xref: /openbmc/linux/arch/x86/include/asm/mmu_context.h (revision 236a9bf2)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _ASM_X86_MMU_CONTEXT_H
3 #define _ASM_X86_MMU_CONTEXT_H
4 
5 #include <asm/desc.h>
6 #include <linux/atomic.h>
7 #include <linux/mm_types.h>
8 #include <linux/pkeys.h>
9 
10 #include <trace/events/tlb.h>
11 
12 #include <asm/tlbflush.h>
13 #include <asm/paravirt.h>
14 #include <asm/debugreg.h>
15 #include <asm/gsseg.h>
16 
17 extern atomic64_t last_mm_ctx_id;
18 
19 #ifdef CONFIG_PERF_EVENTS
20 DECLARE_STATIC_KEY_FALSE(rdpmc_never_available_key);
21 DECLARE_STATIC_KEY_FALSE(rdpmc_always_available_key);
22 void cr4_update_pce(void *ignored);
23 #endif
24 
25 #ifdef CONFIG_MODIFY_LDT_SYSCALL
26 /*
27  * ldt_structs can be allocated, used, and freed, but they are never
28  * modified while live.
29  */
30 struct ldt_struct {
31 	/*
32 	 * Xen requires page-aligned LDTs with special permissions.  This is
33 	 * needed to prevent us from installing evil descriptors such as
34 	 * call gates.  On native, we could merge the ldt_struct and LDT
35 	 * allocations, but it's not worth trying to optimize.
36 	 */
37 	struct desc_struct	*entries;
38 	unsigned int		nr_entries;
39 
40 	/*
41 	 * If PTI is in use, then the entries array is not mapped while we're
42 	 * in user mode.  The whole array will be aliased at the addressed
43 	 * given by ldt_slot_va(slot).  We use two slots so that we can allocate
44 	 * and map, and enable a new LDT without invalidating the mapping
45 	 * of an older, still-in-use LDT.
46 	 *
47 	 * slot will be -1 if this LDT doesn't have an alias mapping.
48 	 */
49 	int			slot;
50 };
51 
52 /*
53  * Used for LDT copy/destruction.
54  */
55 static inline void init_new_context_ldt(struct mm_struct *mm)
56 {
57 	mm->context.ldt = NULL;
58 	init_rwsem(&mm->context.ldt_usr_sem);
59 }
60 int ldt_dup_context(struct mm_struct *oldmm, struct mm_struct *mm);
61 void destroy_context_ldt(struct mm_struct *mm);
62 void ldt_arch_exit_mmap(struct mm_struct *mm);
63 #else	/* CONFIG_MODIFY_LDT_SYSCALL */
64 static inline void init_new_context_ldt(struct mm_struct *mm) { }
65 static inline int ldt_dup_context(struct mm_struct *oldmm,
66 				  struct mm_struct *mm)
67 {
68 	return 0;
69 }
70 static inline void destroy_context_ldt(struct mm_struct *mm) { }
71 static inline void ldt_arch_exit_mmap(struct mm_struct *mm) { }
72 #endif
73 
74 #ifdef CONFIG_MODIFY_LDT_SYSCALL
75 extern void load_mm_ldt(struct mm_struct *mm);
76 extern void switch_ldt(struct mm_struct *prev, struct mm_struct *next);
77 #else
78 static inline void load_mm_ldt(struct mm_struct *mm)
79 {
80 	clear_LDT();
81 }
82 static inline void switch_ldt(struct mm_struct *prev, struct mm_struct *next)
83 {
84 	DEBUG_LOCKS_WARN_ON(preemptible());
85 }
86 #endif
87 
88 #ifdef CONFIG_ADDRESS_MASKING
89 static inline unsigned long mm_lam_cr3_mask(struct mm_struct *mm)
90 {
91 	return mm->context.lam_cr3_mask;
92 }
93 
94 static inline void dup_lam(struct mm_struct *oldmm, struct mm_struct *mm)
95 {
96 	mm->context.lam_cr3_mask = oldmm->context.lam_cr3_mask;
97 	mm->context.untag_mask = oldmm->context.untag_mask;
98 }
99 
100 #define mm_untag_mask mm_untag_mask
101 static inline unsigned long mm_untag_mask(struct mm_struct *mm)
102 {
103 	return mm->context.untag_mask;
104 }
105 
106 static inline void mm_reset_untag_mask(struct mm_struct *mm)
107 {
108 	mm->context.untag_mask = -1UL;
109 }
110 
111 #define arch_pgtable_dma_compat arch_pgtable_dma_compat
112 static inline bool arch_pgtable_dma_compat(struct mm_struct *mm)
113 {
114 	return !mm_lam_cr3_mask(mm) ||
115 		test_bit(MM_CONTEXT_FORCE_TAGGED_SVA, &mm->context.flags);
116 }
117 #else
118 
119 static inline unsigned long mm_lam_cr3_mask(struct mm_struct *mm)
120 {
121 	return 0;
122 }
123 
124 static inline void dup_lam(struct mm_struct *oldmm, struct mm_struct *mm)
125 {
126 }
127 
128 static inline void mm_reset_untag_mask(struct mm_struct *mm)
129 {
130 }
131 #endif
132 
133 #define enter_lazy_tlb enter_lazy_tlb
134 extern void enter_lazy_tlb(struct mm_struct *mm, struct task_struct *tsk);
135 
136 /*
137  * Init a new mm.  Used on mm copies, like at fork()
138  * and on mm's that are brand-new, like at execve().
139  */
140 #define init_new_context init_new_context
141 static inline int init_new_context(struct task_struct *tsk,
142 				   struct mm_struct *mm)
143 {
144 	mutex_init(&mm->context.lock);
145 
146 	mm->context.ctx_id = atomic64_inc_return(&last_mm_ctx_id);
147 	atomic64_set(&mm->context.tlb_gen, 0);
148 
149 #ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS
150 	if (cpu_feature_enabled(X86_FEATURE_OSPKE)) {
151 		/* pkey 0 is the default and allocated implicitly */
152 		mm->context.pkey_allocation_map = 0x1;
153 		/* -1 means unallocated or invalid */
154 		mm->context.execute_only_pkey = -1;
155 	}
156 #endif
157 	mm_reset_untag_mask(mm);
158 	init_new_context_ldt(mm);
159 	return 0;
160 }
161 
162 #define destroy_context destroy_context
163 static inline void destroy_context(struct mm_struct *mm)
164 {
165 	destroy_context_ldt(mm);
166 }
167 
168 extern void switch_mm(struct mm_struct *prev, struct mm_struct *next,
169 		      struct task_struct *tsk);
170 
171 extern void switch_mm_irqs_off(struct mm_struct *prev, struct mm_struct *next,
172 			       struct task_struct *tsk);
173 #define switch_mm_irqs_off switch_mm_irqs_off
174 
175 #define activate_mm(prev, next)			\
176 do {						\
177 	paravirt_enter_mmap(next);		\
178 	switch_mm((prev), (next), NULL);	\
179 } while (0);
180 
181 #ifdef CONFIG_X86_32
182 #define deactivate_mm(tsk, mm)			\
183 do {						\
184 	loadsegment(gs, 0);			\
185 } while (0)
186 #else
187 #define deactivate_mm(tsk, mm)			\
188 do {						\
189 	shstk_free(tsk);			\
190 	load_gs_index(0);			\
191 	loadsegment(fs, 0);			\
192 } while (0)
193 #endif
194 
195 static inline void arch_dup_pkeys(struct mm_struct *oldmm,
196 				  struct mm_struct *mm)
197 {
198 #ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS
199 	if (!cpu_feature_enabled(X86_FEATURE_OSPKE))
200 		return;
201 
202 	/* Duplicate the oldmm pkey state in mm: */
203 	mm->context.pkey_allocation_map = oldmm->context.pkey_allocation_map;
204 	mm->context.execute_only_pkey   = oldmm->context.execute_only_pkey;
205 #endif
206 }
207 
208 static inline int arch_dup_mmap(struct mm_struct *oldmm, struct mm_struct *mm)
209 {
210 	arch_dup_pkeys(oldmm, mm);
211 	paravirt_enter_mmap(mm);
212 	dup_lam(oldmm, mm);
213 	return ldt_dup_context(oldmm, mm);
214 }
215 
216 static inline void arch_exit_mmap(struct mm_struct *mm)
217 {
218 	paravirt_arch_exit_mmap(mm);
219 	ldt_arch_exit_mmap(mm);
220 }
221 
222 #ifdef CONFIG_X86_64
223 static inline bool is_64bit_mm(struct mm_struct *mm)
224 {
225 	return	!IS_ENABLED(CONFIG_IA32_EMULATION) ||
226 		!test_bit(MM_CONTEXT_UPROBE_IA32, &mm->context.flags);
227 }
228 #else
229 static inline bool is_64bit_mm(struct mm_struct *mm)
230 {
231 	return false;
232 }
233 #endif
234 
235 static inline void arch_unmap(struct mm_struct *mm, unsigned long start,
236 			      unsigned long end)
237 {
238 }
239 
240 /*
241  * We only want to enforce protection keys on the current process
242  * because we effectively have no access to PKRU for other
243  * processes or any way to tell *which * PKRU in a threaded
244  * process we could use.
245  *
246  * So do not enforce things if the VMA is not from the current
247  * mm, or if we are in a kernel thread.
248  */
249 static inline bool arch_vma_access_permitted(struct vm_area_struct *vma,
250 		bool write, bool execute, bool foreign)
251 {
252 	/* pkeys never affect instruction fetches */
253 	if (execute)
254 		return true;
255 	/* allow access if the VMA is not one from this process */
256 	if (foreign || vma_is_foreign(vma))
257 		return true;
258 	return __pkru_allows_pkey(vma_pkey(vma), write);
259 }
260 
261 unsigned long __get_current_cr3_fast(void);
262 
263 #include <asm-generic/mmu_context.h>
264 
265 #endif /* _ASM_X86_MMU_CONTEXT_H */
266