xref: /openbmc/linux/arch/x86/include/asm/mmu_context.h (revision 4f727ecefefbd180de10e25b3e74c03dce3f1e75)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _ASM_X86_MMU_CONTEXT_H
3 #define _ASM_X86_MMU_CONTEXT_H
4 
5 #include <asm/desc.h>
6 #include <linux/atomic.h>
7 #include <linux/mm_types.h>
8 #include <linux/pkeys.h>
9 
10 #include <trace/events/tlb.h>
11 
12 #include <asm/pgalloc.h>
13 #include <asm/tlbflush.h>
14 #include <asm/paravirt.h>
15 #include <asm/mpx.h>
16 #include <asm/debugreg.h>
17 
18 extern atomic64_t last_mm_ctx_id;
19 
20 #ifndef CONFIG_PARAVIRT_XXL
21 static inline void paravirt_activate_mm(struct mm_struct *prev,
22 					struct mm_struct *next)
23 {
24 }
25 #endif	/* !CONFIG_PARAVIRT_XXL */
26 
27 #ifdef CONFIG_PERF_EVENTS
28 
29 DECLARE_STATIC_KEY_FALSE(rdpmc_always_available_key);
30 
31 static inline void load_mm_cr4(struct mm_struct *mm)
32 {
33 	if (static_branch_unlikely(&rdpmc_always_available_key) ||
34 	    atomic_read(&mm->context.perf_rdpmc_allowed))
35 		cr4_set_bits(X86_CR4_PCE);
36 	else
37 		cr4_clear_bits(X86_CR4_PCE);
38 }
39 #else
40 static inline void load_mm_cr4(struct mm_struct *mm) {}
41 #endif
42 
43 #ifdef CONFIG_MODIFY_LDT_SYSCALL
44 /*
45  * ldt_structs can be allocated, used, and freed, but they are never
46  * modified while live.
47  */
48 struct ldt_struct {
49 	/*
50 	 * Xen requires page-aligned LDTs with special permissions.  This is
51 	 * needed to prevent us from installing evil descriptors such as
52 	 * call gates.  On native, we could merge the ldt_struct and LDT
53 	 * allocations, but it's not worth trying to optimize.
54 	 */
55 	struct desc_struct	*entries;
56 	unsigned int		nr_entries;
57 
58 	/*
59 	 * If PTI is in use, then the entries array is not mapped while we're
60 	 * in user mode.  The whole array will be aliased at the addressed
61 	 * given by ldt_slot_va(slot).  We use two slots so that we can allocate
62 	 * and map, and enable a new LDT without invalidating the mapping
63 	 * of an older, still-in-use LDT.
64 	 *
65 	 * slot will be -1 if this LDT doesn't have an alias mapping.
66 	 */
67 	int			slot;
68 };
69 
70 /* This is a multiple of PAGE_SIZE. */
71 #define LDT_SLOT_STRIDE (LDT_ENTRIES * LDT_ENTRY_SIZE)
72 
73 static inline void *ldt_slot_va(int slot)
74 {
75 	return (void *)(LDT_BASE_ADDR + LDT_SLOT_STRIDE * slot);
76 }
77 
78 /*
79  * Used for LDT copy/destruction.
80  */
81 static inline void init_new_context_ldt(struct mm_struct *mm)
82 {
83 	mm->context.ldt = NULL;
84 	init_rwsem(&mm->context.ldt_usr_sem);
85 }
86 int ldt_dup_context(struct mm_struct *oldmm, struct mm_struct *mm);
87 void destroy_context_ldt(struct mm_struct *mm);
88 void ldt_arch_exit_mmap(struct mm_struct *mm);
89 #else	/* CONFIG_MODIFY_LDT_SYSCALL */
90 static inline void init_new_context_ldt(struct mm_struct *mm) { }
91 static inline int ldt_dup_context(struct mm_struct *oldmm,
92 				  struct mm_struct *mm)
93 {
94 	return 0;
95 }
96 static inline void destroy_context_ldt(struct mm_struct *mm) { }
97 static inline void ldt_arch_exit_mmap(struct mm_struct *mm) { }
98 #endif
99 
100 static inline void load_mm_ldt(struct mm_struct *mm)
101 {
102 #ifdef CONFIG_MODIFY_LDT_SYSCALL
103 	struct ldt_struct *ldt;
104 
105 	/* READ_ONCE synchronizes with smp_store_release */
106 	ldt = READ_ONCE(mm->context.ldt);
107 
108 	/*
109 	 * Any change to mm->context.ldt is followed by an IPI to all
110 	 * CPUs with the mm active.  The LDT will not be freed until
111 	 * after the IPI is handled by all such CPUs.  This means that,
112 	 * if the ldt_struct changes before we return, the values we see
113 	 * will be safe, and the new values will be loaded before we run
114 	 * any user code.
115 	 *
116 	 * NB: don't try to convert this to use RCU without extreme care.
117 	 * We would still need IRQs off, because we don't want to change
118 	 * the local LDT after an IPI loaded a newer value than the one
119 	 * that we can see.
120 	 */
121 
122 	if (unlikely(ldt)) {
123 		if (static_cpu_has(X86_FEATURE_PTI)) {
124 			if (WARN_ON_ONCE((unsigned long)ldt->slot > 1)) {
125 				/*
126 				 * Whoops -- either the new LDT isn't mapped
127 				 * (if slot == -1) or is mapped into a bogus
128 				 * slot (if slot > 1).
129 				 */
130 				clear_LDT();
131 				return;
132 			}
133 
134 			/*
135 			 * If page table isolation is enabled, ldt->entries
136 			 * will not be mapped in the userspace pagetables.
137 			 * Tell the CPU to access the LDT through the alias
138 			 * at ldt_slot_va(ldt->slot).
139 			 */
140 			set_ldt(ldt_slot_va(ldt->slot), ldt->nr_entries);
141 		} else {
142 			set_ldt(ldt->entries, ldt->nr_entries);
143 		}
144 	} else {
145 		clear_LDT();
146 	}
147 #else
148 	clear_LDT();
149 #endif
150 }
151 
152 static inline void switch_ldt(struct mm_struct *prev, struct mm_struct *next)
153 {
154 #ifdef CONFIG_MODIFY_LDT_SYSCALL
155 	/*
156 	 * Load the LDT if either the old or new mm had an LDT.
157 	 *
158 	 * An mm will never go from having an LDT to not having an LDT.  Two
159 	 * mms never share an LDT, so we don't gain anything by checking to
160 	 * see whether the LDT changed.  There's also no guarantee that
161 	 * prev->context.ldt actually matches LDTR, but, if LDTR is non-NULL,
162 	 * then prev->context.ldt will also be non-NULL.
163 	 *
164 	 * If we really cared, we could optimize the case where prev == next
165 	 * and we're exiting lazy mode.  Most of the time, if this happens,
166 	 * we don't actually need to reload LDTR, but modify_ldt() is mostly
167 	 * used by legacy code and emulators where we don't need this level of
168 	 * performance.
169 	 *
170 	 * This uses | instead of || because it generates better code.
171 	 */
172 	if (unlikely((unsigned long)prev->context.ldt |
173 		     (unsigned long)next->context.ldt))
174 		load_mm_ldt(next);
175 #endif
176 
177 	DEBUG_LOCKS_WARN_ON(preemptible());
178 }
179 
180 void enter_lazy_tlb(struct mm_struct *mm, struct task_struct *tsk);
181 
182 /*
183  * Init a new mm.  Used on mm copies, like at fork()
184  * and on mm's that are brand-new, like at execve().
185  */
186 static inline int init_new_context(struct task_struct *tsk,
187 				   struct mm_struct *mm)
188 {
189 	mutex_init(&mm->context.lock);
190 
191 	mm->context.ctx_id = atomic64_inc_return(&last_mm_ctx_id);
192 	atomic64_set(&mm->context.tlb_gen, 0);
193 
194 #ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS
195 	if (cpu_feature_enabled(X86_FEATURE_OSPKE)) {
196 		/* pkey 0 is the default and allocated implicitly */
197 		mm->context.pkey_allocation_map = 0x1;
198 		/* -1 means unallocated or invalid */
199 		mm->context.execute_only_pkey = -1;
200 	}
201 #endif
202 	init_new_context_ldt(mm);
203 	return 0;
204 }
205 static inline void destroy_context(struct mm_struct *mm)
206 {
207 	destroy_context_ldt(mm);
208 }
209 
210 extern void switch_mm(struct mm_struct *prev, struct mm_struct *next,
211 		      struct task_struct *tsk);
212 
213 extern void switch_mm_irqs_off(struct mm_struct *prev, struct mm_struct *next,
214 			       struct task_struct *tsk);
215 #define switch_mm_irqs_off switch_mm_irqs_off
216 
217 #define activate_mm(prev, next)			\
218 do {						\
219 	paravirt_activate_mm((prev), (next));	\
220 	switch_mm((prev), (next), NULL);	\
221 } while (0);
222 
223 #ifdef CONFIG_X86_32
224 #define deactivate_mm(tsk, mm)			\
225 do {						\
226 	lazy_load_gs(0);			\
227 } while (0)
228 #else
229 #define deactivate_mm(tsk, mm)			\
230 do {						\
231 	load_gs_index(0);			\
232 	loadsegment(fs, 0);			\
233 } while (0)
234 #endif
235 
236 static inline void arch_dup_pkeys(struct mm_struct *oldmm,
237 				  struct mm_struct *mm)
238 {
239 #ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS
240 	if (!cpu_feature_enabled(X86_FEATURE_OSPKE))
241 		return;
242 
243 	/* Duplicate the oldmm pkey state in mm: */
244 	mm->context.pkey_allocation_map = oldmm->context.pkey_allocation_map;
245 	mm->context.execute_only_pkey   = oldmm->context.execute_only_pkey;
246 #endif
247 }
248 
249 static inline int arch_dup_mmap(struct mm_struct *oldmm, struct mm_struct *mm)
250 {
251 	arch_dup_pkeys(oldmm, mm);
252 	paravirt_arch_dup_mmap(oldmm, mm);
253 	return ldt_dup_context(oldmm, mm);
254 }
255 
256 static inline void arch_exit_mmap(struct mm_struct *mm)
257 {
258 	paravirt_arch_exit_mmap(mm);
259 	ldt_arch_exit_mmap(mm);
260 }
261 
262 #ifdef CONFIG_X86_64
263 static inline bool is_64bit_mm(struct mm_struct *mm)
264 {
265 	return	!IS_ENABLED(CONFIG_IA32_EMULATION) ||
266 		!(mm->context.ia32_compat == TIF_IA32);
267 }
268 #else
269 static inline bool is_64bit_mm(struct mm_struct *mm)
270 {
271 	return false;
272 }
273 #endif
274 
275 static inline void arch_bprm_mm_init(struct mm_struct *mm,
276 		struct vm_area_struct *vma)
277 {
278 	mpx_mm_init(mm);
279 }
280 
281 static inline void arch_unmap(struct mm_struct *mm, unsigned long start,
282 			      unsigned long end)
283 {
284 	/*
285 	 * mpx_notify_unmap() goes and reads a rarely-hot
286 	 * cacheline in the mm_struct.  That can be expensive
287 	 * enough to be seen in profiles.
288 	 *
289 	 * The mpx_notify_unmap() call and its contents have been
290 	 * observed to affect munmap() performance on hardware
291 	 * where MPX is not present.
292 	 *
293 	 * The unlikely() optimizes for the fast case: no MPX
294 	 * in the CPU, or no MPX use in the process.  Even if
295 	 * we get this wrong (in the unlikely event that MPX
296 	 * is widely enabled on some system) the overhead of
297 	 * MPX itself (reading bounds tables) is expected to
298 	 * overwhelm the overhead of getting this unlikely()
299 	 * consistently wrong.
300 	 */
301 	if (unlikely(cpu_feature_enabled(X86_FEATURE_MPX)))
302 		mpx_notify_unmap(mm, start, end);
303 }
304 
305 /*
306  * We only want to enforce protection keys on the current process
307  * because we effectively have no access to PKRU for other
308  * processes or any way to tell *which * PKRU in a threaded
309  * process we could use.
310  *
311  * So do not enforce things if the VMA is not from the current
312  * mm, or if we are in a kernel thread.
313  */
314 static inline bool vma_is_foreign(struct vm_area_struct *vma)
315 {
316 	if (!current->mm)
317 		return true;
318 	/*
319 	 * Should PKRU be enforced on the access to this VMA?  If
320 	 * the VMA is from another process, then PKRU has no
321 	 * relevance and should not be enforced.
322 	 */
323 	if (current->mm != vma->vm_mm)
324 		return true;
325 
326 	return false;
327 }
328 
329 static inline bool arch_vma_access_permitted(struct vm_area_struct *vma,
330 		bool write, bool execute, bool foreign)
331 {
332 	/* pkeys never affect instruction fetches */
333 	if (execute)
334 		return true;
335 	/* allow access if the VMA is not one from this process */
336 	if (foreign || vma_is_foreign(vma))
337 		return true;
338 	return __pkru_allows_pkey(vma_pkey(vma), write);
339 }
340 
341 /*
342  * This can be used from process context to figure out what the value of
343  * CR3 is without needing to do a (slow) __read_cr3().
344  *
345  * It's intended to be used for code like KVM that sneakily changes CR3
346  * and needs to restore it.  It needs to be used very carefully.
347  */
348 static inline unsigned long __get_current_cr3_fast(void)
349 {
350 	unsigned long cr3 = build_cr3(this_cpu_read(cpu_tlbstate.loaded_mm)->pgd,
351 		this_cpu_read(cpu_tlbstate.loaded_mm_asid));
352 
353 	/* For now, be very restrictive about when this can be called. */
354 	VM_WARN_ON(in_nmi() || preemptible());
355 
356 	VM_BUG_ON(cr3 != __read_cr3());
357 	return cr3;
358 }
359 
360 typedef struct {
361 	struct mm_struct *mm;
362 } temp_mm_state_t;
363 
364 /*
365  * Using a temporary mm allows to set temporary mappings that are not accessible
366  * by other CPUs. Such mappings are needed to perform sensitive memory writes
367  * that override the kernel memory protections (e.g., W^X), without exposing the
368  * temporary page-table mappings that are required for these write operations to
369  * other CPUs. Using a temporary mm also allows to avoid TLB shootdowns when the
370  * mapping is torn down.
371  *
372  * Context: The temporary mm needs to be used exclusively by a single core. To
373  *          harden security IRQs must be disabled while the temporary mm is
374  *          loaded, thereby preventing interrupt handler bugs from overriding
375  *          the kernel memory protection.
376  */
377 static inline temp_mm_state_t use_temporary_mm(struct mm_struct *mm)
378 {
379 	temp_mm_state_t temp_state;
380 
381 	lockdep_assert_irqs_disabled();
382 	temp_state.mm = this_cpu_read(cpu_tlbstate.loaded_mm);
383 	switch_mm_irqs_off(NULL, mm, current);
384 
385 	/*
386 	 * If breakpoints are enabled, disable them while the temporary mm is
387 	 * used. Userspace might set up watchpoints on addresses that are used
388 	 * in the temporary mm, which would lead to wrong signals being sent or
389 	 * crashes.
390 	 *
391 	 * Note that breakpoints are not disabled selectively, which also causes
392 	 * kernel breakpoints (e.g., perf's) to be disabled. This might be
393 	 * undesirable, but still seems reasonable as the code that runs in the
394 	 * temporary mm should be short.
395 	 */
396 	if (hw_breakpoint_active())
397 		hw_breakpoint_disable();
398 
399 	return temp_state;
400 }
401 
402 static inline void unuse_temporary_mm(temp_mm_state_t prev_state)
403 {
404 	lockdep_assert_irqs_disabled();
405 	switch_mm_irqs_off(NULL, prev_state.mm, current);
406 
407 	/*
408 	 * Restore the breakpoints if they were disabled before the temporary mm
409 	 * was loaded.
410 	 */
411 	if (hw_breakpoint_active())
412 		hw_breakpoint_restore();
413 }
414 
415 #endif /* _ASM_X86_MMU_CONTEXT_H */
416