xref: /openbmc/linux/arch/x86/include/asm/mmu_context.h (revision 50fdda70)
1 #ifndef _ASM_X86_MMU_CONTEXT_H
2 #define _ASM_X86_MMU_CONTEXT_H
3 
4 #include <asm/desc.h>
5 #include <linux/atomic.h>
6 #include <linux/mm_types.h>
7 
8 #include <trace/events/tlb.h>
9 
10 #include <asm/pgalloc.h>
11 #include <asm/tlbflush.h>
12 #include <asm/paravirt.h>
13 #include <asm/mpx.h>
14 #ifndef CONFIG_PARAVIRT
15 static inline void paravirt_activate_mm(struct mm_struct *prev,
16 					struct mm_struct *next)
17 {
18 }
19 #endif	/* !CONFIG_PARAVIRT */
20 
21 #ifdef CONFIG_PERF_EVENTS
22 extern struct static_key rdpmc_always_available;
23 
24 static inline void load_mm_cr4(struct mm_struct *mm)
25 {
26 	if (static_key_false(&rdpmc_always_available) ||
27 	    atomic_read(&mm->context.perf_rdpmc_allowed))
28 		cr4_set_bits(X86_CR4_PCE);
29 	else
30 		cr4_clear_bits(X86_CR4_PCE);
31 }
32 #else
33 static inline void load_mm_cr4(struct mm_struct *mm) {}
34 #endif
35 
36 #ifdef CONFIG_MODIFY_LDT_SYSCALL
37 /*
38  * ldt_structs can be allocated, used, and freed, but they are never
39  * modified while live.
40  */
41 struct ldt_struct {
42 	/*
43 	 * Xen requires page-aligned LDTs with special permissions.  This is
44 	 * needed to prevent us from installing evil descriptors such as
45 	 * call gates.  On native, we could merge the ldt_struct and LDT
46 	 * allocations, but it's not worth trying to optimize.
47 	 */
48 	struct desc_struct *entries;
49 	int size;
50 };
51 
52 /*
53  * Used for LDT copy/destruction.
54  */
55 int init_new_context_ldt(struct task_struct *tsk, struct mm_struct *mm);
56 void destroy_context_ldt(struct mm_struct *mm);
57 #else	/* CONFIG_MODIFY_LDT_SYSCALL */
58 static inline int init_new_context_ldt(struct task_struct *tsk,
59 				       struct mm_struct *mm)
60 {
61 	return 0;
62 }
63 static inline void destroy_context_ldt(struct mm_struct *mm) {}
64 #endif
65 
66 static inline void load_mm_ldt(struct mm_struct *mm)
67 {
68 #ifdef CONFIG_MODIFY_LDT_SYSCALL
69 	struct ldt_struct *ldt;
70 
71 	/* lockless_dereference synchronizes with smp_store_release */
72 	ldt = lockless_dereference(mm->context.ldt);
73 
74 	/*
75 	 * Any change to mm->context.ldt is followed by an IPI to all
76 	 * CPUs with the mm active.  The LDT will not be freed until
77 	 * after the IPI is handled by all such CPUs.  This means that,
78 	 * if the ldt_struct changes before we return, the values we see
79 	 * will be safe, and the new values will be loaded before we run
80 	 * any user code.
81 	 *
82 	 * NB: don't try to convert this to use RCU without extreme care.
83 	 * We would still need IRQs off, because we don't want to change
84 	 * the local LDT after an IPI loaded a newer value than the one
85 	 * that we can see.
86 	 */
87 
88 	if (unlikely(ldt))
89 		set_ldt(ldt->entries, ldt->size);
90 	else
91 		clear_LDT();
92 #else
93 	clear_LDT();
94 #endif
95 
96 	DEBUG_LOCKS_WARN_ON(preemptible());
97 }
98 
99 static inline void enter_lazy_tlb(struct mm_struct *mm, struct task_struct *tsk)
100 {
101 #ifdef CONFIG_SMP
102 	if (this_cpu_read(cpu_tlbstate.state) == TLBSTATE_OK)
103 		this_cpu_write(cpu_tlbstate.state, TLBSTATE_LAZY);
104 #endif
105 }
106 
107 static inline int init_new_context(struct task_struct *tsk,
108 				   struct mm_struct *mm)
109 {
110 	init_new_context_ldt(tsk, mm);
111 	return 0;
112 }
113 static inline void destroy_context(struct mm_struct *mm)
114 {
115 	destroy_context_ldt(mm);
116 }
117 
118 extern void switch_mm(struct mm_struct *prev, struct mm_struct *next,
119 		      struct task_struct *tsk);
120 
121 extern void switch_mm_irqs_off(struct mm_struct *prev, struct mm_struct *next,
122 			       struct task_struct *tsk);
123 #define switch_mm_irqs_off switch_mm_irqs_off
124 
125 #define activate_mm(prev, next)			\
126 do {						\
127 	paravirt_activate_mm((prev), (next));	\
128 	switch_mm((prev), (next), NULL);	\
129 } while (0);
130 
131 #ifdef CONFIG_X86_32
132 #define deactivate_mm(tsk, mm)			\
133 do {						\
134 	lazy_load_gs(0);			\
135 } while (0)
136 #else
137 #define deactivate_mm(tsk, mm)			\
138 do {						\
139 	load_gs_index(0);			\
140 	loadsegment(fs, 0);			\
141 } while (0)
142 #endif
143 
144 static inline void arch_dup_mmap(struct mm_struct *oldmm,
145 				 struct mm_struct *mm)
146 {
147 	paravirt_arch_dup_mmap(oldmm, mm);
148 }
149 
150 static inline void arch_exit_mmap(struct mm_struct *mm)
151 {
152 	paravirt_arch_exit_mmap(mm);
153 }
154 
155 #ifdef CONFIG_X86_64
156 static inline bool is_64bit_mm(struct mm_struct *mm)
157 {
158 	return	!config_enabled(CONFIG_IA32_EMULATION) ||
159 		!(mm->context.ia32_compat == TIF_IA32);
160 }
161 #else
162 static inline bool is_64bit_mm(struct mm_struct *mm)
163 {
164 	return false;
165 }
166 #endif
167 
168 static inline void arch_bprm_mm_init(struct mm_struct *mm,
169 		struct vm_area_struct *vma)
170 {
171 	mpx_mm_init(mm);
172 }
173 
174 static inline void arch_unmap(struct mm_struct *mm, struct vm_area_struct *vma,
175 			      unsigned long start, unsigned long end)
176 {
177 	/*
178 	 * mpx_notify_unmap() goes and reads a rarely-hot
179 	 * cacheline in the mm_struct.  That can be expensive
180 	 * enough to be seen in profiles.
181 	 *
182 	 * The mpx_notify_unmap() call and its contents have been
183 	 * observed to affect munmap() performance on hardware
184 	 * where MPX is not present.
185 	 *
186 	 * The unlikely() optimizes for the fast case: no MPX
187 	 * in the CPU, or no MPX use in the process.  Even if
188 	 * we get this wrong (in the unlikely event that MPX
189 	 * is widely enabled on some system) the overhead of
190 	 * MPX itself (reading bounds tables) is expected to
191 	 * overwhelm the overhead of getting this unlikely()
192 	 * consistently wrong.
193 	 */
194 	if (unlikely(cpu_feature_enabled(X86_FEATURE_MPX)))
195 		mpx_notify_unmap(mm, vma, start, end);
196 }
197 
198 static inline int vma_pkey(struct vm_area_struct *vma)
199 {
200 	u16 pkey = 0;
201 #ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS
202 	unsigned long vma_pkey_mask = VM_PKEY_BIT0 | VM_PKEY_BIT1 |
203 				      VM_PKEY_BIT2 | VM_PKEY_BIT3;
204 	pkey = (vma->vm_flags & vma_pkey_mask) >> VM_PKEY_SHIFT;
205 #endif
206 	return pkey;
207 }
208 
209 static inline bool __pkru_allows_pkey(u16 pkey, bool write)
210 {
211 	u32 pkru = read_pkru();
212 
213 	if (!__pkru_allows_read(pkru, pkey))
214 		return false;
215 	if (write && !__pkru_allows_write(pkru, pkey))
216 		return false;
217 
218 	return true;
219 }
220 
221 /*
222  * We only want to enforce protection keys on the current process
223  * because we effectively have no access to PKRU for other
224  * processes or any way to tell *which * PKRU in a threaded
225  * process we could use.
226  *
227  * So do not enforce things if the VMA is not from the current
228  * mm, or if we are in a kernel thread.
229  */
230 static inline bool vma_is_foreign(struct vm_area_struct *vma)
231 {
232 	if (!current->mm)
233 		return true;
234 	/*
235 	 * Should PKRU be enforced on the access to this VMA?  If
236 	 * the VMA is from another process, then PKRU has no
237 	 * relevance and should not be enforced.
238 	 */
239 	if (current->mm != vma->vm_mm)
240 		return true;
241 
242 	return false;
243 }
244 
245 static inline bool arch_vma_access_permitted(struct vm_area_struct *vma,
246 		bool write, bool execute, bool foreign)
247 {
248 	/* pkeys never affect instruction fetches */
249 	if (execute)
250 		return true;
251 	/* allow access if the VMA is not one from this process */
252 	if (foreign || vma_is_foreign(vma))
253 		return true;
254 	return __pkru_allows_pkey(vma_pkey(vma), write);
255 }
256 
257 static inline bool arch_pte_access_permitted(pte_t pte, bool write)
258 {
259 	return __pkru_allows_pkey(pte_flags_pkey(pte_flags(pte)), write);
260 }
261 
262 #endif /* _ASM_X86_MMU_CONTEXT_H */
263