11 
12 #include <asm/pgalloc.h>
13 #include <asm/tlbflush.h>
14 #include <asm/paravirt.h>
15 #include <asm/mpx.h>
16 
17 extern atomic64_t last_mm_ctx_id;
18 
19 #ifndef CONFIG_PARAVIRT
20 static inline void paravirt_activate_mm(struct mm_struct *prev,
21 					struct mm_struct *next)
22 {
23 }
24 #endif	/* !CONFIG_PARAVIRT */
25 
26 #ifdef CONFIG_PERF_EVENTS
27 extern struct static_key rdpmc_always_available;
28 
29 static inline void load_mm_cr4(struct mm_struct *mm)
30 {
31 	if (static_key_false(&rdpmc_always_available) ||
32 	    atomic_read(&mm->context.perf_rdpmc_allowed))
33 		cr4_set_bits(X86_CR4_PCE);
34 	else
35 		cr4_clear_bits(X86_CR4_PCE);
36 }
37 #else
38 static inline void load_mm_cr4(struct mm_struct *mm) {}
39 #endif
40 
41 #ifdef CONFIG_MODIFY_LDT_SYSCALL
42 /*
43  * ldt_structs can be allocated, used, and freed, but they are never
44  * modified while live.
45  */
46 struct ldt_struct {
47 	/*
48 	 * Xen requires page-aligned LDTs with special permissions.  This is
49 	 * needed to prevent us from installing evil descriptors such as
50 	 * call gates.  On native, we could merge the ldt_struct and LDT
51 	 * allocations, but it's not worth trying to optimize.
52 	 */
53 	struct desc_struct *entries;
54 	unsigned int nr_entries;
55 };
56 
57 /*
58  * Used for LDT copy/destruction.
59  */
60 int init_new_context_ldt(struct task_struct *tsk, struct mm_struct *mm);
61 void destroy_context_ldt(struct mm_struct *mm);
62 #else	/* CONFIG_MODIFY_LDT_SYSCALL */
63 static inline int init_new_context_ldt(struct task_struct *tsk,
64 				       struct mm_struct *mm)
65 {
66 	return 0;
67 }
68 static inline void destroy_context_ldt(struct mm_struct *mm) {}
69 #endif
70 
71 static inline void load_mm_ldt(struct mm_struct *mm)
72 {
73 #ifdef CONFIG_MODIFY_LDT_SYSCALL
74 	struct ldt_struct *ldt;
75 
76 	/* READ_ONCE synchronizes with smp_store_release */
77 	ldt = READ_ONCE(mm->context.ldt);
78 
79 	/*
80 	 * Any change to mm->context.ldt is followed by an IPI to all
81 	 * CPUs with the mm active.  The LDT will not be freed until
82 	 * after the IPI is handled by all such CPUs.  This means that,
83 	 * if the ldt_struct changes before we return, the values we see
84 	 * will be safe, and the new values will be loaded before we run
85 	 * any user code.
86 	 *
87 	 * NB: don't try to convert this to use RCU without extreme care.
88 	 * We would still need IRQs off, because we don't want to change
89 	 * the local LDT after an IPI loaded a newer value than the one
90 	 * that we can see.
91 	 */
92 
93 	if (unlikely(ldt))
94 		set_ldt(ldt->entries, ldt->nr_entries);
95 	else
96 		clear_LDT();
97 #else
98 	clear_LDT();
99 #endif
100 }
101 
102 static inline void switch_ldt(struct mm_struct *prev, struct mm_struct *next)
103 {
104 #ifdef CONFIG_MODIFY_LDT_SYSCALL
105 	/*
106 	 * Load the LDT if either the old or new mm had an LDT.
107 	 *
108 	 * An mm will never go from having an LDT to not having an LDT.  Two
109 	 * mms never share an LDT, so we don't gain anything by checking to
110 	 * see whether the LDT changed.  There's also no guarantee that
111 	 * prev->context.ldt actually matches LDTR, but, if LDTR is non-NULL,
112 	 * then prev->context.ldt will also be non-NULL.
113 	 *
114 	 * If we really cared, we could optimize the case where prev == next
115 	 * and we're exiting lazy mode.  Most of the time, if this happens,
116 	 * we don't actually need to reload LDTR, but modify_ldt() is mostly
117 	 * used by legacy code and emulators where we don't need this level of
118 	 * performance.
119 	 *
120 	 * This uses | instead of || because it generates better code.
121 	 */
122 	if (unlikely((unsigned long)prev->context.ldt |
123 		     (unsigned long)next->context.ldt))
124 		load_mm_ldt(next);
125 #endif
126 
127 	DEBUG_LOCKS_WARN_ON(preemptible());
128 }
129 
130 void enter_lazy_tlb(struct mm_struct *mm, struct task_struct *tsk);
131 
132 static inline int init_new_context(struct task_struct *tsk,
133 				   struct mm_struct *mm)
134 {
135 	mm->context.ctx_id = atomic64_inc_return(&last_mm_ctx_id);
136 	atomic64_set(&mm->context.tlb_gen, 0);
137 
138 	#ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS
139 	if (cpu_feature_enabled(X86_FEATURE_OSPKE)) {
140 		/* pkey 0 is the default and always allocated */
141 		mm->context.pkey_allocation_map = 0x1;
142 		/* -1 means unallocated or invalid */
143 		mm->context.execute_only_pkey = -1;
144 	}
145 	#endif
146 	return init_new_context_ldt(tsk, mm);
147 }
148 static inline void destroy_context(struct mm_struct *mm)
149 {
150 	destroy_context_ldt(mm);
151 }
152 
153 extern void switch_mm(struct mm_struct *prev, struct mm_struct *next,
154 		      struct task_struct *tsk);
155 
156 extern void switch_mm_irqs_off(struct mm_struct *prev, struct mm_struct *next,
157 			       struct task_struct *tsk);
158 #define switch_mm_irqs_off switch_mm_irqs_off
159 
160 #define activate_mm(prev, next)			\
161 do {						\
162 	paravirt_activate_mm((prev), (next));	\
163 	switch_mm((prev), (next), NULL);	\
164 } while (0);
165 
166 #ifdef CONFIG_X86_32
167 #define deactivate_mm(tsk, mm)			\
168 do {						\
169 	lazy_load_gs(0);			\
170 } while (0)
171 #else
172 #define deactivate_mm(tsk, mm)			\
173 do {						\
174 	load_gs_index(0);			\
175 	loadsegment(fs, 0);			\
176 } while (0)
177 #endif
178 
179 static inline void arch_dup_mmap(struct mm_struct *oldmm,
180 				 struct mm_struct *mm)
181 {
182 	paravirt_arch_dup_mmap(oldmm, mm);
183 }
184 
185 static inline void arch_exit_mmap(struct mm_struct *mm)
186 {
187 	paravirt_arch_exit_mmap(mm);
188 }
189 
190 #ifdef CONFIG_X86_64
191 static inline bool is_64bit_mm(struct mm_struct *mm)
192 {
193 	return	!IS_ENABLED(CONFIG_IA32_EMULATION) ||
194 		!(mm->context.ia32_compat == TIF_IA32);
195 }
196 #else
197 static inline bool is_64bit_mm(struct mm_struct *mm)
198 {
199 	return false;
200 }
201 #endif
202 
203 static inline void arch_bprm_mm_init(struct mm_struct *mm,
204 		struct vm_area_struct *vma)
205 {
206 	mpx_mm_init(mm);
207 }
208 
209 static inline void arch_unmap(struct mm_struct *mm, struct vm_area_struct *vma,
210 			      unsigned long start, unsigned long end)
211 {
212 	/*
213 	 * mpx_notify_unmap() goes and reads a rarely-hot
214 	 * cacheline in the mm_struct.  That can be expensive
215 	 * enough to be seen in profiles.
216 	 *
217 	 * The mpx_notify_unmap() call and its contents have been
218 	 * observed to affect munmap() performance on hardware
219 	 * where MPX is not present.
220 	 *
221 	 * The unlikely() optimizes for the fast case: no MPX
222 	 * in the CPU, or no MPX use in the process.  Even if
223 	 * we get this wrong (in the unlikely event that MPX
224 	 * is widely enabled on some system) the overhead of
225 	 * MPX itself (reading bounds tables) is expected to
226 	 * overwhelm the overhead of getting this unlikely()
227 	 * consistently wrong.
228 	 */
229 	if (unlikely(cpu_feature_enabled(X86_FEATURE_MPX)))
230 		mpx_notify_unmap(mm, vma, start, end);
231 }
232 
233 #ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS
234 static inline int vma_pkey(struct vm_area_struct *vma)
235 {
236 	unsigned long vma_pkey_mask = VM_PKEY_BIT0 | VM_PKEY_BIT1 |
237 				      VM_PKEY_BIT2 | VM_PKEY_BIT3;
238 
239 	return (vma->vm_flags & vma_pkey_mask) >> VM_PKEY_SHIFT;
240 }
241 #else
242 static inline int vma_pkey(struct vm_area_struct *vma)
243 {
244 	return 0;
245 }
246 #endif
247 
248 /*
249  * We only want to enforce protection keys on the current process
250  * because we effectively have no access to PKRU for other
251  * processes or any way to tell *which * PKRU in a threaded
252  * process we could use.
253  *
254  * So do not enforce things if the VMA is not from the current
255  * mm, or if we are in a kernel thread.
256  */
257 static inline bool vma_is_foreign(struct vm_area_struct *vma)
258 {
259 	if (!current->mm)
260 		return true;
261 	/*
262 	 * Should PKRU be enforced on the access to this VMA?  If
263 	 * the VMA is from another process, then PKRU has no
264 	 * relevance and should not be enforced.
265 	 */
266 	if (current->mm != vma->vm_mm)
267 		return true;
268 
269 	return false;
270 }
271 
272 static inline bool arch_vma_access_permitted(struct vm_area_struct *vma,
273 		bool write, bool execute, bool foreign)
274 {
275 	/* pkeys never affect instruction fetches */
276 	if (execute)
277 		return true;
278 	/* allow access if the VMA is not one from this process */
279 	if (foreign || vma_is_foreign(vma))
280 		return true;
281 	return __pkru_allows_pkey(vma_pkey(vma), write);
282 }
283 
284 /*
285  * If PCID is on, ASID-aware code paths put the ASID+1 into the PCID
286  * bits.  This serves two purposes.  It prevents a nasty situation in
287  * which PCID-unaware code saves CR3, loads some other value (with PCID
288  * == 0), and then restores CR3, thus corrupting the TLB for ASID 0 if
289  * the saved ASID was nonzero.  It also means that any bugs involving
290  * loading a PCID-enabled CR3 with CR4.PCIDE off will trigger
291  * deterministically.
292  */
293 
294 static inline unsigned long build_cr3(struct mm_struct *mm, u16 asid)
295 {
296 	if (static_cpu_has(X86_FEATURE_PCID)) {
297 		VM_WARN_ON_ONCE(asid > 4094);
298 		return __sme_pa(mm->pgd) | (asid + 1);
299 	} else {
300 		VM_WARN_ON_ONCE(asid != 0);
301 		return __sme_pa(mm->pgd);
302 	}
303 }
304 
305 static inline unsigned long build_cr3_noflush(struct mm_struct *mm, u16 asid)
306 {
307 	VM_WARN_ON_ONCE(asid > 4094);
308 	return __sme_pa(mm->pgd) | (asid + 1) | CR3_NOFLUSH;
309 }
310 
311 /*
312  * This can be used from process context to figure out what the value of
313  * CR3 is without needing to do a (slow) __read_cr3().
314  *
315  * It's intended to be used for code like KVM that sneakily changes CR3
316  * and needs to restore it.  It needs to be used very carefully.
317  */
318 static inline unsigned long __get_current_cr3_fast(void)
319 {
320 	unsigned long cr3 = build_cr3(this_cpu_read(cpu_tlbstate.loaded_mm),
321 		this_cpu_read(cpu_tlbstate.loaded_mm_asid));
322 
323 	/* For now, be very restrictive about when this can be called. */
324 	VM_WARN_ON(in_nmi() || preemptible());
325 
326 	VM_BUG_ON(cr3 != __read_cr3());
327 	return cr3;
328 }
329 
330 #endif /* _ASM_X86_MMU_CONTEXT_H */
331