xref: /openbmc/linux/arch/x86/include/asm/mmu_context.h (revision 2c684d89)
1 #ifndef _ASM_X86_MMU_CONTEXT_H
2 #define _ASM_X86_MMU_CONTEXT_H
3 
4 #include <asm/desc.h>
5 #include <linux/atomic.h>
6 #include <linux/mm_types.h>
7 
8 #include <trace/events/tlb.h>
9 
10 #include <asm/pgalloc.h>
11 #include <asm/tlbflush.h>
12 #include <asm/paravirt.h>
13 #include <asm/mpx.h>
14 #ifndef CONFIG_PARAVIRT
15 static inline void paravirt_activate_mm(struct mm_struct *prev,
16 					struct mm_struct *next)
17 {
18 }
19 #endif	/* !CONFIG_PARAVIRT */
20 
21 #ifdef CONFIG_PERF_EVENTS
22 extern struct static_key rdpmc_always_available;
23 
24 static inline void load_mm_cr4(struct mm_struct *mm)
25 {
26 	if (static_key_false(&rdpmc_always_available) ||
27 	    atomic_read(&mm->context.perf_rdpmc_allowed))
28 		cr4_set_bits(X86_CR4_PCE);
29 	else
30 		cr4_clear_bits(X86_CR4_PCE);
31 }
32 #else
33 static inline void load_mm_cr4(struct mm_struct *mm) {}
34 #endif
35 
36 #ifdef CONFIG_MODIFY_LDT_SYSCALL
37 /*
38  * ldt_structs can be allocated, used, and freed, but they are never
39  * modified while live.
40  */
41 struct ldt_struct {
42 	/*
43 	 * Xen requires page-aligned LDTs with special permissions.  This is
44 	 * needed to prevent us from installing evil descriptors such as
45 	 * call gates.  On native, we could merge the ldt_struct and LDT
46 	 * allocations, but it's not worth trying to optimize.
47 	 */
48 	struct desc_struct *entries;
49 	int size;
50 };
51 
52 /*
53  * Used for LDT copy/destruction.
54  */
55 int init_new_context(struct task_struct *tsk, struct mm_struct *mm);
56 void destroy_context(struct mm_struct *mm);
57 #else	/* CONFIG_MODIFY_LDT_SYSCALL */
58 static inline int init_new_context(struct task_struct *tsk,
59 				   struct mm_struct *mm)
60 {
61 	return 0;
62 }
63 static inline void destroy_context(struct mm_struct *mm) {}
64 #endif
65 
66 static inline void load_mm_ldt(struct mm_struct *mm)
67 {
68 #ifdef CONFIG_MODIFY_LDT_SYSCALL
69 	struct ldt_struct *ldt;
70 
71 	/* lockless_dereference synchronizes with smp_store_release */
72 	ldt = lockless_dereference(mm->context.ldt);
73 
74 	/*
75 	 * Any change to mm->context.ldt is followed by an IPI to all
76 	 * CPUs with the mm active.  The LDT will not be freed until
77 	 * after the IPI is handled by all such CPUs.  This means that,
78 	 * if the ldt_struct changes before we return, the values we see
79 	 * will be safe, and the new values will be loaded before we run
80 	 * any user code.
81 	 *
82 	 * NB: don't try to convert this to use RCU without extreme care.
83 	 * We would still need IRQs off, because we don't want to change
84 	 * the local LDT after an IPI loaded a newer value than the one
85 	 * that we can see.
86 	 */
87 
88 	if (unlikely(ldt))
89 		set_ldt(ldt->entries, ldt->size);
90 	else
91 		clear_LDT();
92 #else
93 	clear_LDT();
94 #endif
95 
96 	DEBUG_LOCKS_WARN_ON(preemptible());
97 }
98 
99 static inline void enter_lazy_tlb(struct mm_struct *mm, struct task_struct *tsk)
100 {
101 #ifdef CONFIG_SMP
102 	if (this_cpu_read(cpu_tlbstate.state) == TLBSTATE_OK)
103 		this_cpu_write(cpu_tlbstate.state, TLBSTATE_LAZY);
104 #endif
105 }
106 
107 static inline void switch_mm(struct mm_struct *prev, struct mm_struct *next,
108 			     struct task_struct *tsk)
109 {
110 	unsigned cpu = smp_processor_id();
111 
112 	if (likely(prev != next)) {
113 #ifdef CONFIG_SMP
114 		this_cpu_write(cpu_tlbstate.state, TLBSTATE_OK);
115 		this_cpu_write(cpu_tlbstate.active_mm, next);
116 #endif
117 		cpumask_set_cpu(cpu, mm_cpumask(next));
118 
119 		/* Re-load page tables */
120 		load_cr3(next->pgd);
121 		trace_tlb_flush(TLB_FLUSH_ON_TASK_SWITCH, TLB_FLUSH_ALL);
122 
123 		/* Stop flush ipis for the previous mm */
124 		cpumask_clear_cpu(cpu, mm_cpumask(prev));
125 
126 		/* Load per-mm CR4 state */
127 		load_mm_cr4(next);
128 
129 #ifdef CONFIG_MODIFY_LDT_SYSCALL
130 		/*
131 		 * Load the LDT, if the LDT is different.
132 		 *
133 		 * It's possible that prev->context.ldt doesn't match
134 		 * the LDT register.  This can happen if leave_mm(prev)
135 		 * was called and then modify_ldt changed
136 		 * prev->context.ldt but suppressed an IPI to this CPU.
137 		 * In this case, prev->context.ldt != NULL, because we
138 		 * never set context.ldt to NULL while the mm still
139 		 * exists.  That means that next->context.ldt !=
140 		 * prev->context.ldt, because mms never share an LDT.
141 		 */
142 		if (unlikely(prev->context.ldt != next->context.ldt))
143 			load_mm_ldt(next);
144 #endif
145 	}
146 #ifdef CONFIG_SMP
147 	  else {
148 		this_cpu_write(cpu_tlbstate.state, TLBSTATE_OK);
149 		BUG_ON(this_cpu_read(cpu_tlbstate.active_mm) != next);
150 
151 		if (!cpumask_test_cpu(cpu, mm_cpumask(next))) {
152 			/*
153 			 * On established mms, the mm_cpumask is only changed
154 			 * from irq context, from ptep_clear_flush() while in
155 			 * lazy tlb mode, and here. Irqs are blocked during
156 			 * schedule, protecting us from simultaneous changes.
157 			 */
158 			cpumask_set_cpu(cpu, mm_cpumask(next));
159 			/*
160 			 * We were in lazy tlb mode and leave_mm disabled
161 			 * tlb flush IPI delivery. We must reload CR3
162 			 * to make sure to use no freed page tables.
163 			 */
164 			load_cr3(next->pgd);
165 			trace_tlb_flush(TLB_FLUSH_ON_TASK_SWITCH, TLB_FLUSH_ALL);
166 			load_mm_cr4(next);
167 			load_mm_ldt(next);
168 		}
169 	}
170 #endif
171 }
172 
173 #define activate_mm(prev, next)			\
174 do {						\
175 	paravirt_activate_mm((prev), (next));	\
176 	switch_mm((prev), (next), NULL);	\
177 } while (0);
178 
179 #ifdef CONFIG_X86_32
180 #define deactivate_mm(tsk, mm)			\
181 do {						\
182 	lazy_load_gs(0);			\
183 } while (0)
184 #else
185 #define deactivate_mm(tsk, mm)			\
186 do {						\
187 	load_gs_index(0);			\
188 	loadsegment(fs, 0);			\
189 } while (0)
190 #endif
191 
192 static inline void arch_dup_mmap(struct mm_struct *oldmm,
193 				 struct mm_struct *mm)
194 {
195 	paravirt_arch_dup_mmap(oldmm, mm);
196 }
197 
198 static inline void arch_exit_mmap(struct mm_struct *mm)
199 {
200 	paravirt_arch_exit_mmap(mm);
201 }
202 
203 #ifdef CONFIG_X86_64
204 static inline bool is_64bit_mm(struct mm_struct *mm)
205 {
206 	return	!config_enabled(CONFIG_IA32_EMULATION) ||
207 		!(mm->context.ia32_compat == TIF_IA32);
208 }
209 #else
210 static inline bool is_64bit_mm(struct mm_struct *mm)
211 {
212 	return false;
213 }
214 #endif
215 
216 static inline void arch_bprm_mm_init(struct mm_struct *mm,
217 		struct vm_area_struct *vma)
218 {
219 	mpx_mm_init(mm);
220 }
221 
222 static inline void arch_unmap(struct mm_struct *mm, struct vm_area_struct *vma,
223 			      unsigned long start, unsigned long end)
224 {
225 	/*
226 	 * mpx_notify_unmap() goes and reads a rarely-hot
227 	 * cacheline in the mm_struct.  That can be expensive
228 	 * enough to be seen in profiles.
229 	 *
230 	 * The mpx_notify_unmap() call and its contents have been
231 	 * observed to affect munmap() performance on hardware
232 	 * where MPX is not present.
233 	 *
234 	 * The unlikely() optimizes for the fast case: no MPX
235 	 * in the CPU, or no MPX use in the process.  Even if
236 	 * we get this wrong (in the unlikely event that MPX
237 	 * is widely enabled on some system) the overhead of
238 	 * MPX itself (reading bounds tables) is expected to
239 	 * overwhelm the overhead of getting this unlikely()
240 	 * consistently wrong.
241 	 */
242 	if (unlikely(cpu_feature_enabled(X86_FEATURE_MPX)))
243 		mpx_notify_unmap(mm, vma, start, end);
244 }
245 
246 #endif /* _ASM_X86_MMU_CONTEXT_H */
247