1 /* SPDX-License-Identifier: GPL-2.0-only */ 2 /* 3 * Kernel-based Virtual Machine driver for Linux 4 * 5 * This header defines architecture specific interfaces, x86 version 6 */ 7 8 #ifndef _ASM_X86_KVM_HOST_H 9 #define _ASM_X86_KVM_HOST_H 10 11 #include <linux/types.h> 12 #include <linux/mm.h> 13 #include <linux/mmu_notifier.h> 14 #include <linux/tracepoint.h> 15 #include <linux/cpumask.h> 16 #include <linux/irq_work.h> 17 #include <linux/irq.h> 18 #include <linux/workqueue.h> 19 20 #include <linux/kvm.h> 21 #include <linux/kvm_para.h> 22 #include <linux/kvm_types.h> 23 #include <linux/perf_event.h> 24 #include <linux/pvclock_gtod.h> 25 #include <linux/clocksource.h> 26 #include <linux/irqbypass.h> 27 #include <linux/hyperv.h> 28 29 #include <asm/apic.h> 30 #include <asm/pvclock-abi.h> 31 #include <asm/desc.h> 32 #include <asm/mtrr.h> 33 #include <asm/msr-index.h> 34 #include <asm/asm.h> 35 #include <asm/kvm_page_track.h> 36 #include <asm/kvm_vcpu_regs.h> 37 #include <asm/hyperv-tlfs.h> 38 39 #define __KVM_HAVE_ARCH_VCPU_DEBUGFS 40 41 #define KVM_MAX_VCPUS 1024 42 43 /* 44 * In x86, the VCPU ID corresponds to the APIC ID, and APIC IDs 45 * might be larger than the actual number of VCPUs because the 46 * APIC ID encodes CPU topology information. 47 * 48 * In the worst case, we'll need less than one extra bit for the 49 * Core ID, and less than one extra bit for the Package (Die) ID, 50 * so ratio of 4 should be enough. 51 */ 52 #define KVM_VCPU_ID_RATIO 4 53 #define KVM_MAX_VCPU_IDS (KVM_MAX_VCPUS * KVM_VCPU_ID_RATIO) 54 55 /* memory slots that are not exposed to userspace */ 56 #define KVM_PRIVATE_MEM_SLOTS 3 57 58 #define KVM_HALT_POLL_NS_DEFAULT 200000 59 60 #define KVM_IRQCHIP_NUM_PINS KVM_IOAPIC_NUM_PINS 61 62 #define KVM_DIRTY_LOG_MANUAL_CAPS (KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE | \ 63 KVM_DIRTY_LOG_INITIALLY_SET) 64 65 #define KVM_BUS_LOCK_DETECTION_VALID_MODE (KVM_BUS_LOCK_DETECTION_OFF | \ 66 KVM_BUS_LOCK_DETECTION_EXIT) 67 68 /* x86-specific vcpu->requests bit members */ 69 #define KVM_REQ_MIGRATE_TIMER KVM_ARCH_REQ(0) 70 #define KVM_REQ_REPORT_TPR_ACCESS KVM_ARCH_REQ(1) 71 #define KVM_REQ_TRIPLE_FAULT KVM_ARCH_REQ(2) 72 #define KVM_REQ_MMU_SYNC KVM_ARCH_REQ(3) 73 #define KVM_REQ_CLOCK_UPDATE KVM_ARCH_REQ(4) 74 #define KVM_REQ_LOAD_MMU_PGD KVM_ARCH_REQ(5) 75 #define KVM_REQ_EVENT KVM_ARCH_REQ(6) 76 #define KVM_REQ_APF_HALT KVM_ARCH_REQ(7) 77 #define KVM_REQ_STEAL_UPDATE KVM_ARCH_REQ(8) 78 #define KVM_REQ_NMI KVM_ARCH_REQ(9) 79 #define KVM_REQ_PMU KVM_ARCH_REQ(10) 80 #define KVM_REQ_PMI KVM_ARCH_REQ(11) 81 #define KVM_REQ_SMI KVM_ARCH_REQ(12) 82 #define KVM_REQ_MASTERCLOCK_UPDATE KVM_ARCH_REQ(13) 83 #define KVM_REQ_MCLOCK_INPROGRESS \ 84 KVM_ARCH_REQ_FLAGS(14, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP) 85 #define KVM_REQ_SCAN_IOAPIC \ 86 KVM_ARCH_REQ_FLAGS(15, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP) 87 #define KVM_REQ_GLOBAL_CLOCK_UPDATE KVM_ARCH_REQ(16) 88 #define KVM_REQ_APIC_PAGE_RELOAD \ 89 KVM_ARCH_REQ_FLAGS(17, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP) 90 #define KVM_REQ_HV_CRASH KVM_ARCH_REQ(18) 91 #define KVM_REQ_IOAPIC_EOI_EXIT KVM_ARCH_REQ(19) 92 #define KVM_REQ_HV_RESET KVM_ARCH_REQ(20) 93 #define KVM_REQ_HV_EXIT KVM_ARCH_REQ(21) 94 #define KVM_REQ_HV_STIMER KVM_ARCH_REQ(22) 95 #define KVM_REQ_LOAD_EOI_EXITMAP KVM_ARCH_REQ(23) 96 #define KVM_REQ_GET_NESTED_STATE_PAGES KVM_ARCH_REQ(24) 97 #define KVM_REQ_APICV_UPDATE \ 98 KVM_ARCH_REQ_FLAGS(25, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP) 99 #define KVM_REQ_TLB_FLUSH_CURRENT KVM_ARCH_REQ(26) 100 #define KVM_REQ_TLB_FLUSH_GUEST \ 101 KVM_ARCH_REQ_FLAGS(27, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP) 102 #define KVM_REQ_APF_READY KVM_ARCH_REQ(28) 103 #define KVM_REQ_MSR_FILTER_CHANGED KVM_ARCH_REQ(29) 104 #define KVM_REQ_UPDATE_CPU_DIRTY_LOGGING \ 105 KVM_ARCH_REQ_FLAGS(30, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP) 106 #define KVM_REQ_MMU_FREE_OBSOLETE_ROOTS \ 107 KVM_ARCH_REQ_FLAGS(31, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP) 108 109 #define CR0_RESERVED_BITS \ 110 (~(unsigned long)(X86_CR0_PE | X86_CR0_MP | X86_CR0_EM | X86_CR0_TS \ 111 | X86_CR0_ET | X86_CR0_NE | X86_CR0_WP | X86_CR0_AM \ 112 | X86_CR0_NW | X86_CR0_CD | X86_CR0_PG)) 113 114 #define CR4_RESERVED_BITS \ 115 (~(unsigned long)(X86_CR4_VME | X86_CR4_PVI | X86_CR4_TSD | X86_CR4_DE\ 116 | X86_CR4_PSE | X86_CR4_PAE | X86_CR4_MCE \ 117 | X86_CR4_PGE | X86_CR4_PCE | X86_CR4_OSFXSR | X86_CR4_PCIDE \ 118 | X86_CR4_OSXSAVE | X86_CR4_SMEP | X86_CR4_FSGSBASE \ 119 | X86_CR4_OSXMMEXCPT | X86_CR4_LA57 | X86_CR4_VMXE \ 120 | X86_CR4_SMAP | X86_CR4_PKE | X86_CR4_UMIP)) 121 122 #define CR8_RESERVED_BITS (~(unsigned long)X86_CR8_TPR) 123 124 125 126 #define INVALID_PAGE (~(hpa_t)0) 127 #define VALID_PAGE(x) ((x) != INVALID_PAGE) 128 129 #define UNMAPPED_GVA (~(gpa_t)0) 130 #define INVALID_GPA (~(gpa_t)0) 131 132 /* KVM Hugepage definitions for x86 */ 133 #define KVM_MAX_HUGEPAGE_LEVEL PG_LEVEL_1G 134 #define KVM_NR_PAGE_SIZES (KVM_MAX_HUGEPAGE_LEVEL - PG_LEVEL_4K + 1) 135 #define KVM_HPAGE_GFN_SHIFT(x) (((x) - 1) * 9) 136 #define KVM_HPAGE_SHIFT(x) (PAGE_SHIFT + KVM_HPAGE_GFN_SHIFT(x)) 137 #define KVM_HPAGE_SIZE(x) (1UL << KVM_HPAGE_SHIFT(x)) 138 #define KVM_HPAGE_MASK(x) (~(KVM_HPAGE_SIZE(x) - 1)) 139 #define KVM_PAGES_PER_HPAGE(x) (KVM_HPAGE_SIZE(x) / PAGE_SIZE) 140 141 #define KVM_MEMSLOT_PAGES_TO_MMU_PAGES_RATIO 50 142 #define KVM_MIN_ALLOC_MMU_PAGES 64UL 143 #define KVM_MMU_HASH_SHIFT 12 144 #define KVM_NUM_MMU_PAGES (1 << KVM_MMU_HASH_SHIFT) 145 #define KVM_MIN_FREE_MMU_PAGES 5 146 #define KVM_REFILL_PAGES 25 147 #define KVM_MAX_CPUID_ENTRIES 256 148 #define KVM_NR_FIXED_MTRR_REGION 88 149 #define KVM_NR_VAR_MTRR 8 150 151 #define ASYNC_PF_PER_VCPU 64 152 153 enum kvm_reg { 154 VCPU_REGS_RAX = __VCPU_REGS_RAX, 155 VCPU_REGS_RCX = __VCPU_REGS_RCX, 156 VCPU_REGS_RDX = __VCPU_REGS_RDX, 157 VCPU_REGS_RBX = __VCPU_REGS_RBX, 158 VCPU_REGS_RSP = __VCPU_REGS_RSP, 159 VCPU_REGS_RBP = __VCPU_REGS_RBP, 160 VCPU_REGS_RSI = __VCPU_REGS_RSI, 161 VCPU_REGS_RDI = __VCPU_REGS_RDI, 162 #ifdef CONFIG_X86_64 163 VCPU_REGS_R8 = __VCPU_REGS_R8, 164 VCPU_REGS_R9 = __VCPU_REGS_R9, 165 VCPU_REGS_R10 = __VCPU_REGS_R10, 166 VCPU_REGS_R11 = __VCPU_REGS_R11, 167 VCPU_REGS_R12 = __VCPU_REGS_R12, 168 VCPU_REGS_R13 = __VCPU_REGS_R13, 169 VCPU_REGS_R14 = __VCPU_REGS_R14, 170 VCPU_REGS_R15 = __VCPU_REGS_R15, 171 #endif 172 VCPU_REGS_RIP, 173 NR_VCPU_REGS, 174 175 VCPU_EXREG_PDPTR = NR_VCPU_REGS, 176 VCPU_EXREG_CR0, 177 VCPU_EXREG_CR3, 178 VCPU_EXREG_CR4, 179 VCPU_EXREG_RFLAGS, 180 VCPU_EXREG_SEGMENTS, 181 VCPU_EXREG_EXIT_INFO_1, 182 VCPU_EXREG_EXIT_INFO_2, 183 }; 184 185 enum { 186 VCPU_SREG_ES, 187 VCPU_SREG_CS, 188 VCPU_SREG_SS, 189 VCPU_SREG_DS, 190 VCPU_SREG_FS, 191 VCPU_SREG_GS, 192 VCPU_SREG_TR, 193 VCPU_SREG_LDTR, 194 }; 195 196 enum exit_fastpath_completion { 197 EXIT_FASTPATH_NONE, 198 EXIT_FASTPATH_REENTER_GUEST, 199 EXIT_FASTPATH_EXIT_HANDLED, 200 }; 201 typedef enum exit_fastpath_completion fastpath_t; 202 203 struct x86_emulate_ctxt; 204 struct x86_exception; 205 enum x86_intercept; 206 enum x86_intercept_stage; 207 208 #define KVM_NR_DB_REGS 4 209 210 #define DR6_BUS_LOCK (1 << 11) 211 #define DR6_BD (1 << 13) 212 #define DR6_BS (1 << 14) 213 #define DR6_BT (1 << 15) 214 #define DR6_RTM (1 << 16) 215 /* 216 * DR6_ACTIVE_LOW combines fixed-1 and active-low bits. 217 * We can regard all the bits in DR6_FIXED_1 as active_low bits; 218 * they will never be 0 for now, but when they are defined 219 * in the future it will require no code change. 220 * 221 * DR6_ACTIVE_LOW is also used as the init/reset value for DR6. 222 */ 223 #define DR6_ACTIVE_LOW 0xffff0ff0 224 #define DR6_VOLATILE 0x0001e80f 225 #define DR6_FIXED_1 (DR6_ACTIVE_LOW & ~DR6_VOLATILE) 226 227 #define DR7_BP_EN_MASK 0x000000ff 228 #define DR7_GE (1 << 9) 229 #define DR7_GD (1 << 13) 230 #define DR7_FIXED_1 0x00000400 231 #define DR7_VOLATILE 0xffff2bff 232 233 #define KVM_GUESTDBG_VALID_MASK \ 234 (KVM_GUESTDBG_ENABLE | \ 235 KVM_GUESTDBG_SINGLESTEP | \ 236 KVM_GUESTDBG_USE_HW_BP | \ 237 KVM_GUESTDBG_USE_SW_BP | \ 238 KVM_GUESTDBG_INJECT_BP | \ 239 KVM_GUESTDBG_INJECT_DB | \ 240 KVM_GUESTDBG_BLOCKIRQ) 241 242 243 #define PFERR_PRESENT_BIT 0 244 #define PFERR_WRITE_BIT 1 245 #define PFERR_USER_BIT 2 246 #define PFERR_RSVD_BIT 3 247 #define PFERR_FETCH_BIT 4 248 #define PFERR_PK_BIT 5 249 #define PFERR_SGX_BIT 15 250 #define PFERR_GUEST_FINAL_BIT 32 251 #define PFERR_GUEST_PAGE_BIT 33 252 #define PFERR_IMPLICIT_ACCESS_BIT 48 253 254 #define PFERR_PRESENT_MASK (1U << PFERR_PRESENT_BIT) 255 #define PFERR_WRITE_MASK (1U << PFERR_WRITE_BIT) 256 #define PFERR_USER_MASK (1U << PFERR_USER_BIT) 257 #define PFERR_RSVD_MASK (1U << PFERR_RSVD_BIT) 258 #define PFERR_FETCH_MASK (1U << PFERR_FETCH_BIT) 259 #define PFERR_PK_MASK (1U << PFERR_PK_BIT) 260 #define PFERR_SGX_MASK (1U << PFERR_SGX_BIT) 261 #define PFERR_GUEST_FINAL_MASK (1ULL << PFERR_GUEST_FINAL_BIT) 262 #define PFERR_GUEST_PAGE_MASK (1ULL << PFERR_GUEST_PAGE_BIT) 263 #define PFERR_IMPLICIT_ACCESS (1ULL << PFERR_IMPLICIT_ACCESS_BIT) 264 265 #define PFERR_NESTED_GUEST_PAGE (PFERR_GUEST_PAGE_MASK | \ 266 PFERR_WRITE_MASK | \ 267 PFERR_PRESENT_MASK) 268 269 /* apic attention bits */ 270 #define KVM_APIC_CHECK_VAPIC 0 271 /* 272 * The following bit is set with PV-EOI, unset on EOI. 273 * We detect PV-EOI changes by guest by comparing 274 * this bit with PV-EOI in guest memory. 275 * See the implementation in apic_update_pv_eoi. 276 */ 277 #define KVM_APIC_PV_EOI_PENDING 1 278 279 struct kvm_kernel_irq_routing_entry; 280 281 /* 282 * kvm_mmu_page_role tracks the properties of a shadow page (where shadow page 283 * also includes TDP pages) to determine whether or not a page can be used in 284 * the given MMU context. This is a subset of the overall kvm_mmu_role to 285 * minimize the size of kvm_memory_slot.arch.gfn_track, i.e. allows allocating 286 * 2 bytes per gfn instead of 4 bytes per gfn. 287 * 288 * Indirect upper-level shadow pages are tracked for write-protection via 289 * gfn_track. As above, gfn_track is a 16 bit counter, so KVM must not create 290 * more than 2^16-1 upper-level shadow pages at a single gfn, otherwise 291 * gfn_track will overflow and explosions will ensure. 292 * 293 * A unique shadow page (SP) for a gfn is created if and only if an existing SP 294 * cannot be reused. The ability to reuse a SP is tracked by its role, which 295 * incorporates various mode bits and properties of the SP. Roughly speaking, 296 * the number of unique SPs that can theoretically be created is 2^n, where n 297 * is the number of bits that are used to compute the role. 298 * 299 * But, even though there are 19 bits in the mask below, not all combinations 300 * of modes and flags are possible: 301 * 302 * - invalid shadow pages are not accounted, so the bits are effectively 18 303 * 304 * - quadrant will only be used if has_4_byte_gpte=1 (non-PAE paging); 305 * execonly and ad_disabled are only used for nested EPT which has 306 * has_4_byte_gpte=0. Therefore, 2 bits are always unused. 307 * 308 * - the 4 bits of level are effectively limited to the values 2/3/4/5, 309 * as 4k SPs are not tracked (allowed to go unsync). In addition non-PAE 310 * paging has exactly one upper level, making level completely redundant 311 * when has_4_byte_gpte=1. 312 * 313 * - on top of this, smep_andnot_wp and smap_andnot_wp are only set if 314 * cr0_wp=0, therefore these three bits only give rise to 5 possibilities. 315 * 316 * Therefore, the maximum number of possible upper-level shadow pages for a 317 * single gfn is a bit less than 2^13. 318 */ 319 union kvm_mmu_page_role { 320 u32 word; 321 struct { 322 unsigned level:4; 323 unsigned has_4_byte_gpte:1; 324 unsigned quadrant:2; 325 unsigned direct:1; 326 unsigned access:3; 327 unsigned invalid:1; 328 unsigned efer_nx:1; 329 unsigned cr0_wp:1; 330 unsigned smep_andnot_wp:1; 331 unsigned smap_andnot_wp:1; 332 unsigned ad_disabled:1; 333 unsigned guest_mode:1; 334 unsigned :6; 335 336 /* 337 * This is left at the top of the word so that 338 * kvm_memslots_for_spte_role can extract it with a 339 * simple shift. While there is room, give it a whole 340 * byte so it is also faster to load it from memory. 341 */ 342 unsigned smm:8; 343 }; 344 }; 345 346 /* 347 * kvm_mmu_extended_role complements kvm_mmu_page_role, tracking properties 348 * relevant to the current MMU configuration. When loading CR0, CR4, or EFER, 349 * including on nested transitions, if nothing in the full role changes then 350 * MMU re-configuration can be skipped. @valid bit is set on first usage so we 351 * don't treat all-zero structure as valid data. 352 * 353 * The properties that are tracked in the extended role but not the page role 354 * are for things that either (a) do not affect the validity of the shadow page 355 * or (b) are indirectly reflected in the shadow page's role. For example, 356 * CR4.PKE only affects permission checks for software walks of the guest page 357 * tables (because KVM doesn't support Protection Keys with shadow paging), and 358 * CR0.PG, CR4.PAE, and CR4.PSE are indirectly reflected in role.level. 359 * 360 * Note, SMEP and SMAP are not redundant with sm*p_andnot_wp in the page role. 361 * If CR0.WP=1, KVM can reuse shadow pages for the guest regardless of SMEP and 362 * SMAP, but the MMU's permission checks for software walks need to be SMEP and 363 * SMAP aware regardless of CR0.WP. 364 */ 365 union kvm_mmu_extended_role { 366 u32 word; 367 struct { 368 unsigned int valid:1; 369 unsigned int execonly:1; 370 unsigned int cr0_pg:1; 371 unsigned int cr4_pae:1; 372 unsigned int cr4_pse:1; 373 unsigned int cr4_pke:1; 374 unsigned int cr4_smap:1; 375 unsigned int cr4_smep:1; 376 unsigned int cr4_la57:1; 377 unsigned int efer_lma:1; 378 }; 379 }; 380 381 union kvm_mmu_role { 382 u64 as_u64; 383 struct { 384 union kvm_mmu_page_role base; 385 union kvm_mmu_extended_role ext; 386 }; 387 }; 388 389 struct kvm_rmap_head { 390 unsigned long val; 391 }; 392 393 struct kvm_pio_request { 394 unsigned long linear_rip; 395 unsigned long count; 396 int in; 397 int port; 398 int size; 399 }; 400 401 #define PT64_ROOT_MAX_LEVEL 5 402 403 struct rsvd_bits_validate { 404 u64 rsvd_bits_mask[2][PT64_ROOT_MAX_LEVEL]; 405 u64 bad_mt_xwr; 406 }; 407 408 struct kvm_mmu_root_info { 409 gpa_t pgd; 410 hpa_t hpa; 411 }; 412 413 #define KVM_MMU_ROOT_INFO_INVALID \ 414 ((struct kvm_mmu_root_info) { .pgd = INVALID_PAGE, .hpa = INVALID_PAGE }) 415 416 #define KVM_MMU_NUM_PREV_ROOTS 3 417 418 #define KVM_HAVE_MMU_RWLOCK 419 420 struct kvm_mmu_page; 421 struct kvm_page_fault; 422 423 /* 424 * x86 supports 4 paging modes (5-level 64-bit, 4-level 64-bit, 3-level 32-bit, 425 * and 2-level 32-bit). The kvm_mmu structure abstracts the details of the 426 * current mmu mode. 427 */ 428 struct kvm_mmu { 429 unsigned long (*get_guest_pgd)(struct kvm_vcpu *vcpu); 430 u64 (*get_pdptr)(struct kvm_vcpu *vcpu, int index); 431 int (*page_fault)(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault); 432 void (*inject_page_fault)(struct kvm_vcpu *vcpu, 433 struct x86_exception *fault); 434 gpa_t (*gva_to_gpa)(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, 435 gpa_t gva_or_gpa, u64 access, 436 struct x86_exception *exception); 437 int (*sync_page)(struct kvm_vcpu *vcpu, 438 struct kvm_mmu_page *sp); 439 void (*invlpg)(struct kvm_vcpu *vcpu, gva_t gva, hpa_t root_hpa); 440 struct kvm_mmu_root_info root; 441 union kvm_mmu_role mmu_role; 442 u8 root_level; 443 u8 shadow_root_level; 444 u8 ept_ad; 445 bool direct_map; 446 struct kvm_mmu_root_info prev_roots[KVM_MMU_NUM_PREV_ROOTS]; 447 448 /* 449 * Bitmap; bit set = permission fault 450 * Byte index: page fault error code [4:1] 451 * Bit index: pte permissions in ACC_* format 452 */ 453 u8 permissions[16]; 454 455 /* 456 * The pkru_mask indicates if protection key checks are needed. It 457 * consists of 16 domains indexed by page fault error code bits [4:1], 458 * with PFEC.RSVD replaced by ACC_USER_MASK from the page tables. 459 * Each domain has 2 bits which are ANDed with AD and WD from PKRU. 460 */ 461 u32 pkru_mask; 462 463 u64 *pae_root; 464 u64 *pml4_root; 465 u64 *pml5_root; 466 467 /* 468 * check zero bits on shadow page table entries, these 469 * bits include not only hardware reserved bits but also 470 * the bits spte never used. 471 */ 472 struct rsvd_bits_validate shadow_zero_check; 473 474 struct rsvd_bits_validate guest_rsvd_check; 475 476 u64 pdptrs[4]; /* pae */ 477 }; 478 479 struct kvm_tlb_range { 480 u64 start_gfn; 481 u64 pages; 482 }; 483 484 enum pmc_type { 485 KVM_PMC_GP = 0, 486 KVM_PMC_FIXED, 487 }; 488 489 struct kvm_pmc { 490 enum pmc_type type; 491 u8 idx; 492 u64 counter; 493 u64 eventsel; 494 struct perf_event *perf_event; 495 struct kvm_vcpu *vcpu; 496 /* 497 * eventsel value for general purpose counters, 498 * ctrl value for fixed counters. 499 */ 500 u64 current_config; 501 bool is_paused; 502 bool intr; 503 }; 504 505 #define KVM_PMC_MAX_FIXED 3 506 struct kvm_pmu { 507 unsigned nr_arch_gp_counters; 508 unsigned nr_arch_fixed_counters; 509 unsigned available_event_types; 510 u64 fixed_ctr_ctrl; 511 u64 global_ctrl; 512 u64 global_status; 513 u64 counter_bitmask[2]; 514 u64 global_ctrl_mask; 515 u64 global_ovf_ctrl_mask; 516 u64 reserved_bits; 517 u64 raw_event_mask; 518 u8 version; 519 struct kvm_pmc gp_counters[INTEL_PMC_MAX_GENERIC]; 520 struct kvm_pmc fixed_counters[KVM_PMC_MAX_FIXED]; 521 struct irq_work irq_work; 522 DECLARE_BITMAP(reprogram_pmi, X86_PMC_IDX_MAX); 523 DECLARE_BITMAP(all_valid_pmc_idx, X86_PMC_IDX_MAX); 524 DECLARE_BITMAP(pmc_in_use, X86_PMC_IDX_MAX); 525 526 /* 527 * The gate to release perf_events not marked in 528 * pmc_in_use only once in a vcpu time slice. 529 */ 530 bool need_cleanup; 531 532 /* 533 * The total number of programmed perf_events and it helps to avoid 534 * redundant check before cleanup if guest don't use vPMU at all. 535 */ 536 u8 event_count; 537 }; 538 539 struct kvm_pmu_ops; 540 541 enum { 542 KVM_DEBUGREG_BP_ENABLED = 1, 543 KVM_DEBUGREG_WONT_EXIT = 2, 544 }; 545 546 struct kvm_mtrr_range { 547 u64 base; 548 u64 mask; 549 struct list_head node; 550 }; 551 552 struct kvm_mtrr { 553 struct kvm_mtrr_range var_ranges[KVM_NR_VAR_MTRR]; 554 mtrr_type fixed_ranges[KVM_NR_FIXED_MTRR_REGION]; 555 u64 deftype; 556 557 struct list_head head; 558 }; 559 560 /* Hyper-V SynIC timer */ 561 struct kvm_vcpu_hv_stimer { 562 struct hrtimer timer; 563 int index; 564 union hv_stimer_config config; 565 u64 count; 566 u64 exp_time; 567 struct hv_message msg; 568 bool msg_pending; 569 }; 570 571 /* Hyper-V synthetic interrupt controller (SynIC)*/ 572 struct kvm_vcpu_hv_synic { 573 u64 version; 574 u64 control; 575 u64 msg_page; 576 u64 evt_page; 577 atomic64_t sint[HV_SYNIC_SINT_COUNT]; 578 atomic_t sint_to_gsi[HV_SYNIC_SINT_COUNT]; 579 DECLARE_BITMAP(auto_eoi_bitmap, 256); 580 DECLARE_BITMAP(vec_bitmap, 256); 581 bool active; 582 bool dont_zero_synic_pages; 583 }; 584 585 /* Hyper-V per vcpu emulation context */ 586 struct kvm_vcpu_hv { 587 struct kvm_vcpu *vcpu; 588 u32 vp_index; 589 u64 hv_vapic; 590 s64 runtime_offset; 591 struct kvm_vcpu_hv_synic synic; 592 struct kvm_hyperv_exit exit; 593 struct kvm_vcpu_hv_stimer stimer[HV_SYNIC_STIMER_COUNT]; 594 DECLARE_BITMAP(stimer_pending_bitmap, HV_SYNIC_STIMER_COUNT); 595 bool enforce_cpuid; 596 struct { 597 u32 features_eax; /* HYPERV_CPUID_FEATURES.EAX */ 598 u32 features_ebx; /* HYPERV_CPUID_FEATURES.EBX */ 599 u32 features_edx; /* HYPERV_CPUID_FEATURES.EDX */ 600 u32 enlightenments_eax; /* HYPERV_CPUID_ENLIGHTMENT_INFO.EAX */ 601 u32 enlightenments_ebx; /* HYPERV_CPUID_ENLIGHTMENT_INFO.EBX */ 602 u32 syndbg_cap_eax; /* HYPERV_CPUID_SYNDBG_PLATFORM_CAPABILITIES.EAX */ 603 } cpuid_cache; 604 }; 605 606 /* Xen HVM per vcpu emulation context */ 607 struct kvm_vcpu_xen { 608 u64 hypercall_rip; 609 u32 current_runstate; 610 bool vcpu_info_set; 611 bool vcpu_time_info_set; 612 bool runstate_set; 613 struct gfn_to_hva_cache vcpu_info_cache; 614 struct gfn_to_hva_cache vcpu_time_info_cache; 615 struct gfn_to_hva_cache runstate_cache; 616 u64 last_steal; 617 u64 runstate_entry_time; 618 u64 runstate_times[4]; 619 unsigned long evtchn_pending_sel; 620 }; 621 622 struct kvm_vcpu_arch { 623 /* 624 * rip and regs accesses must go through 625 * kvm_{register,rip}_{read,write} functions. 626 */ 627 unsigned long regs[NR_VCPU_REGS]; 628 u32 regs_avail; 629 u32 regs_dirty; 630 631 unsigned long cr0; 632 unsigned long cr0_guest_owned_bits; 633 unsigned long cr2; 634 unsigned long cr3; 635 unsigned long cr4; 636 unsigned long cr4_guest_owned_bits; 637 unsigned long cr4_guest_rsvd_bits; 638 unsigned long cr8; 639 u32 host_pkru; 640 u32 pkru; 641 u32 hflags; 642 u64 efer; 643 u64 apic_base; 644 struct kvm_lapic *apic; /* kernel irqchip context */ 645 bool apicv_active; 646 bool load_eoi_exitmap_pending; 647 DECLARE_BITMAP(ioapic_handled_vectors, 256); 648 unsigned long apic_attention; 649 int32_t apic_arb_prio; 650 int mp_state; 651 u64 ia32_misc_enable_msr; 652 u64 smbase; 653 u64 smi_count; 654 bool tpr_access_reporting; 655 bool xsaves_enabled; 656 bool xfd_no_write_intercept; 657 u64 ia32_xss; 658 u64 microcode_version; 659 u64 arch_capabilities; 660 u64 perf_capabilities; 661 662 /* 663 * Paging state of the vcpu 664 * 665 * If the vcpu runs in guest mode with two level paging this still saves 666 * the paging mode of the l1 guest. This context is always used to 667 * handle faults. 668 */ 669 struct kvm_mmu *mmu; 670 671 /* Non-nested MMU for L1 */ 672 struct kvm_mmu root_mmu; 673 674 /* L1 MMU when running nested */ 675 struct kvm_mmu guest_mmu; 676 677 /* 678 * Paging state of an L2 guest (used for nested npt) 679 * 680 * This context will save all necessary information to walk page tables 681 * of an L2 guest. This context is only initialized for page table 682 * walking and not for faulting since we never handle l2 page faults on 683 * the host. 684 */ 685 struct kvm_mmu nested_mmu; 686 687 /* 688 * Pointer to the mmu context currently used for 689 * gva_to_gpa translations. 690 */ 691 struct kvm_mmu *walk_mmu; 692 693 struct kvm_mmu_memory_cache mmu_pte_list_desc_cache; 694 struct kvm_mmu_memory_cache mmu_shadow_page_cache; 695 struct kvm_mmu_memory_cache mmu_gfn_array_cache; 696 struct kvm_mmu_memory_cache mmu_page_header_cache; 697 698 /* 699 * QEMU userspace and the guest each have their own FPU state. 700 * In vcpu_run, we switch between the user and guest FPU contexts. 701 * While running a VCPU, the VCPU thread will have the guest FPU 702 * context. 703 * 704 * Note that while the PKRU state lives inside the fpu registers, 705 * it is switched out separately at VMENTER and VMEXIT time. The 706 * "guest_fpstate" state here contains the guest FPU context, with the 707 * host PRKU bits. 708 */ 709 struct fpu_guest guest_fpu; 710 711 u64 xcr0; 712 713 struct kvm_pio_request pio; 714 void *pio_data; 715 void *sev_pio_data; 716 unsigned sev_pio_count; 717 718 u8 event_exit_inst_len; 719 720 struct kvm_queued_exception { 721 bool pending; 722 bool injected; 723 bool has_error_code; 724 u8 nr; 725 u32 error_code; 726 unsigned long payload; 727 bool has_payload; 728 u8 nested_apf; 729 } exception; 730 731 struct kvm_queued_interrupt { 732 bool injected; 733 bool soft; 734 u8 nr; 735 } interrupt; 736 737 int halt_request; /* real mode on Intel only */ 738 739 int cpuid_nent; 740 struct kvm_cpuid_entry2 *cpuid_entries; 741 u32 kvm_cpuid_base; 742 743 u64 reserved_gpa_bits; 744 int maxphyaddr; 745 746 /* emulate context */ 747 748 struct x86_emulate_ctxt *emulate_ctxt; 749 bool emulate_regs_need_sync_to_vcpu; 750 bool emulate_regs_need_sync_from_vcpu; 751 int (*complete_userspace_io)(struct kvm_vcpu *vcpu); 752 753 gpa_t time; 754 struct pvclock_vcpu_time_info hv_clock; 755 unsigned int hw_tsc_khz; 756 struct gfn_to_hva_cache pv_time; 757 bool pv_time_enabled; 758 /* set guest stopped flag in pvclock flags field */ 759 bool pvclock_set_guest_stopped_request; 760 761 struct { 762 u8 preempted; 763 u64 msr_val; 764 u64 last_steal; 765 struct gfn_to_hva_cache cache; 766 } st; 767 768 u64 l1_tsc_offset; 769 u64 tsc_offset; /* current tsc offset */ 770 u64 last_guest_tsc; 771 u64 last_host_tsc; 772 u64 tsc_offset_adjustment; 773 u64 this_tsc_nsec; 774 u64 this_tsc_write; 775 u64 this_tsc_generation; 776 bool tsc_catchup; 777 bool tsc_always_catchup; 778 s8 virtual_tsc_shift; 779 u32 virtual_tsc_mult; 780 u32 virtual_tsc_khz; 781 s64 ia32_tsc_adjust_msr; 782 u64 msr_ia32_power_ctl; 783 u64 l1_tsc_scaling_ratio; 784 u64 tsc_scaling_ratio; /* current scaling ratio */ 785 786 atomic_t nmi_queued; /* unprocessed asynchronous NMIs */ 787 unsigned nmi_pending; /* NMI queued after currently running handler */ 788 bool nmi_injected; /* Trying to inject an NMI this entry */ 789 bool smi_pending; /* SMI queued after currently running handler */ 790 u8 handling_intr_from_guest; 791 792 struct kvm_mtrr mtrr_state; 793 u64 pat; 794 795 unsigned switch_db_regs; 796 unsigned long db[KVM_NR_DB_REGS]; 797 unsigned long dr6; 798 unsigned long dr7; 799 unsigned long eff_db[KVM_NR_DB_REGS]; 800 unsigned long guest_debug_dr7; 801 u64 msr_platform_info; 802 u64 msr_misc_features_enables; 803 804 u64 mcg_cap; 805 u64 mcg_status; 806 u64 mcg_ctl; 807 u64 mcg_ext_ctl; 808 u64 *mce_banks; 809 810 /* Cache MMIO info */ 811 u64 mmio_gva; 812 unsigned mmio_access; 813 gfn_t mmio_gfn; 814 u64 mmio_gen; 815 816 struct kvm_pmu pmu; 817 818 /* used for guest single stepping over the given code position */ 819 unsigned long singlestep_rip; 820 821 bool hyperv_enabled; 822 struct kvm_vcpu_hv *hyperv; 823 struct kvm_vcpu_xen xen; 824 825 cpumask_var_t wbinvd_dirty_mask; 826 827 unsigned long last_retry_eip; 828 unsigned long last_retry_addr; 829 830 struct { 831 bool halted; 832 gfn_t gfns[ASYNC_PF_PER_VCPU]; 833 struct gfn_to_hva_cache data; 834 u64 msr_en_val; /* MSR_KVM_ASYNC_PF_EN */ 835 u64 msr_int_val; /* MSR_KVM_ASYNC_PF_INT */ 836 u16 vec; 837 u32 id; 838 bool send_user_only; 839 u32 host_apf_flags; 840 unsigned long nested_apf_token; 841 bool delivery_as_pf_vmexit; 842 bool pageready_pending; 843 } apf; 844 845 /* OSVW MSRs (AMD only) */ 846 struct { 847 u64 length; 848 u64 status; 849 } osvw; 850 851 struct { 852 u64 msr_val; 853 struct gfn_to_hva_cache data; 854 } pv_eoi; 855 856 u64 msr_kvm_poll_control; 857 858 /* 859 * Indicates the guest is trying to write a gfn that contains one or 860 * more of the PTEs used to translate the write itself, i.e. the access 861 * is changing its own translation in the guest page tables. KVM exits 862 * to userspace if emulation of the faulting instruction fails and this 863 * flag is set, as KVM cannot make forward progress. 864 * 865 * If emulation fails for a write to guest page tables, KVM unprotects 866 * (zaps) the shadow page for the target gfn and resumes the guest to 867 * retry the non-emulatable instruction (on hardware). Unprotecting the 868 * gfn doesn't allow forward progress for a self-changing access because 869 * doing so also zaps the translation for the gfn, i.e. retrying the 870 * instruction will hit a !PRESENT fault, which results in a new shadow 871 * page and sends KVM back to square one. 872 */ 873 bool write_fault_to_shadow_pgtable; 874 875 /* set at EPT violation at this point */ 876 unsigned long exit_qualification; 877 878 /* pv related host specific info */ 879 struct { 880 bool pv_unhalted; 881 } pv; 882 883 int pending_ioapic_eoi; 884 int pending_external_vector; 885 886 /* be preempted when it's in kernel-mode(cpl=0) */ 887 bool preempted_in_kernel; 888 889 /* Flush the L1 Data cache for L1TF mitigation on VMENTER */ 890 bool l1tf_flush_l1d; 891 892 /* Host CPU on which VM-entry was most recently attempted */ 893 int last_vmentry_cpu; 894 895 /* AMD MSRC001_0015 Hardware Configuration */ 896 u64 msr_hwcr; 897 898 /* pv related cpuid info */ 899 struct { 900 /* 901 * value of the eax register in the KVM_CPUID_FEATURES CPUID 902 * leaf. 903 */ 904 u32 features; 905 906 /* 907 * indicates whether pv emulation should be disabled if features 908 * are not present in the guest's cpuid 909 */ 910 bool enforce; 911 } pv_cpuid; 912 913 /* Protected Guests */ 914 bool guest_state_protected; 915 916 /* 917 * Set when PDPTS were loaded directly by the userspace without 918 * reading the guest memory 919 */ 920 bool pdptrs_from_userspace; 921 922 #if IS_ENABLED(CONFIG_HYPERV) 923 hpa_t hv_root_tdp; 924 #endif 925 }; 926 927 struct kvm_lpage_info { 928 int disallow_lpage; 929 }; 930 931 struct kvm_arch_memory_slot { 932 struct kvm_rmap_head *rmap[KVM_NR_PAGE_SIZES]; 933 struct kvm_lpage_info *lpage_info[KVM_NR_PAGE_SIZES - 1]; 934 unsigned short *gfn_track[KVM_PAGE_TRACK_MAX]; 935 }; 936 937 /* 938 * We use as the mode the number of bits allocated in the LDR for the 939 * logical processor ID. It happens that these are all powers of two. 940 * This makes it is very easy to detect cases where the APICs are 941 * configured for multiple modes; in that case, we cannot use the map and 942 * hence cannot use kvm_irq_delivery_to_apic_fast either. 943 */ 944 #define KVM_APIC_MODE_XAPIC_CLUSTER 4 945 #define KVM_APIC_MODE_XAPIC_FLAT 8 946 #define KVM_APIC_MODE_X2APIC 16 947 948 struct kvm_apic_map { 949 struct rcu_head rcu; 950 u8 mode; 951 u32 max_apic_id; 952 union { 953 struct kvm_lapic *xapic_flat_map[8]; 954 struct kvm_lapic *xapic_cluster_map[16][4]; 955 }; 956 struct kvm_lapic *phys_map[]; 957 }; 958 959 /* Hyper-V synthetic debugger (SynDbg)*/ 960 struct kvm_hv_syndbg { 961 struct { 962 u64 control; 963 u64 status; 964 u64 send_page; 965 u64 recv_page; 966 u64 pending_page; 967 } control; 968 u64 options; 969 }; 970 971 /* Current state of Hyper-V TSC page clocksource */ 972 enum hv_tsc_page_status { 973 /* TSC page was not set up or disabled */ 974 HV_TSC_PAGE_UNSET = 0, 975 /* TSC page MSR was written by the guest, update pending */ 976 HV_TSC_PAGE_GUEST_CHANGED, 977 /* TSC page update was triggered from the host side */ 978 HV_TSC_PAGE_HOST_CHANGED, 979 /* TSC page was properly set up and is currently active */ 980 HV_TSC_PAGE_SET, 981 /* TSC page was set up with an inaccessible GPA */ 982 HV_TSC_PAGE_BROKEN, 983 }; 984 985 /* Hyper-V emulation context */ 986 struct kvm_hv { 987 struct mutex hv_lock; 988 u64 hv_guest_os_id; 989 u64 hv_hypercall; 990 u64 hv_tsc_page; 991 enum hv_tsc_page_status hv_tsc_page_status; 992 993 /* Hyper-v based guest crash (NT kernel bugcheck) parameters */ 994 u64 hv_crash_param[HV_X64_MSR_CRASH_PARAMS]; 995 u64 hv_crash_ctl; 996 997 struct ms_hyperv_tsc_page tsc_ref; 998 999 struct idr conn_to_evt; 1000 1001 u64 hv_reenlightenment_control; 1002 u64 hv_tsc_emulation_control; 1003 u64 hv_tsc_emulation_status; 1004 1005 /* How many vCPUs have VP index != vCPU index */ 1006 atomic_t num_mismatched_vp_indexes; 1007 1008 /* 1009 * How many SynICs use 'AutoEOI' feature 1010 * (protected by arch.apicv_update_lock) 1011 */ 1012 unsigned int synic_auto_eoi_used; 1013 1014 struct hv_partition_assist_pg *hv_pa_pg; 1015 struct kvm_hv_syndbg hv_syndbg; 1016 }; 1017 1018 struct msr_bitmap_range { 1019 u32 flags; 1020 u32 nmsrs; 1021 u32 base; 1022 unsigned long *bitmap; 1023 }; 1024 1025 /* Xen emulation context */ 1026 struct kvm_xen { 1027 bool long_mode; 1028 u8 upcall_vector; 1029 struct gfn_to_pfn_cache shinfo_cache; 1030 }; 1031 1032 enum kvm_irqchip_mode { 1033 KVM_IRQCHIP_NONE, 1034 KVM_IRQCHIP_KERNEL, /* created with KVM_CREATE_IRQCHIP */ 1035 KVM_IRQCHIP_SPLIT, /* created with KVM_CAP_SPLIT_IRQCHIP */ 1036 }; 1037 1038 struct kvm_x86_msr_filter { 1039 u8 count; 1040 bool default_allow:1; 1041 struct msr_bitmap_range ranges[16]; 1042 }; 1043 1044 enum kvm_apicv_inhibit { 1045 APICV_INHIBIT_REASON_DISABLE, 1046 APICV_INHIBIT_REASON_HYPERV, 1047 APICV_INHIBIT_REASON_NESTED, 1048 APICV_INHIBIT_REASON_IRQWIN, 1049 APICV_INHIBIT_REASON_PIT_REINJ, 1050 APICV_INHIBIT_REASON_X2APIC, 1051 APICV_INHIBIT_REASON_BLOCKIRQ, 1052 APICV_INHIBIT_REASON_ABSENT, 1053 APICV_INHIBIT_REASON_SEV, 1054 }; 1055 1056 struct kvm_arch { 1057 unsigned long n_used_mmu_pages; 1058 unsigned long n_requested_mmu_pages; 1059 unsigned long n_max_mmu_pages; 1060 unsigned int indirect_shadow_pages; 1061 u8 mmu_valid_gen; 1062 struct hlist_head mmu_page_hash[KVM_NUM_MMU_PAGES]; 1063 struct list_head active_mmu_pages; 1064 struct list_head zapped_obsolete_pages; 1065 struct list_head lpage_disallowed_mmu_pages; 1066 struct kvm_page_track_notifier_node mmu_sp_tracker; 1067 struct kvm_page_track_notifier_head track_notifier_head; 1068 /* 1069 * Protects marking pages unsync during page faults, as TDP MMU page 1070 * faults only take mmu_lock for read. For simplicity, the unsync 1071 * pages lock is always taken when marking pages unsync regardless of 1072 * whether mmu_lock is held for read or write. 1073 */ 1074 spinlock_t mmu_unsync_pages_lock; 1075 1076 struct list_head assigned_dev_head; 1077 struct iommu_domain *iommu_domain; 1078 bool iommu_noncoherent; 1079 #define __KVM_HAVE_ARCH_NONCOHERENT_DMA 1080 atomic_t noncoherent_dma_count; 1081 #define __KVM_HAVE_ARCH_ASSIGNED_DEVICE 1082 atomic_t assigned_device_count; 1083 struct kvm_pic *vpic; 1084 struct kvm_ioapic *vioapic; 1085 struct kvm_pit *vpit; 1086 atomic_t vapics_in_nmi_mode; 1087 struct mutex apic_map_lock; 1088 struct kvm_apic_map __rcu *apic_map; 1089 atomic_t apic_map_dirty; 1090 1091 /* Protects apic_access_memslot_enabled and apicv_inhibit_reasons */ 1092 struct rw_semaphore apicv_update_lock; 1093 1094 bool apic_access_memslot_enabled; 1095 unsigned long apicv_inhibit_reasons; 1096 1097 gpa_t wall_clock; 1098 1099 bool mwait_in_guest; 1100 bool hlt_in_guest; 1101 bool pause_in_guest; 1102 bool cstate_in_guest; 1103 1104 unsigned long irq_sources_bitmap; 1105 s64 kvmclock_offset; 1106 1107 /* 1108 * This also protects nr_vcpus_matched_tsc which is read from a 1109 * preemption-disabled region, so it must be a raw spinlock. 1110 */ 1111 raw_spinlock_t tsc_write_lock; 1112 u64 last_tsc_nsec; 1113 u64 last_tsc_write; 1114 u32 last_tsc_khz; 1115 u64 last_tsc_offset; 1116 u64 cur_tsc_nsec; 1117 u64 cur_tsc_write; 1118 u64 cur_tsc_offset; 1119 u64 cur_tsc_generation; 1120 int nr_vcpus_matched_tsc; 1121 1122 seqcount_raw_spinlock_t pvclock_sc; 1123 bool use_master_clock; 1124 u64 master_kernel_ns; 1125 u64 master_cycle_now; 1126 struct delayed_work kvmclock_update_work; 1127 struct delayed_work kvmclock_sync_work; 1128 1129 struct kvm_xen_hvm_config xen_hvm_config; 1130 1131 /* reads protected by irq_srcu, writes by irq_lock */ 1132 struct hlist_head mask_notifier_list; 1133 1134 struct kvm_hv hyperv; 1135 struct kvm_xen xen; 1136 1137 bool backwards_tsc_observed; 1138 bool boot_vcpu_runs_old_kvmclock; 1139 u32 bsp_vcpu_id; 1140 1141 u64 disabled_quirks; 1142 int cpu_dirty_logging_count; 1143 1144 enum kvm_irqchip_mode irqchip_mode; 1145 u8 nr_reserved_ioapic_pins; 1146 1147 bool disabled_lapic_found; 1148 1149 bool x2apic_format; 1150 bool x2apic_broadcast_quirk_disabled; 1151 1152 bool guest_can_read_msr_platform_info; 1153 bool exception_payload_enabled; 1154 1155 bool bus_lock_detection_enabled; 1156 bool enable_pmu; 1157 /* 1158 * If exit_on_emulation_error is set, and the in-kernel instruction 1159 * emulator fails to emulate an instruction, allow userspace 1160 * the opportunity to look at it. 1161 */ 1162 bool exit_on_emulation_error; 1163 1164 /* Deflect RDMSR and WRMSR to user space when they trigger a #GP */ 1165 u32 user_space_msr_mask; 1166 struct kvm_x86_msr_filter __rcu *msr_filter; 1167 1168 u32 hypercall_exit_enabled; 1169 1170 /* Guest can access the SGX PROVISIONKEY. */ 1171 bool sgx_provisioning_allowed; 1172 1173 struct kvm_pmu_event_filter __rcu *pmu_event_filter; 1174 struct task_struct *nx_lpage_recovery_thread; 1175 1176 #ifdef CONFIG_X86_64 1177 /* 1178 * Whether the TDP MMU is enabled for this VM. This contains a 1179 * snapshot of the TDP MMU module parameter from when the VM was 1180 * created and remains unchanged for the life of the VM. If this is 1181 * true, TDP MMU handler functions will run for various MMU 1182 * operations. 1183 */ 1184 bool tdp_mmu_enabled; 1185 1186 /* 1187 * List of struct kvm_mmu_pages being used as roots. 1188 * All struct kvm_mmu_pages in the list should have 1189 * tdp_mmu_page set. 1190 * 1191 * For reads, this list is protected by: 1192 * the MMU lock in read mode + RCU or 1193 * the MMU lock in write mode 1194 * 1195 * For writes, this list is protected by: 1196 * the MMU lock in read mode + the tdp_mmu_pages_lock or 1197 * the MMU lock in write mode 1198 * 1199 * Roots will remain in the list until their tdp_mmu_root_count 1200 * drops to zero, at which point the thread that decremented the 1201 * count to zero should removed the root from the list and clean 1202 * it up, freeing the root after an RCU grace period. 1203 */ 1204 struct list_head tdp_mmu_roots; 1205 1206 /* 1207 * List of struct kvmp_mmu_pages not being used as roots. 1208 * All struct kvm_mmu_pages in the list should have 1209 * tdp_mmu_page set and a tdp_mmu_root_count of 0. 1210 */ 1211 struct list_head tdp_mmu_pages; 1212 1213 /* 1214 * Protects accesses to the following fields when the MMU lock 1215 * is held in read mode: 1216 * - tdp_mmu_roots (above) 1217 * - tdp_mmu_pages (above) 1218 * - the link field of struct kvm_mmu_pages used by the TDP MMU 1219 * - lpage_disallowed_mmu_pages 1220 * - the lpage_disallowed_link field of struct kvm_mmu_pages used 1221 * by the TDP MMU 1222 * It is acceptable, but not necessary, to acquire this lock when 1223 * the thread holds the MMU lock in write mode. 1224 */ 1225 spinlock_t tdp_mmu_pages_lock; 1226 struct workqueue_struct *tdp_mmu_zap_wq; 1227 #endif /* CONFIG_X86_64 */ 1228 1229 /* 1230 * If set, at least one shadow root has been allocated. This flag 1231 * is used as one input when determining whether certain memslot 1232 * related allocations are necessary. 1233 */ 1234 bool shadow_root_allocated; 1235 1236 #if IS_ENABLED(CONFIG_HYPERV) 1237 hpa_t hv_root_tdp; 1238 spinlock_t hv_root_tdp_lock; 1239 #endif 1240 }; 1241 1242 struct kvm_vm_stat { 1243 struct kvm_vm_stat_generic generic; 1244 u64 mmu_shadow_zapped; 1245 u64 mmu_pte_write; 1246 u64 mmu_pde_zapped; 1247 u64 mmu_flooded; 1248 u64 mmu_recycled; 1249 u64 mmu_cache_miss; 1250 u64 mmu_unsync; 1251 union { 1252 struct { 1253 atomic64_t pages_4k; 1254 atomic64_t pages_2m; 1255 atomic64_t pages_1g; 1256 }; 1257 atomic64_t pages[KVM_NR_PAGE_SIZES]; 1258 }; 1259 u64 nx_lpage_splits; 1260 u64 max_mmu_page_hash_collisions; 1261 u64 max_mmu_rmap_size; 1262 }; 1263 1264 struct kvm_vcpu_stat { 1265 struct kvm_vcpu_stat_generic generic; 1266 u64 pf_fixed; 1267 u64 pf_guest; 1268 u64 tlb_flush; 1269 u64 invlpg; 1270 1271 u64 exits; 1272 u64 io_exits; 1273 u64 mmio_exits; 1274 u64 signal_exits; 1275 u64 irq_window_exits; 1276 u64 nmi_window_exits; 1277 u64 l1d_flush; 1278 u64 halt_exits; 1279 u64 request_irq_exits; 1280 u64 irq_exits; 1281 u64 host_state_reload; 1282 u64 fpu_reload; 1283 u64 insn_emulation; 1284 u64 insn_emulation_fail; 1285 u64 hypercalls; 1286 u64 irq_injections; 1287 u64 nmi_injections; 1288 u64 req_event; 1289 u64 nested_run; 1290 u64 directed_yield_attempted; 1291 u64 directed_yield_successful; 1292 u64 guest_mode; 1293 }; 1294 1295 struct x86_instruction_info; 1296 1297 struct msr_data { 1298 bool host_initiated; 1299 u32 index; 1300 u64 data; 1301 }; 1302 1303 struct kvm_lapic_irq { 1304 u32 vector; 1305 u16 delivery_mode; 1306 u16 dest_mode; 1307 bool level; 1308 u16 trig_mode; 1309 u32 shorthand; 1310 u32 dest_id; 1311 bool msi_redir_hint; 1312 }; 1313 1314 static inline u16 kvm_lapic_irq_dest_mode(bool dest_mode_logical) 1315 { 1316 return dest_mode_logical ? APIC_DEST_LOGICAL : APIC_DEST_PHYSICAL; 1317 } 1318 1319 struct kvm_x86_ops { 1320 const char *name; 1321 1322 int (*hardware_enable)(void); 1323 void (*hardware_disable)(void); 1324 void (*hardware_unsetup)(void); 1325 bool (*has_emulated_msr)(struct kvm *kvm, u32 index); 1326 void (*vcpu_after_set_cpuid)(struct kvm_vcpu *vcpu); 1327 1328 unsigned int vm_size; 1329 int (*vm_init)(struct kvm *kvm); 1330 void (*vm_destroy)(struct kvm *kvm); 1331 1332 /* Create, but do not attach this VCPU */ 1333 int (*vcpu_create)(struct kvm_vcpu *vcpu); 1334 void (*vcpu_free)(struct kvm_vcpu *vcpu); 1335 void (*vcpu_reset)(struct kvm_vcpu *vcpu, bool init_event); 1336 1337 void (*prepare_switch_to_guest)(struct kvm_vcpu *vcpu); 1338 void (*vcpu_load)(struct kvm_vcpu *vcpu, int cpu); 1339 void (*vcpu_put)(struct kvm_vcpu *vcpu); 1340 1341 void (*update_exception_bitmap)(struct kvm_vcpu *vcpu); 1342 int (*get_msr)(struct kvm_vcpu *vcpu, struct msr_data *msr); 1343 int (*set_msr)(struct kvm_vcpu *vcpu, struct msr_data *msr); 1344 u64 (*get_segment_base)(struct kvm_vcpu *vcpu, int seg); 1345 void (*get_segment)(struct kvm_vcpu *vcpu, 1346 struct kvm_segment *var, int seg); 1347 int (*get_cpl)(struct kvm_vcpu *vcpu); 1348 void (*set_segment)(struct kvm_vcpu *vcpu, 1349 struct kvm_segment *var, int seg); 1350 void (*get_cs_db_l_bits)(struct kvm_vcpu *vcpu, int *db, int *l); 1351 void (*set_cr0)(struct kvm_vcpu *vcpu, unsigned long cr0); 1352 void (*post_set_cr3)(struct kvm_vcpu *vcpu, unsigned long cr3); 1353 bool (*is_valid_cr4)(struct kvm_vcpu *vcpu, unsigned long cr0); 1354 void (*set_cr4)(struct kvm_vcpu *vcpu, unsigned long cr4); 1355 int (*set_efer)(struct kvm_vcpu *vcpu, u64 efer); 1356 void (*get_idt)(struct kvm_vcpu *vcpu, struct desc_ptr *dt); 1357 void (*set_idt)(struct kvm_vcpu *vcpu, struct desc_ptr *dt); 1358 void (*get_gdt)(struct kvm_vcpu *vcpu, struct desc_ptr *dt); 1359 void (*set_gdt)(struct kvm_vcpu *vcpu, struct desc_ptr *dt); 1360 void (*sync_dirty_debug_regs)(struct kvm_vcpu *vcpu); 1361 void (*set_dr7)(struct kvm_vcpu *vcpu, unsigned long value); 1362 void (*cache_reg)(struct kvm_vcpu *vcpu, enum kvm_reg reg); 1363 unsigned long (*get_rflags)(struct kvm_vcpu *vcpu); 1364 void (*set_rflags)(struct kvm_vcpu *vcpu, unsigned long rflags); 1365 bool (*get_if_flag)(struct kvm_vcpu *vcpu); 1366 1367 void (*flush_tlb_all)(struct kvm_vcpu *vcpu); 1368 void (*flush_tlb_current)(struct kvm_vcpu *vcpu); 1369 int (*tlb_remote_flush)(struct kvm *kvm); 1370 int (*tlb_remote_flush_with_range)(struct kvm *kvm, 1371 struct kvm_tlb_range *range); 1372 1373 /* 1374 * Flush any TLB entries associated with the given GVA. 1375 * Does not need to flush GPA->HPA mappings. 1376 * Can potentially get non-canonical addresses through INVLPGs, which 1377 * the implementation may choose to ignore if appropriate. 1378 */ 1379 void (*flush_tlb_gva)(struct kvm_vcpu *vcpu, gva_t addr); 1380 1381 /* 1382 * Flush any TLB entries created by the guest. Like tlb_flush_gva(), 1383 * does not need to flush GPA->HPA mappings. 1384 */ 1385 void (*flush_tlb_guest)(struct kvm_vcpu *vcpu); 1386 1387 int (*vcpu_pre_run)(struct kvm_vcpu *vcpu); 1388 enum exit_fastpath_completion (*vcpu_run)(struct kvm_vcpu *vcpu); 1389 int (*handle_exit)(struct kvm_vcpu *vcpu, 1390 enum exit_fastpath_completion exit_fastpath); 1391 int (*skip_emulated_instruction)(struct kvm_vcpu *vcpu); 1392 void (*update_emulated_instruction)(struct kvm_vcpu *vcpu); 1393 void (*set_interrupt_shadow)(struct kvm_vcpu *vcpu, int mask); 1394 u32 (*get_interrupt_shadow)(struct kvm_vcpu *vcpu); 1395 void (*patch_hypercall)(struct kvm_vcpu *vcpu, 1396 unsigned char *hypercall_addr); 1397 void (*inject_irq)(struct kvm_vcpu *vcpu); 1398 void (*inject_nmi)(struct kvm_vcpu *vcpu); 1399 void (*queue_exception)(struct kvm_vcpu *vcpu); 1400 void (*cancel_injection)(struct kvm_vcpu *vcpu); 1401 int (*interrupt_allowed)(struct kvm_vcpu *vcpu, bool for_injection); 1402 int (*nmi_allowed)(struct kvm_vcpu *vcpu, bool for_injection); 1403 bool (*get_nmi_mask)(struct kvm_vcpu *vcpu); 1404 void (*set_nmi_mask)(struct kvm_vcpu *vcpu, bool masked); 1405 void (*enable_nmi_window)(struct kvm_vcpu *vcpu); 1406 void (*enable_irq_window)(struct kvm_vcpu *vcpu); 1407 void (*update_cr8_intercept)(struct kvm_vcpu *vcpu, int tpr, int irr); 1408 bool (*check_apicv_inhibit_reasons)(enum kvm_apicv_inhibit reason); 1409 void (*refresh_apicv_exec_ctrl)(struct kvm_vcpu *vcpu); 1410 void (*hwapic_irr_update)(struct kvm_vcpu *vcpu, int max_irr); 1411 void (*hwapic_isr_update)(struct kvm_vcpu *vcpu, int isr); 1412 bool (*guest_apic_has_interrupt)(struct kvm_vcpu *vcpu); 1413 void (*load_eoi_exitmap)(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap); 1414 void (*set_virtual_apic_mode)(struct kvm_vcpu *vcpu); 1415 void (*set_apic_access_page_addr)(struct kvm_vcpu *vcpu); 1416 void (*deliver_interrupt)(struct kvm_lapic *apic, int delivery_mode, 1417 int trig_mode, int vector); 1418 int (*sync_pir_to_irr)(struct kvm_vcpu *vcpu); 1419 int (*set_tss_addr)(struct kvm *kvm, unsigned int addr); 1420 int (*set_identity_map_addr)(struct kvm *kvm, u64 ident_addr); 1421 u64 (*get_mt_mask)(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio); 1422 1423 void (*load_mmu_pgd)(struct kvm_vcpu *vcpu, hpa_t root_hpa, 1424 int root_level); 1425 1426 bool (*has_wbinvd_exit)(void); 1427 1428 u64 (*get_l2_tsc_offset)(struct kvm_vcpu *vcpu); 1429 u64 (*get_l2_tsc_multiplier)(struct kvm_vcpu *vcpu); 1430 void (*write_tsc_offset)(struct kvm_vcpu *vcpu, u64 offset); 1431 void (*write_tsc_multiplier)(struct kvm_vcpu *vcpu, u64 multiplier); 1432 1433 /* 1434 * Retrieve somewhat arbitrary exit information. Intended to 1435 * be used only from within tracepoints or error paths. 1436 */ 1437 void (*get_exit_info)(struct kvm_vcpu *vcpu, u32 *reason, 1438 u64 *info1, u64 *info2, 1439 u32 *exit_int_info, u32 *exit_int_info_err_code); 1440 1441 int (*check_intercept)(struct kvm_vcpu *vcpu, 1442 struct x86_instruction_info *info, 1443 enum x86_intercept_stage stage, 1444 struct x86_exception *exception); 1445 void (*handle_exit_irqoff)(struct kvm_vcpu *vcpu); 1446 1447 void (*request_immediate_exit)(struct kvm_vcpu *vcpu); 1448 1449 void (*sched_in)(struct kvm_vcpu *kvm, int cpu); 1450 1451 /* 1452 * Size of the CPU's dirty log buffer, i.e. VMX's PML buffer. A zero 1453 * value indicates CPU dirty logging is unsupported or disabled. 1454 */ 1455 int cpu_dirty_log_size; 1456 void (*update_cpu_dirty_logging)(struct kvm_vcpu *vcpu); 1457 1458 /* pmu operations of sub-arch */ 1459 const struct kvm_pmu_ops *pmu_ops; 1460 const struct kvm_x86_nested_ops *nested_ops; 1461 1462 void (*vcpu_blocking)(struct kvm_vcpu *vcpu); 1463 void (*vcpu_unblocking)(struct kvm_vcpu *vcpu); 1464 1465 int (*pi_update_irte)(struct kvm *kvm, unsigned int host_irq, 1466 uint32_t guest_irq, bool set); 1467 void (*pi_start_assignment)(struct kvm *kvm); 1468 void (*apicv_post_state_restore)(struct kvm_vcpu *vcpu); 1469 bool (*dy_apicv_has_pending_interrupt)(struct kvm_vcpu *vcpu); 1470 1471 int (*set_hv_timer)(struct kvm_vcpu *vcpu, u64 guest_deadline_tsc, 1472 bool *expired); 1473 void (*cancel_hv_timer)(struct kvm_vcpu *vcpu); 1474 1475 void (*setup_mce)(struct kvm_vcpu *vcpu); 1476 1477 int (*smi_allowed)(struct kvm_vcpu *vcpu, bool for_injection); 1478 int (*enter_smm)(struct kvm_vcpu *vcpu, char *smstate); 1479 int (*leave_smm)(struct kvm_vcpu *vcpu, const char *smstate); 1480 void (*enable_smi_window)(struct kvm_vcpu *vcpu); 1481 1482 int (*mem_enc_ioctl)(struct kvm *kvm, void __user *argp); 1483 int (*mem_enc_register_region)(struct kvm *kvm, struct kvm_enc_region *argp); 1484 int (*mem_enc_unregister_region)(struct kvm *kvm, struct kvm_enc_region *argp); 1485 int (*vm_copy_enc_context_from)(struct kvm *kvm, unsigned int source_fd); 1486 int (*vm_move_enc_context_from)(struct kvm *kvm, unsigned int source_fd); 1487 void (*guest_memory_reclaimed)(struct kvm *kvm); 1488 1489 int (*get_msr_feature)(struct kvm_msr_entry *entry); 1490 1491 bool (*can_emulate_instruction)(struct kvm_vcpu *vcpu, int emul_type, 1492 void *insn, int insn_len); 1493 1494 bool (*apic_init_signal_blocked)(struct kvm_vcpu *vcpu); 1495 int (*enable_direct_tlbflush)(struct kvm_vcpu *vcpu); 1496 1497 void (*migrate_timers)(struct kvm_vcpu *vcpu); 1498 void (*msr_filter_changed)(struct kvm_vcpu *vcpu); 1499 int (*complete_emulated_msr)(struct kvm_vcpu *vcpu, int err); 1500 1501 void (*vcpu_deliver_sipi_vector)(struct kvm_vcpu *vcpu, u8 vector); 1502 }; 1503 1504 struct kvm_x86_nested_ops { 1505 void (*leave_nested)(struct kvm_vcpu *vcpu); 1506 int (*check_events)(struct kvm_vcpu *vcpu); 1507 bool (*hv_timer_pending)(struct kvm_vcpu *vcpu); 1508 void (*triple_fault)(struct kvm_vcpu *vcpu); 1509 int (*get_state)(struct kvm_vcpu *vcpu, 1510 struct kvm_nested_state __user *user_kvm_nested_state, 1511 unsigned user_data_size); 1512 int (*set_state)(struct kvm_vcpu *vcpu, 1513 struct kvm_nested_state __user *user_kvm_nested_state, 1514 struct kvm_nested_state *kvm_state); 1515 bool (*get_nested_state_pages)(struct kvm_vcpu *vcpu); 1516 int (*write_log_dirty)(struct kvm_vcpu *vcpu, gpa_t l2_gpa); 1517 1518 int (*enable_evmcs)(struct kvm_vcpu *vcpu, 1519 uint16_t *vmcs_version); 1520 uint16_t (*get_evmcs_version)(struct kvm_vcpu *vcpu); 1521 }; 1522 1523 struct kvm_x86_init_ops { 1524 int (*cpu_has_kvm_support)(void); 1525 int (*disabled_by_bios)(void); 1526 int (*check_processor_compatibility)(void); 1527 int (*hardware_setup)(void); 1528 unsigned int (*handle_intel_pt_intr)(void); 1529 1530 struct kvm_x86_ops *runtime_ops; 1531 }; 1532 1533 struct kvm_arch_async_pf { 1534 u32 token; 1535 gfn_t gfn; 1536 unsigned long cr3; 1537 bool direct_map; 1538 }; 1539 1540 extern u32 __read_mostly kvm_nr_uret_msrs; 1541 extern u64 __read_mostly host_efer; 1542 extern bool __read_mostly allow_smaller_maxphyaddr; 1543 extern bool __read_mostly enable_apicv; 1544 extern struct kvm_x86_ops kvm_x86_ops; 1545 1546 #define KVM_X86_OP(func) \ 1547 DECLARE_STATIC_CALL(kvm_x86_##func, *(((struct kvm_x86_ops *)0)->func)); 1548 #define KVM_X86_OP_OPTIONAL KVM_X86_OP 1549 #define KVM_X86_OP_OPTIONAL_RET0 KVM_X86_OP 1550 #include <asm/kvm-x86-ops.h> 1551 1552 static inline void kvm_ops_static_call_update(void) 1553 { 1554 #define __KVM_X86_OP(func) \ 1555 static_call_update(kvm_x86_##func, kvm_x86_ops.func); 1556 #define KVM_X86_OP(func) \ 1557 WARN_ON(!kvm_x86_ops.func); __KVM_X86_OP(func) 1558 #define KVM_X86_OP_OPTIONAL __KVM_X86_OP 1559 #define KVM_X86_OP_OPTIONAL_RET0(func) \ 1560 static_call_update(kvm_x86_##func, (void *)kvm_x86_ops.func ? : \ 1561 (void *)__static_call_return0); 1562 #include <asm/kvm-x86-ops.h> 1563 #undef __KVM_X86_OP 1564 } 1565 1566 #define __KVM_HAVE_ARCH_VM_ALLOC 1567 static inline struct kvm *kvm_arch_alloc_vm(void) 1568 { 1569 return __vmalloc(kvm_x86_ops.vm_size, GFP_KERNEL_ACCOUNT | __GFP_ZERO); 1570 } 1571 1572 #define __KVM_HAVE_ARCH_VM_FREE 1573 void kvm_arch_free_vm(struct kvm *kvm); 1574 1575 #define __KVM_HAVE_ARCH_FLUSH_REMOTE_TLB 1576 static inline int kvm_arch_flush_remote_tlb(struct kvm *kvm) 1577 { 1578 if (kvm_x86_ops.tlb_remote_flush && 1579 !static_call(kvm_x86_tlb_remote_flush)(kvm)) 1580 return 0; 1581 else 1582 return -ENOTSUPP; 1583 } 1584 1585 #define kvm_arch_pmi_in_guest(vcpu) \ 1586 ((vcpu) && (vcpu)->arch.handling_intr_from_guest) 1587 1588 void kvm_mmu_x86_module_init(void); 1589 int kvm_mmu_vendor_module_init(void); 1590 void kvm_mmu_vendor_module_exit(void); 1591 1592 void kvm_mmu_destroy(struct kvm_vcpu *vcpu); 1593 int kvm_mmu_create(struct kvm_vcpu *vcpu); 1594 int kvm_mmu_init_vm(struct kvm *kvm); 1595 void kvm_mmu_uninit_vm(struct kvm *kvm); 1596 1597 void kvm_mmu_after_set_cpuid(struct kvm_vcpu *vcpu); 1598 void kvm_mmu_reset_context(struct kvm_vcpu *vcpu); 1599 void kvm_mmu_slot_remove_write_access(struct kvm *kvm, 1600 const struct kvm_memory_slot *memslot, 1601 int start_level); 1602 void kvm_mmu_slot_try_split_huge_pages(struct kvm *kvm, 1603 const struct kvm_memory_slot *memslot, 1604 int target_level); 1605 void kvm_mmu_try_split_huge_pages(struct kvm *kvm, 1606 const struct kvm_memory_slot *memslot, 1607 u64 start, u64 end, 1608 int target_level); 1609 void kvm_mmu_zap_collapsible_sptes(struct kvm *kvm, 1610 const struct kvm_memory_slot *memslot); 1611 void kvm_mmu_slot_leaf_clear_dirty(struct kvm *kvm, 1612 const struct kvm_memory_slot *memslot); 1613 void kvm_mmu_zap_all(struct kvm *kvm); 1614 void kvm_mmu_invalidate_mmio_sptes(struct kvm *kvm, u64 gen); 1615 void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned long kvm_nr_mmu_pages); 1616 1617 int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3); 1618 1619 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa, 1620 const void *val, int bytes); 1621 1622 struct kvm_irq_mask_notifier { 1623 void (*func)(struct kvm_irq_mask_notifier *kimn, bool masked); 1624 int irq; 1625 struct hlist_node link; 1626 }; 1627 1628 void kvm_register_irq_mask_notifier(struct kvm *kvm, int irq, 1629 struct kvm_irq_mask_notifier *kimn); 1630 void kvm_unregister_irq_mask_notifier(struct kvm *kvm, int irq, 1631 struct kvm_irq_mask_notifier *kimn); 1632 void kvm_fire_mask_notifiers(struct kvm *kvm, unsigned irqchip, unsigned pin, 1633 bool mask); 1634 1635 extern bool tdp_enabled; 1636 1637 u64 vcpu_tsc_khz(struct kvm_vcpu *vcpu); 1638 1639 /* control of guest tsc rate supported? */ 1640 extern bool kvm_has_tsc_control; 1641 /* maximum supported tsc_khz for guests */ 1642 extern u32 kvm_max_guest_tsc_khz; 1643 /* number of bits of the fractional part of the TSC scaling ratio */ 1644 extern u8 kvm_tsc_scaling_ratio_frac_bits; 1645 /* maximum allowed value of TSC scaling ratio */ 1646 extern u64 kvm_max_tsc_scaling_ratio; 1647 /* 1ull << kvm_tsc_scaling_ratio_frac_bits */ 1648 extern u64 kvm_default_tsc_scaling_ratio; 1649 /* bus lock detection supported? */ 1650 extern bool kvm_has_bus_lock_exit; 1651 1652 extern u64 kvm_mce_cap_supported; 1653 1654 /* 1655 * EMULTYPE_NO_DECODE - Set when re-emulating an instruction (after completing 1656 * userspace I/O) to indicate that the emulation context 1657 * should be reused as is, i.e. skip initialization of 1658 * emulation context, instruction fetch and decode. 1659 * 1660 * EMULTYPE_TRAP_UD - Set when emulating an intercepted #UD from hardware. 1661 * Indicates that only select instructions (tagged with 1662 * EmulateOnUD) should be emulated (to minimize the emulator 1663 * attack surface). See also EMULTYPE_TRAP_UD_FORCED. 1664 * 1665 * EMULTYPE_SKIP - Set when emulating solely to skip an instruction, i.e. to 1666 * decode the instruction length. For use *only* by 1667 * kvm_x86_ops.skip_emulated_instruction() implementations if 1668 * EMULTYPE_COMPLETE_USER_EXIT is not set. 1669 * 1670 * EMULTYPE_ALLOW_RETRY_PF - Set when the emulator should resume the guest to 1671 * retry native execution under certain conditions, 1672 * Can only be set in conjunction with EMULTYPE_PF. 1673 * 1674 * EMULTYPE_TRAP_UD_FORCED - Set when emulating an intercepted #UD that was 1675 * triggered by KVM's magic "force emulation" prefix, 1676 * which is opt in via module param (off by default). 1677 * Bypasses EmulateOnUD restriction despite emulating 1678 * due to an intercepted #UD (see EMULTYPE_TRAP_UD). 1679 * Used to test the full emulator from userspace. 1680 * 1681 * EMULTYPE_VMWARE_GP - Set when emulating an intercepted #GP for VMware 1682 * backdoor emulation, which is opt in via module param. 1683 * VMware backdoor emulation handles select instructions 1684 * and reinjects the #GP for all other cases. 1685 * 1686 * EMULTYPE_PF - Set when emulating MMIO by way of an intercepted #PF, in which 1687 * case the CR2/GPA value pass on the stack is valid. 1688 * 1689 * EMULTYPE_COMPLETE_USER_EXIT - Set when the emulator should update interruptibility 1690 * state and inject single-step #DBs after skipping 1691 * an instruction (after completing userspace I/O). 1692 */ 1693 #define EMULTYPE_NO_DECODE (1 << 0) 1694 #define EMULTYPE_TRAP_UD (1 << 1) 1695 #define EMULTYPE_SKIP (1 << 2) 1696 #define EMULTYPE_ALLOW_RETRY_PF (1 << 3) 1697 #define EMULTYPE_TRAP_UD_FORCED (1 << 4) 1698 #define EMULTYPE_VMWARE_GP (1 << 5) 1699 #define EMULTYPE_PF (1 << 6) 1700 #define EMULTYPE_COMPLETE_USER_EXIT (1 << 7) 1701 1702 int kvm_emulate_instruction(struct kvm_vcpu *vcpu, int emulation_type); 1703 int kvm_emulate_instruction_from_buffer(struct kvm_vcpu *vcpu, 1704 void *insn, int insn_len); 1705 void __kvm_prepare_emulation_failure_exit(struct kvm_vcpu *vcpu, 1706 u64 *data, u8 ndata); 1707 void kvm_prepare_emulation_failure_exit(struct kvm_vcpu *vcpu); 1708 1709 void kvm_enable_efer_bits(u64); 1710 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer); 1711 int __kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data, bool host_initiated); 1712 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data); 1713 int kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data); 1714 int kvm_emulate_rdmsr(struct kvm_vcpu *vcpu); 1715 int kvm_emulate_wrmsr(struct kvm_vcpu *vcpu); 1716 int kvm_emulate_as_nop(struct kvm_vcpu *vcpu); 1717 int kvm_emulate_invd(struct kvm_vcpu *vcpu); 1718 int kvm_emulate_mwait(struct kvm_vcpu *vcpu); 1719 int kvm_handle_invalid_op(struct kvm_vcpu *vcpu); 1720 int kvm_emulate_monitor(struct kvm_vcpu *vcpu); 1721 1722 int kvm_fast_pio(struct kvm_vcpu *vcpu, int size, unsigned short port, int in); 1723 int kvm_emulate_cpuid(struct kvm_vcpu *vcpu); 1724 int kvm_emulate_halt(struct kvm_vcpu *vcpu); 1725 int kvm_emulate_halt_noskip(struct kvm_vcpu *vcpu); 1726 int kvm_emulate_ap_reset_hold(struct kvm_vcpu *vcpu); 1727 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu); 1728 1729 void kvm_get_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg); 1730 int kvm_load_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector, int seg); 1731 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector); 1732 1733 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index, 1734 int reason, bool has_error_code, u32 error_code); 1735 1736 void kvm_post_set_cr0(struct kvm_vcpu *vcpu, unsigned long old_cr0, unsigned long cr0); 1737 void kvm_post_set_cr4(struct kvm_vcpu *vcpu, unsigned long old_cr4, unsigned long cr4); 1738 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0); 1739 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3); 1740 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4); 1741 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8); 1742 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val); 1743 void kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val); 1744 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu); 1745 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw); 1746 int kvm_emulate_xsetbv(struct kvm_vcpu *vcpu); 1747 1748 int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr); 1749 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr); 1750 1751 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu); 1752 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags); 1753 int kvm_emulate_rdpmc(struct kvm_vcpu *vcpu); 1754 1755 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr); 1756 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code); 1757 void kvm_queue_exception_p(struct kvm_vcpu *vcpu, unsigned nr, unsigned long payload); 1758 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr); 1759 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code); 1760 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault); 1761 bool kvm_inject_emulated_page_fault(struct kvm_vcpu *vcpu, 1762 struct x86_exception *fault); 1763 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl); 1764 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr); 1765 1766 static inline int __kvm_irq_line_state(unsigned long *irq_state, 1767 int irq_source_id, int level) 1768 { 1769 /* Logical OR for level trig interrupt */ 1770 if (level) 1771 __set_bit(irq_source_id, irq_state); 1772 else 1773 __clear_bit(irq_source_id, irq_state); 1774 1775 return !!(*irq_state); 1776 } 1777 1778 #define KVM_MMU_ROOT_CURRENT BIT(0) 1779 #define KVM_MMU_ROOT_PREVIOUS(i) BIT(1+i) 1780 #define KVM_MMU_ROOTS_ALL (~0UL) 1781 1782 int kvm_pic_set_irq(struct kvm_pic *pic, int irq, int irq_source_id, int level); 1783 void kvm_pic_clear_all(struct kvm_pic *pic, int irq_source_id); 1784 1785 void kvm_inject_nmi(struct kvm_vcpu *vcpu); 1786 1787 void kvm_update_dr7(struct kvm_vcpu *vcpu); 1788 1789 int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn); 1790 void kvm_mmu_free_roots(struct kvm *kvm, struct kvm_mmu *mmu, 1791 ulong roots_to_free); 1792 void kvm_mmu_free_guest_mode_roots(struct kvm *kvm, struct kvm_mmu *mmu); 1793 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva, 1794 struct x86_exception *exception); 1795 gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva, 1796 struct x86_exception *exception); 1797 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva, 1798 struct x86_exception *exception); 1799 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva, 1800 struct x86_exception *exception); 1801 1802 bool kvm_apicv_activated(struct kvm *kvm); 1803 void kvm_vcpu_update_apicv(struct kvm_vcpu *vcpu); 1804 void __kvm_set_or_clear_apicv_inhibit(struct kvm *kvm, 1805 enum kvm_apicv_inhibit reason, bool set); 1806 void kvm_set_or_clear_apicv_inhibit(struct kvm *kvm, 1807 enum kvm_apicv_inhibit reason, bool set); 1808 1809 static inline void kvm_set_apicv_inhibit(struct kvm *kvm, 1810 enum kvm_apicv_inhibit reason) 1811 { 1812 kvm_set_or_clear_apicv_inhibit(kvm, reason, true); 1813 } 1814 1815 static inline void kvm_clear_apicv_inhibit(struct kvm *kvm, 1816 enum kvm_apicv_inhibit reason) 1817 { 1818 kvm_set_or_clear_apicv_inhibit(kvm, reason, false); 1819 } 1820 1821 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu); 1822 1823 int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, u64 error_code, 1824 void *insn, int insn_len); 1825 void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva); 1826 void kvm_mmu_invalidate_gva(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, 1827 gva_t gva, hpa_t root_hpa); 1828 void kvm_mmu_invpcid_gva(struct kvm_vcpu *vcpu, gva_t gva, unsigned long pcid); 1829 void kvm_mmu_new_pgd(struct kvm_vcpu *vcpu, gpa_t new_pgd); 1830 1831 void kvm_configure_mmu(bool enable_tdp, int tdp_forced_root_level, 1832 int tdp_max_root_level, int tdp_huge_page_level); 1833 1834 static inline u16 kvm_read_ldt(void) 1835 { 1836 u16 ldt; 1837 asm("sldt %0" : "=g"(ldt)); 1838 return ldt; 1839 } 1840 1841 static inline void kvm_load_ldt(u16 sel) 1842 { 1843 asm("lldt %0" : : "rm"(sel)); 1844 } 1845 1846 #ifdef CONFIG_X86_64 1847 static inline unsigned long read_msr(unsigned long msr) 1848 { 1849 u64 value; 1850 1851 rdmsrl(msr, value); 1852 return value; 1853 } 1854 #endif 1855 1856 static inline void kvm_inject_gp(struct kvm_vcpu *vcpu, u32 error_code) 1857 { 1858 kvm_queue_exception_e(vcpu, GP_VECTOR, error_code); 1859 } 1860 1861 #define TSS_IOPB_BASE_OFFSET 0x66 1862 #define TSS_BASE_SIZE 0x68 1863 #define TSS_IOPB_SIZE (65536 / 8) 1864 #define TSS_REDIRECTION_SIZE (256 / 8) 1865 #define RMODE_TSS_SIZE \ 1866 (TSS_BASE_SIZE + TSS_REDIRECTION_SIZE + TSS_IOPB_SIZE + 1) 1867 1868 enum { 1869 TASK_SWITCH_CALL = 0, 1870 TASK_SWITCH_IRET = 1, 1871 TASK_SWITCH_JMP = 2, 1872 TASK_SWITCH_GATE = 3, 1873 }; 1874 1875 #define HF_GIF_MASK (1 << 0) 1876 #define HF_NMI_MASK (1 << 3) 1877 #define HF_IRET_MASK (1 << 4) 1878 #define HF_GUEST_MASK (1 << 5) /* VCPU is in guest-mode */ 1879 #define HF_SMM_MASK (1 << 6) 1880 #define HF_SMM_INSIDE_NMI_MASK (1 << 7) 1881 1882 #define __KVM_VCPU_MULTIPLE_ADDRESS_SPACE 1883 #define KVM_ADDRESS_SPACE_NUM 2 1884 1885 #define kvm_arch_vcpu_memslots_id(vcpu) ((vcpu)->arch.hflags & HF_SMM_MASK ? 1 : 0) 1886 #define kvm_memslots_for_spte_role(kvm, role) __kvm_memslots(kvm, (role).smm) 1887 1888 #define KVM_ARCH_WANT_MMU_NOTIFIER 1889 1890 int kvm_cpu_has_injectable_intr(struct kvm_vcpu *v); 1891 int kvm_cpu_has_interrupt(struct kvm_vcpu *vcpu); 1892 int kvm_cpu_has_extint(struct kvm_vcpu *v); 1893 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu); 1894 int kvm_cpu_get_interrupt(struct kvm_vcpu *v); 1895 void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event); 1896 1897 int kvm_pv_send_ipi(struct kvm *kvm, unsigned long ipi_bitmap_low, 1898 unsigned long ipi_bitmap_high, u32 min, 1899 unsigned long icr, int op_64_bit); 1900 1901 int kvm_add_user_return_msr(u32 msr); 1902 int kvm_find_user_return_msr(u32 msr); 1903 int kvm_set_user_return_msr(unsigned index, u64 val, u64 mask); 1904 1905 static inline bool kvm_is_supported_user_return_msr(u32 msr) 1906 { 1907 return kvm_find_user_return_msr(msr) >= 0; 1908 } 1909 1910 u64 kvm_scale_tsc(u64 tsc, u64 ratio); 1911 u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc); 1912 u64 kvm_calc_nested_tsc_offset(u64 l1_offset, u64 l2_offset, u64 l2_multiplier); 1913 u64 kvm_calc_nested_tsc_multiplier(u64 l1_multiplier, u64 l2_multiplier); 1914 1915 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu); 1916 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip); 1917 1918 void kvm_make_scan_ioapic_request(struct kvm *kvm); 1919 void kvm_make_scan_ioapic_request_mask(struct kvm *kvm, 1920 unsigned long *vcpu_bitmap); 1921 1922 bool kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu, 1923 struct kvm_async_pf *work); 1924 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu, 1925 struct kvm_async_pf *work); 1926 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, 1927 struct kvm_async_pf *work); 1928 void kvm_arch_async_page_present_queued(struct kvm_vcpu *vcpu); 1929 bool kvm_arch_can_dequeue_async_page_present(struct kvm_vcpu *vcpu); 1930 extern bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn); 1931 1932 int kvm_skip_emulated_instruction(struct kvm_vcpu *vcpu); 1933 int kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err); 1934 void __kvm_request_immediate_exit(struct kvm_vcpu *vcpu); 1935 1936 void __user *__x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, 1937 u32 size); 1938 bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu); 1939 bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu); 1940 1941 bool kvm_intr_is_single_vcpu(struct kvm *kvm, struct kvm_lapic_irq *irq, 1942 struct kvm_vcpu **dest_vcpu); 1943 1944 void kvm_set_msi_irq(struct kvm *kvm, struct kvm_kernel_irq_routing_entry *e, 1945 struct kvm_lapic_irq *irq); 1946 1947 static inline bool kvm_irq_is_postable(struct kvm_lapic_irq *irq) 1948 { 1949 /* We can only post Fixed and LowPrio IRQs */ 1950 return (irq->delivery_mode == APIC_DM_FIXED || 1951 irq->delivery_mode == APIC_DM_LOWEST); 1952 } 1953 1954 static inline void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu) 1955 { 1956 static_call_cond(kvm_x86_vcpu_blocking)(vcpu); 1957 } 1958 1959 static inline void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu) 1960 { 1961 static_call_cond(kvm_x86_vcpu_unblocking)(vcpu); 1962 } 1963 1964 static inline int kvm_cpu_get_apicid(int mps_cpu) 1965 { 1966 #ifdef CONFIG_X86_LOCAL_APIC 1967 return default_cpu_present_to_apicid(mps_cpu); 1968 #else 1969 WARN_ON_ONCE(1); 1970 return BAD_APICID; 1971 #endif 1972 } 1973 1974 #define put_smstate(type, buf, offset, val) \ 1975 *(type *)((buf) + (offset) - 0x7e00) = val 1976 1977 #define GET_SMSTATE(type, buf, offset) \ 1978 (*(type *)((buf) + (offset) - 0x7e00)) 1979 1980 int kvm_cpu_dirty_log_size(void); 1981 1982 int memslot_rmap_alloc(struct kvm_memory_slot *slot, unsigned long npages); 1983 1984 #define KVM_CLOCK_VALID_FLAGS \ 1985 (KVM_CLOCK_TSC_STABLE | KVM_CLOCK_REALTIME | KVM_CLOCK_HOST_TSC) 1986 1987 #define KVM_X86_VALID_QUIRKS \ 1988 (KVM_X86_QUIRK_LINT0_REENABLED | \ 1989 KVM_X86_QUIRK_CD_NW_CLEARED | \ 1990 KVM_X86_QUIRK_LAPIC_MMIO_HOLE | \ 1991 KVM_X86_QUIRK_OUT_7E_INC_RIP | \ 1992 KVM_X86_QUIRK_MISC_ENABLE_NO_MWAIT) 1993 1994 #endif /* _ASM_X86_KVM_HOST_H */ 1995