1 /* SPDX-License-Identifier: GPL-2.0-only */ 2 /* 3 * Kernel-based Virtual Machine driver for Linux 4 * 5 * This header defines architecture specific interfaces, x86 version 6 */ 7 8 #ifndef _ASM_X86_KVM_HOST_H 9 #define _ASM_X86_KVM_HOST_H 10 11 #include <linux/types.h> 12 #include <linux/mm.h> 13 #include <linux/mmu_notifier.h> 14 #include <linux/tracepoint.h> 15 #include <linux/cpumask.h> 16 #include <linux/irq_work.h> 17 #include <linux/irq.h> 18 19 #include <linux/kvm.h> 20 #include <linux/kvm_para.h> 21 #include <linux/kvm_types.h> 22 #include <linux/perf_event.h> 23 #include <linux/pvclock_gtod.h> 24 #include <linux/clocksource.h> 25 #include <linux/irqbypass.h> 26 #include <linux/hyperv.h> 27 28 #include <asm/apic.h> 29 #include <asm/pvclock-abi.h> 30 #include <asm/desc.h> 31 #include <asm/mtrr.h> 32 #include <asm/msr-index.h> 33 #include <asm/asm.h> 34 #include <asm/kvm_page_track.h> 35 #include <asm/kvm_vcpu_regs.h> 36 #include <asm/hyperv-tlfs.h> 37 38 #define __KVM_HAVE_ARCH_VCPU_DEBUGFS 39 40 #define KVM_MAX_VCPUS 1024 41 42 /* 43 * In x86, the VCPU ID corresponds to the APIC ID, and APIC IDs 44 * might be larger than the actual number of VCPUs because the 45 * APIC ID encodes CPU topology information. 46 * 47 * In the worst case, we'll need less than one extra bit for the 48 * Core ID, and less than one extra bit for the Package (Die) ID, 49 * so ratio of 4 should be enough. 50 */ 51 #define KVM_VCPU_ID_RATIO 4 52 #define KVM_MAX_VCPU_IDS (KVM_MAX_VCPUS * KVM_VCPU_ID_RATIO) 53 54 /* memory slots that are not exposed to userspace */ 55 #define KVM_PRIVATE_MEM_SLOTS 3 56 57 #define KVM_HALT_POLL_NS_DEFAULT 200000 58 59 #define KVM_IRQCHIP_NUM_PINS KVM_IOAPIC_NUM_PINS 60 61 #define KVM_DIRTY_LOG_MANUAL_CAPS (KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE | \ 62 KVM_DIRTY_LOG_INITIALLY_SET) 63 64 #define KVM_BUS_LOCK_DETECTION_VALID_MODE (KVM_BUS_LOCK_DETECTION_OFF | \ 65 KVM_BUS_LOCK_DETECTION_EXIT) 66 67 /* x86-specific vcpu->requests bit members */ 68 #define KVM_REQ_MIGRATE_TIMER KVM_ARCH_REQ(0) 69 #define KVM_REQ_REPORT_TPR_ACCESS KVM_ARCH_REQ(1) 70 #define KVM_REQ_TRIPLE_FAULT KVM_ARCH_REQ(2) 71 #define KVM_REQ_MMU_SYNC KVM_ARCH_REQ(3) 72 #define KVM_REQ_CLOCK_UPDATE KVM_ARCH_REQ(4) 73 #define KVM_REQ_LOAD_MMU_PGD KVM_ARCH_REQ(5) 74 #define KVM_REQ_EVENT KVM_ARCH_REQ(6) 75 #define KVM_REQ_APF_HALT KVM_ARCH_REQ(7) 76 #define KVM_REQ_STEAL_UPDATE KVM_ARCH_REQ(8) 77 #define KVM_REQ_NMI KVM_ARCH_REQ(9) 78 #define KVM_REQ_PMU KVM_ARCH_REQ(10) 79 #define KVM_REQ_PMI KVM_ARCH_REQ(11) 80 #define KVM_REQ_SMI KVM_ARCH_REQ(12) 81 #define KVM_REQ_MASTERCLOCK_UPDATE KVM_ARCH_REQ(13) 82 #define KVM_REQ_MCLOCK_INPROGRESS \ 83 KVM_ARCH_REQ_FLAGS(14, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP) 84 #define KVM_REQ_SCAN_IOAPIC \ 85 KVM_ARCH_REQ_FLAGS(15, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP) 86 #define KVM_REQ_GLOBAL_CLOCK_UPDATE KVM_ARCH_REQ(16) 87 #define KVM_REQ_APIC_PAGE_RELOAD \ 88 KVM_ARCH_REQ_FLAGS(17, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP) 89 #define KVM_REQ_HV_CRASH KVM_ARCH_REQ(18) 90 #define KVM_REQ_IOAPIC_EOI_EXIT KVM_ARCH_REQ(19) 91 #define KVM_REQ_HV_RESET KVM_ARCH_REQ(20) 92 #define KVM_REQ_HV_EXIT KVM_ARCH_REQ(21) 93 #define KVM_REQ_HV_STIMER KVM_ARCH_REQ(22) 94 #define KVM_REQ_LOAD_EOI_EXITMAP KVM_ARCH_REQ(23) 95 #define KVM_REQ_GET_NESTED_STATE_PAGES KVM_ARCH_REQ(24) 96 #define KVM_REQ_APICV_UPDATE \ 97 KVM_ARCH_REQ_FLAGS(25, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP) 98 #define KVM_REQ_TLB_FLUSH_CURRENT KVM_ARCH_REQ(26) 99 #define KVM_REQ_TLB_FLUSH_GUEST \ 100 KVM_ARCH_REQ_FLAGS(27, KVM_REQUEST_NO_WAKEUP) 101 #define KVM_REQ_APF_READY KVM_ARCH_REQ(28) 102 #define KVM_REQ_MSR_FILTER_CHANGED KVM_ARCH_REQ(29) 103 #define KVM_REQ_UPDATE_CPU_DIRTY_LOGGING \ 104 KVM_ARCH_REQ_FLAGS(30, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP) 105 106 #define CR0_RESERVED_BITS \ 107 (~(unsigned long)(X86_CR0_PE | X86_CR0_MP | X86_CR0_EM | X86_CR0_TS \ 108 | X86_CR0_ET | X86_CR0_NE | X86_CR0_WP | X86_CR0_AM \ 109 | X86_CR0_NW | X86_CR0_CD | X86_CR0_PG)) 110 111 #define CR4_RESERVED_BITS \ 112 (~(unsigned long)(X86_CR4_VME | X86_CR4_PVI | X86_CR4_TSD | X86_CR4_DE\ 113 | X86_CR4_PSE | X86_CR4_PAE | X86_CR4_MCE \ 114 | X86_CR4_PGE | X86_CR4_PCE | X86_CR4_OSFXSR | X86_CR4_PCIDE \ 115 | X86_CR4_OSXSAVE | X86_CR4_SMEP | X86_CR4_FSGSBASE \ 116 | X86_CR4_OSXMMEXCPT | X86_CR4_LA57 | X86_CR4_VMXE \ 117 | X86_CR4_SMAP | X86_CR4_PKE | X86_CR4_UMIP)) 118 119 #define CR8_RESERVED_BITS (~(unsigned long)X86_CR8_TPR) 120 121 122 123 #define INVALID_PAGE (~(hpa_t)0) 124 #define VALID_PAGE(x) ((x) != INVALID_PAGE) 125 126 #define UNMAPPED_GVA (~(gpa_t)0) 127 #define INVALID_GPA (~(gpa_t)0) 128 129 /* KVM Hugepage definitions for x86 */ 130 #define KVM_MAX_HUGEPAGE_LEVEL PG_LEVEL_1G 131 #define KVM_NR_PAGE_SIZES (KVM_MAX_HUGEPAGE_LEVEL - PG_LEVEL_4K + 1) 132 #define KVM_HPAGE_GFN_SHIFT(x) (((x) - 1) * 9) 133 #define KVM_HPAGE_SHIFT(x) (PAGE_SHIFT + KVM_HPAGE_GFN_SHIFT(x)) 134 #define KVM_HPAGE_SIZE(x) (1UL << KVM_HPAGE_SHIFT(x)) 135 #define KVM_HPAGE_MASK(x) (~(KVM_HPAGE_SIZE(x) - 1)) 136 #define KVM_PAGES_PER_HPAGE(x) (KVM_HPAGE_SIZE(x) / PAGE_SIZE) 137 138 #define KVM_PERMILLE_MMU_PAGES 20 139 #define KVM_MIN_ALLOC_MMU_PAGES 64UL 140 #define KVM_MMU_HASH_SHIFT 12 141 #define KVM_NUM_MMU_PAGES (1 << KVM_MMU_HASH_SHIFT) 142 #define KVM_MIN_FREE_MMU_PAGES 5 143 #define KVM_REFILL_PAGES 25 144 #define KVM_MAX_CPUID_ENTRIES 256 145 #define KVM_NR_FIXED_MTRR_REGION 88 146 #define KVM_NR_VAR_MTRR 8 147 148 #define ASYNC_PF_PER_VCPU 64 149 150 enum kvm_reg { 151 VCPU_REGS_RAX = __VCPU_REGS_RAX, 152 VCPU_REGS_RCX = __VCPU_REGS_RCX, 153 VCPU_REGS_RDX = __VCPU_REGS_RDX, 154 VCPU_REGS_RBX = __VCPU_REGS_RBX, 155 VCPU_REGS_RSP = __VCPU_REGS_RSP, 156 VCPU_REGS_RBP = __VCPU_REGS_RBP, 157 VCPU_REGS_RSI = __VCPU_REGS_RSI, 158 VCPU_REGS_RDI = __VCPU_REGS_RDI, 159 #ifdef CONFIG_X86_64 160 VCPU_REGS_R8 = __VCPU_REGS_R8, 161 VCPU_REGS_R9 = __VCPU_REGS_R9, 162 VCPU_REGS_R10 = __VCPU_REGS_R10, 163 VCPU_REGS_R11 = __VCPU_REGS_R11, 164 VCPU_REGS_R12 = __VCPU_REGS_R12, 165 VCPU_REGS_R13 = __VCPU_REGS_R13, 166 VCPU_REGS_R14 = __VCPU_REGS_R14, 167 VCPU_REGS_R15 = __VCPU_REGS_R15, 168 #endif 169 VCPU_REGS_RIP, 170 NR_VCPU_REGS, 171 172 VCPU_EXREG_PDPTR = NR_VCPU_REGS, 173 VCPU_EXREG_CR0, 174 VCPU_EXREG_CR3, 175 VCPU_EXREG_CR4, 176 VCPU_EXREG_RFLAGS, 177 VCPU_EXREG_SEGMENTS, 178 VCPU_EXREG_EXIT_INFO_1, 179 VCPU_EXREG_EXIT_INFO_2, 180 }; 181 182 enum { 183 VCPU_SREG_ES, 184 VCPU_SREG_CS, 185 VCPU_SREG_SS, 186 VCPU_SREG_DS, 187 VCPU_SREG_FS, 188 VCPU_SREG_GS, 189 VCPU_SREG_TR, 190 VCPU_SREG_LDTR, 191 }; 192 193 enum exit_fastpath_completion { 194 EXIT_FASTPATH_NONE, 195 EXIT_FASTPATH_REENTER_GUEST, 196 EXIT_FASTPATH_EXIT_HANDLED, 197 }; 198 typedef enum exit_fastpath_completion fastpath_t; 199 200 struct x86_emulate_ctxt; 201 struct x86_exception; 202 enum x86_intercept; 203 enum x86_intercept_stage; 204 205 #define KVM_NR_DB_REGS 4 206 207 #define DR6_BUS_LOCK (1 << 11) 208 #define DR6_BD (1 << 13) 209 #define DR6_BS (1 << 14) 210 #define DR6_BT (1 << 15) 211 #define DR6_RTM (1 << 16) 212 /* 213 * DR6_ACTIVE_LOW combines fixed-1 and active-low bits. 214 * We can regard all the bits in DR6_FIXED_1 as active_low bits; 215 * they will never be 0 for now, but when they are defined 216 * in the future it will require no code change. 217 * 218 * DR6_ACTIVE_LOW is also used as the init/reset value for DR6. 219 */ 220 #define DR6_ACTIVE_LOW 0xffff0ff0 221 #define DR6_VOLATILE 0x0001e80f 222 #define DR6_FIXED_1 (DR6_ACTIVE_LOW & ~DR6_VOLATILE) 223 224 #define DR7_BP_EN_MASK 0x000000ff 225 #define DR7_GE (1 << 9) 226 #define DR7_GD (1 << 13) 227 #define DR7_FIXED_1 0x00000400 228 #define DR7_VOLATILE 0xffff2bff 229 230 #define KVM_GUESTDBG_VALID_MASK \ 231 (KVM_GUESTDBG_ENABLE | \ 232 KVM_GUESTDBG_SINGLESTEP | \ 233 KVM_GUESTDBG_USE_HW_BP | \ 234 KVM_GUESTDBG_USE_SW_BP | \ 235 KVM_GUESTDBG_INJECT_BP | \ 236 KVM_GUESTDBG_INJECT_DB | \ 237 KVM_GUESTDBG_BLOCKIRQ) 238 239 240 #define PFERR_PRESENT_BIT 0 241 #define PFERR_WRITE_BIT 1 242 #define PFERR_USER_BIT 2 243 #define PFERR_RSVD_BIT 3 244 #define PFERR_FETCH_BIT 4 245 #define PFERR_PK_BIT 5 246 #define PFERR_SGX_BIT 15 247 #define PFERR_GUEST_FINAL_BIT 32 248 #define PFERR_GUEST_PAGE_BIT 33 249 250 #define PFERR_PRESENT_MASK (1U << PFERR_PRESENT_BIT) 251 #define PFERR_WRITE_MASK (1U << PFERR_WRITE_BIT) 252 #define PFERR_USER_MASK (1U << PFERR_USER_BIT) 253 #define PFERR_RSVD_MASK (1U << PFERR_RSVD_BIT) 254 #define PFERR_FETCH_MASK (1U << PFERR_FETCH_BIT) 255 #define PFERR_PK_MASK (1U << PFERR_PK_BIT) 256 #define PFERR_SGX_MASK (1U << PFERR_SGX_BIT) 257 #define PFERR_GUEST_FINAL_MASK (1ULL << PFERR_GUEST_FINAL_BIT) 258 #define PFERR_GUEST_PAGE_MASK (1ULL << PFERR_GUEST_PAGE_BIT) 259 260 #define PFERR_NESTED_GUEST_PAGE (PFERR_GUEST_PAGE_MASK | \ 261 PFERR_WRITE_MASK | \ 262 PFERR_PRESENT_MASK) 263 264 /* apic attention bits */ 265 #define KVM_APIC_CHECK_VAPIC 0 266 /* 267 * The following bit is set with PV-EOI, unset on EOI. 268 * We detect PV-EOI changes by guest by comparing 269 * this bit with PV-EOI in guest memory. 270 * See the implementation in apic_update_pv_eoi. 271 */ 272 #define KVM_APIC_PV_EOI_PENDING 1 273 274 struct kvm_kernel_irq_routing_entry; 275 276 /* 277 * kvm_mmu_page_role tracks the properties of a shadow page (where shadow page 278 * also includes TDP pages) to determine whether or not a page can be used in 279 * the given MMU context. This is a subset of the overall kvm_mmu_role to 280 * minimize the size of kvm_memory_slot.arch.gfn_track, i.e. allows allocating 281 * 2 bytes per gfn instead of 4 bytes per gfn. 282 * 283 * Indirect upper-level shadow pages are tracked for write-protection via 284 * gfn_track. As above, gfn_track is a 16 bit counter, so KVM must not create 285 * more than 2^16-1 upper-level shadow pages at a single gfn, otherwise 286 * gfn_track will overflow and explosions will ensure. 287 * 288 * A unique shadow page (SP) for a gfn is created if and only if an existing SP 289 * cannot be reused. The ability to reuse a SP is tracked by its role, which 290 * incorporates various mode bits and properties of the SP. Roughly speaking, 291 * the number of unique SPs that can theoretically be created is 2^n, where n 292 * is the number of bits that are used to compute the role. 293 * 294 * But, even though there are 18 bits in the mask below, not all combinations 295 * of modes and flags are possible. The maximum number of possible upper-level 296 * shadow pages for a single gfn is in the neighborhood of 2^13. 297 * 298 * - invalid shadow pages are not accounted. 299 * - level is effectively limited to four combinations, not 16 as the number 300 * bits would imply, as 4k SPs are not tracked (allowed to go unsync). 301 * - level is effectively unused for non-PAE paging because there is exactly 302 * one upper level (see 4k SP exception above). 303 * - quadrant is used only for non-PAE paging and is exclusive with 304 * gpte_is_8_bytes. 305 * - execonly and ad_disabled are used only for nested EPT, which makes it 306 * exclusive with quadrant. 307 */ 308 union kvm_mmu_page_role { 309 u32 word; 310 struct { 311 unsigned level:4; 312 unsigned gpte_is_8_bytes:1; 313 unsigned quadrant:2; 314 unsigned direct:1; 315 unsigned access:3; 316 unsigned invalid:1; 317 unsigned efer_nx:1; 318 unsigned cr0_wp:1; 319 unsigned smep_andnot_wp:1; 320 unsigned smap_andnot_wp:1; 321 unsigned ad_disabled:1; 322 unsigned guest_mode:1; 323 unsigned :6; 324 325 /* 326 * This is left at the top of the word so that 327 * kvm_memslots_for_spte_role can extract it with a 328 * simple shift. While there is room, give it a whole 329 * byte so it is also faster to load it from memory. 330 */ 331 unsigned smm:8; 332 }; 333 }; 334 335 /* 336 * kvm_mmu_extended_role complements kvm_mmu_page_role, tracking properties 337 * relevant to the current MMU configuration. When loading CR0, CR4, or EFER, 338 * including on nested transitions, if nothing in the full role changes then 339 * MMU re-configuration can be skipped. @valid bit is set on first usage so we 340 * don't treat all-zero structure as valid data. 341 * 342 * The properties that are tracked in the extended role but not the page role 343 * are for things that either (a) do not affect the validity of the shadow page 344 * or (b) are indirectly reflected in the shadow page's role. For example, 345 * CR4.PKE only affects permission checks for software walks of the guest page 346 * tables (because KVM doesn't support Protection Keys with shadow paging), and 347 * CR0.PG, CR4.PAE, and CR4.PSE are indirectly reflected in role.level. 348 * 349 * Note, SMEP and SMAP are not redundant with sm*p_andnot_wp in the page role. 350 * If CR0.WP=1, KVM can reuse shadow pages for the guest regardless of SMEP and 351 * SMAP, but the MMU's permission checks for software walks need to be SMEP and 352 * SMAP aware regardless of CR0.WP. 353 */ 354 union kvm_mmu_extended_role { 355 u32 word; 356 struct { 357 unsigned int valid:1; 358 unsigned int execonly:1; 359 unsigned int cr0_pg:1; 360 unsigned int cr4_pae:1; 361 unsigned int cr4_pse:1; 362 unsigned int cr4_pke:1; 363 unsigned int cr4_smap:1; 364 unsigned int cr4_smep:1; 365 unsigned int cr4_la57:1; 366 }; 367 }; 368 369 union kvm_mmu_role { 370 u64 as_u64; 371 struct { 372 union kvm_mmu_page_role base; 373 union kvm_mmu_extended_role ext; 374 }; 375 }; 376 377 struct kvm_rmap_head { 378 unsigned long val; 379 }; 380 381 struct kvm_pio_request { 382 unsigned long linear_rip; 383 unsigned long count; 384 int in; 385 int port; 386 int size; 387 }; 388 389 #define PT64_ROOT_MAX_LEVEL 5 390 391 struct rsvd_bits_validate { 392 u64 rsvd_bits_mask[2][PT64_ROOT_MAX_LEVEL]; 393 u64 bad_mt_xwr; 394 }; 395 396 struct kvm_mmu_root_info { 397 gpa_t pgd; 398 hpa_t hpa; 399 }; 400 401 #define KVM_MMU_ROOT_INFO_INVALID \ 402 ((struct kvm_mmu_root_info) { .pgd = INVALID_PAGE, .hpa = INVALID_PAGE }) 403 404 #define KVM_MMU_NUM_PREV_ROOTS 3 405 406 #define KVM_HAVE_MMU_RWLOCK 407 408 struct kvm_mmu_page; 409 struct kvm_page_fault; 410 411 /* 412 * x86 supports 4 paging modes (5-level 64-bit, 4-level 64-bit, 3-level 32-bit, 413 * and 2-level 32-bit). The kvm_mmu structure abstracts the details of the 414 * current mmu mode. 415 */ 416 struct kvm_mmu { 417 unsigned long (*get_guest_pgd)(struct kvm_vcpu *vcpu); 418 u64 (*get_pdptr)(struct kvm_vcpu *vcpu, int index); 419 int (*page_fault)(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault); 420 void (*inject_page_fault)(struct kvm_vcpu *vcpu, 421 struct x86_exception *fault); 422 gpa_t (*gva_to_gpa)(struct kvm_vcpu *vcpu, gpa_t gva_or_gpa, 423 u32 access, struct x86_exception *exception); 424 gpa_t (*translate_gpa)(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access, 425 struct x86_exception *exception); 426 int (*sync_page)(struct kvm_vcpu *vcpu, 427 struct kvm_mmu_page *sp); 428 void (*invlpg)(struct kvm_vcpu *vcpu, gva_t gva, hpa_t root_hpa); 429 hpa_t root_hpa; 430 gpa_t root_pgd; 431 union kvm_mmu_role mmu_role; 432 u8 root_level; 433 u8 shadow_root_level; 434 u8 ept_ad; 435 bool direct_map; 436 struct kvm_mmu_root_info prev_roots[KVM_MMU_NUM_PREV_ROOTS]; 437 438 /* 439 * Bitmap; bit set = permission fault 440 * Byte index: page fault error code [4:1] 441 * Bit index: pte permissions in ACC_* format 442 */ 443 u8 permissions[16]; 444 445 /* 446 * The pkru_mask indicates if protection key checks are needed. It 447 * consists of 16 domains indexed by page fault error code bits [4:1], 448 * with PFEC.RSVD replaced by ACC_USER_MASK from the page tables. 449 * Each domain has 2 bits which are ANDed with AD and WD from PKRU. 450 */ 451 u32 pkru_mask; 452 453 u64 *pae_root; 454 u64 *pml4_root; 455 u64 *pml5_root; 456 457 /* 458 * check zero bits on shadow page table entries, these 459 * bits include not only hardware reserved bits but also 460 * the bits spte never used. 461 */ 462 struct rsvd_bits_validate shadow_zero_check; 463 464 struct rsvd_bits_validate guest_rsvd_check; 465 466 u64 pdptrs[4]; /* pae */ 467 }; 468 469 struct kvm_tlb_range { 470 u64 start_gfn; 471 u64 pages; 472 }; 473 474 enum pmc_type { 475 KVM_PMC_GP = 0, 476 KVM_PMC_FIXED, 477 }; 478 479 struct kvm_pmc { 480 enum pmc_type type; 481 u8 idx; 482 u64 counter; 483 u64 eventsel; 484 struct perf_event *perf_event; 485 struct kvm_vcpu *vcpu; 486 /* 487 * eventsel value for general purpose counters, 488 * ctrl value for fixed counters. 489 */ 490 u64 current_config; 491 bool is_paused; 492 }; 493 494 struct kvm_pmu { 495 unsigned nr_arch_gp_counters; 496 unsigned nr_arch_fixed_counters; 497 unsigned available_event_types; 498 u64 fixed_ctr_ctrl; 499 u64 global_ctrl; 500 u64 global_status; 501 u64 counter_bitmask[2]; 502 u64 global_ctrl_mask; 503 u64 global_ovf_ctrl_mask; 504 u64 reserved_bits; 505 u8 version; 506 struct kvm_pmc gp_counters[INTEL_PMC_MAX_GENERIC]; 507 struct kvm_pmc fixed_counters[INTEL_PMC_MAX_FIXED]; 508 struct irq_work irq_work; 509 DECLARE_BITMAP(reprogram_pmi, X86_PMC_IDX_MAX); 510 DECLARE_BITMAP(all_valid_pmc_idx, X86_PMC_IDX_MAX); 511 DECLARE_BITMAP(pmc_in_use, X86_PMC_IDX_MAX); 512 513 /* 514 * The gate to release perf_events not marked in 515 * pmc_in_use only once in a vcpu time slice. 516 */ 517 bool need_cleanup; 518 519 /* 520 * The total number of programmed perf_events and it helps to avoid 521 * redundant check before cleanup if guest don't use vPMU at all. 522 */ 523 u8 event_count; 524 }; 525 526 struct kvm_pmu_ops; 527 528 enum { 529 KVM_DEBUGREG_BP_ENABLED = 1, 530 KVM_DEBUGREG_WONT_EXIT = 2, 531 }; 532 533 struct kvm_mtrr_range { 534 u64 base; 535 u64 mask; 536 struct list_head node; 537 }; 538 539 struct kvm_mtrr { 540 struct kvm_mtrr_range var_ranges[KVM_NR_VAR_MTRR]; 541 mtrr_type fixed_ranges[KVM_NR_FIXED_MTRR_REGION]; 542 u64 deftype; 543 544 struct list_head head; 545 }; 546 547 /* Hyper-V SynIC timer */ 548 struct kvm_vcpu_hv_stimer { 549 struct hrtimer timer; 550 int index; 551 union hv_stimer_config config; 552 u64 count; 553 u64 exp_time; 554 struct hv_message msg; 555 bool msg_pending; 556 }; 557 558 /* Hyper-V synthetic interrupt controller (SynIC)*/ 559 struct kvm_vcpu_hv_synic { 560 u64 version; 561 u64 control; 562 u64 msg_page; 563 u64 evt_page; 564 atomic64_t sint[HV_SYNIC_SINT_COUNT]; 565 atomic_t sint_to_gsi[HV_SYNIC_SINT_COUNT]; 566 DECLARE_BITMAP(auto_eoi_bitmap, 256); 567 DECLARE_BITMAP(vec_bitmap, 256); 568 bool active; 569 bool dont_zero_synic_pages; 570 }; 571 572 /* Hyper-V per vcpu emulation context */ 573 struct kvm_vcpu_hv { 574 struct kvm_vcpu *vcpu; 575 u32 vp_index; 576 u64 hv_vapic; 577 s64 runtime_offset; 578 struct kvm_vcpu_hv_synic synic; 579 struct kvm_hyperv_exit exit; 580 struct kvm_vcpu_hv_stimer stimer[HV_SYNIC_STIMER_COUNT]; 581 DECLARE_BITMAP(stimer_pending_bitmap, HV_SYNIC_STIMER_COUNT); 582 bool enforce_cpuid; 583 struct { 584 u32 features_eax; /* HYPERV_CPUID_FEATURES.EAX */ 585 u32 features_ebx; /* HYPERV_CPUID_FEATURES.EBX */ 586 u32 features_edx; /* HYPERV_CPUID_FEATURES.EDX */ 587 u32 enlightenments_eax; /* HYPERV_CPUID_ENLIGHTMENT_INFO.EAX */ 588 u32 enlightenments_ebx; /* HYPERV_CPUID_ENLIGHTMENT_INFO.EBX */ 589 u32 syndbg_cap_eax; /* HYPERV_CPUID_SYNDBG_PLATFORM_CAPABILITIES.EAX */ 590 } cpuid_cache; 591 }; 592 593 /* Xen HVM per vcpu emulation context */ 594 struct kvm_vcpu_xen { 595 u64 hypercall_rip; 596 u32 current_runstate; 597 bool vcpu_info_set; 598 bool vcpu_time_info_set; 599 bool runstate_set; 600 struct gfn_to_hva_cache vcpu_info_cache; 601 struct gfn_to_hva_cache vcpu_time_info_cache; 602 struct gfn_to_hva_cache runstate_cache; 603 u64 last_steal; 604 u64 runstate_entry_time; 605 u64 runstate_times[4]; 606 }; 607 608 struct kvm_vcpu_arch { 609 /* 610 * rip and regs accesses must go through 611 * kvm_{register,rip}_{read,write} functions. 612 */ 613 unsigned long regs[NR_VCPU_REGS]; 614 u32 regs_avail; 615 u32 regs_dirty; 616 617 unsigned long cr0; 618 unsigned long cr0_guest_owned_bits; 619 unsigned long cr2; 620 unsigned long cr3; 621 unsigned long cr4; 622 unsigned long cr4_guest_owned_bits; 623 unsigned long cr4_guest_rsvd_bits; 624 unsigned long cr8; 625 u32 host_pkru; 626 u32 pkru; 627 u32 hflags; 628 u64 efer; 629 u64 apic_base; 630 struct kvm_lapic *apic; /* kernel irqchip context */ 631 bool apicv_active; 632 bool load_eoi_exitmap_pending; 633 DECLARE_BITMAP(ioapic_handled_vectors, 256); 634 unsigned long apic_attention; 635 int32_t apic_arb_prio; 636 int mp_state; 637 u64 ia32_misc_enable_msr; 638 u64 smbase; 639 u64 smi_count; 640 bool tpr_access_reporting; 641 bool xsaves_enabled; 642 u64 ia32_xss; 643 u64 microcode_version; 644 u64 arch_capabilities; 645 u64 perf_capabilities; 646 647 /* 648 * Paging state of the vcpu 649 * 650 * If the vcpu runs in guest mode with two level paging this still saves 651 * the paging mode of the l1 guest. This context is always used to 652 * handle faults. 653 */ 654 struct kvm_mmu *mmu; 655 656 /* Non-nested MMU for L1 */ 657 struct kvm_mmu root_mmu; 658 659 /* L1 MMU when running nested */ 660 struct kvm_mmu guest_mmu; 661 662 /* 663 * Paging state of an L2 guest (used for nested npt) 664 * 665 * This context will save all necessary information to walk page tables 666 * of an L2 guest. This context is only initialized for page table 667 * walking and not for faulting since we never handle l2 page faults on 668 * the host. 669 */ 670 struct kvm_mmu nested_mmu; 671 672 /* 673 * Pointer to the mmu context currently used for 674 * gva_to_gpa translations. 675 */ 676 struct kvm_mmu *walk_mmu; 677 678 struct kvm_mmu_memory_cache mmu_pte_list_desc_cache; 679 struct kvm_mmu_memory_cache mmu_shadow_page_cache; 680 struct kvm_mmu_memory_cache mmu_gfn_array_cache; 681 struct kvm_mmu_memory_cache mmu_page_header_cache; 682 683 /* 684 * QEMU userspace and the guest each have their own FPU state. 685 * In vcpu_run, we switch between the user and guest FPU contexts. 686 * While running a VCPU, the VCPU thread will have the guest FPU 687 * context. 688 * 689 * Note that while the PKRU state lives inside the fpu registers, 690 * it is switched out separately at VMENTER and VMEXIT time. The 691 * "guest_fpstate" state here contains the guest FPU context, with the 692 * host PRKU bits. 693 */ 694 struct fpu_guest guest_fpu; 695 696 u64 xcr0; 697 u64 guest_supported_xcr0; 698 699 struct kvm_pio_request pio; 700 void *pio_data; 701 void *sev_pio_data; 702 unsigned sev_pio_count; 703 704 u8 event_exit_inst_len; 705 706 struct kvm_queued_exception { 707 bool pending; 708 bool injected; 709 bool has_error_code; 710 u8 nr; 711 u32 error_code; 712 unsigned long payload; 713 bool has_payload; 714 u8 nested_apf; 715 } exception; 716 717 struct kvm_queued_interrupt { 718 bool injected; 719 bool soft; 720 u8 nr; 721 } interrupt; 722 723 int halt_request; /* real mode on Intel only */ 724 725 int cpuid_nent; 726 struct kvm_cpuid_entry2 *cpuid_entries; 727 u32 kvm_cpuid_base; 728 729 u64 reserved_gpa_bits; 730 int maxphyaddr; 731 732 /* emulate context */ 733 734 struct x86_emulate_ctxt *emulate_ctxt; 735 bool emulate_regs_need_sync_to_vcpu; 736 bool emulate_regs_need_sync_from_vcpu; 737 int (*complete_userspace_io)(struct kvm_vcpu *vcpu); 738 739 gpa_t time; 740 struct pvclock_vcpu_time_info hv_clock; 741 unsigned int hw_tsc_khz; 742 struct gfn_to_hva_cache pv_time; 743 bool pv_time_enabled; 744 /* set guest stopped flag in pvclock flags field */ 745 bool pvclock_set_guest_stopped_request; 746 747 struct { 748 u8 preempted; 749 u64 msr_val; 750 u64 last_steal; 751 struct gfn_to_hva_cache cache; 752 } st; 753 754 u64 l1_tsc_offset; 755 u64 tsc_offset; /* current tsc offset */ 756 u64 last_guest_tsc; 757 u64 last_host_tsc; 758 u64 tsc_offset_adjustment; 759 u64 this_tsc_nsec; 760 u64 this_tsc_write; 761 u64 this_tsc_generation; 762 bool tsc_catchup; 763 bool tsc_always_catchup; 764 s8 virtual_tsc_shift; 765 u32 virtual_tsc_mult; 766 u32 virtual_tsc_khz; 767 s64 ia32_tsc_adjust_msr; 768 u64 msr_ia32_power_ctl; 769 u64 l1_tsc_scaling_ratio; 770 u64 tsc_scaling_ratio; /* current scaling ratio */ 771 772 atomic_t nmi_queued; /* unprocessed asynchronous NMIs */ 773 unsigned nmi_pending; /* NMI queued after currently running handler */ 774 bool nmi_injected; /* Trying to inject an NMI this entry */ 775 bool smi_pending; /* SMI queued after currently running handler */ 776 777 struct kvm_mtrr mtrr_state; 778 u64 pat; 779 780 unsigned switch_db_regs; 781 unsigned long db[KVM_NR_DB_REGS]; 782 unsigned long dr6; 783 unsigned long dr7; 784 unsigned long eff_db[KVM_NR_DB_REGS]; 785 unsigned long guest_debug_dr7; 786 u64 msr_platform_info; 787 u64 msr_misc_features_enables; 788 789 u64 mcg_cap; 790 u64 mcg_status; 791 u64 mcg_ctl; 792 u64 mcg_ext_ctl; 793 u64 *mce_banks; 794 795 /* Cache MMIO info */ 796 u64 mmio_gva; 797 unsigned mmio_access; 798 gfn_t mmio_gfn; 799 u64 mmio_gen; 800 801 struct kvm_pmu pmu; 802 803 /* used for guest single stepping over the given code position */ 804 unsigned long singlestep_rip; 805 806 bool hyperv_enabled; 807 struct kvm_vcpu_hv *hyperv; 808 struct kvm_vcpu_xen xen; 809 810 cpumask_var_t wbinvd_dirty_mask; 811 812 unsigned long last_retry_eip; 813 unsigned long last_retry_addr; 814 815 struct { 816 bool halted; 817 gfn_t gfns[ASYNC_PF_PER_VCPU]; 818 struct gfn_to_hva_cache data; 819 u64 msr_en_val; /* MSR_KVM_ASYNC_PF_EN */ 820 u64 msr_int_val; /* MSR_KVM_ASYNC_PF_INT */ 821 u16 vec; 822 u32 id; 823 bool send_user_only; 824 u32 host_apf_flags; 825 unsigned long nested_apf_token; 826 bool delivery_as_pf_vmexit; 827 bool pageready_pending; 828 } apf; 829 830 /* OSVW MSRs (AMD only) */ 831 struct { 832 u64 length; 833 u64 status; 834 } osvw; 835 836 struct { 837 u64 msr_val; 838 struct gfn_to_hva_cache data; 839 } pv_eoi; 840 841 u64 msr_kvm_poll_control; 842 843 /* 844 * Indicates the guest is trying to write a gfn that contains one or 845 * more of the PTEs used to translate the write itself, i.e. the access 846 * is changing its own translation in the guest page tables. KVM exits 847 * to userspace if emulation of the faulting instruction fails and this 848 * flag is set, as KVM cannot make forward progress. 849 * 850 * If emulation fails for a write to guest page tables, KVM unprotects 851 * (zaps) the shadow page for the target gfn and resumes the guest to 852 * retry the non-emulatable instruction (on hardware). Unprotecting the 853 * gfn doesn't allow forward progress for a self-changing access because 854 * doing so also zaps the translation for the gfn, i.e. retrying the 855 * instruction will hit a !PRESENT fault, which results in a new shadow 856 * page and sends KVM back to square one. 857 */ 858 bool write_fault_to_shadow_pgtable; 859 860 /* set at EPT violation at this point */ 861 unsigned long exit_qualification; 862 863 /* pv related host specific info */ 864 struct { 865 bool pv_unhalted; 866 } pv; 867 868 int pending_ioapic_eoi; 869 int pending_external_vector; 870 871 /* be preempted when it's in kernel-mode(cpl=0) */ 872 bool preempted_in_kernel; 873 874 /* Flush the L1 Data cache for L1TF mitigation on VMENTER */ 875 bool l1tf_flush_l1d; 876 877 /* Host CPU on which VM-entry was most recently attempted */ 878 int last_vmentry_cpu; 879 880 /* AMD MSRC001_0015 Hardware Configuration */ 881 u64 msr_hwcr; 882 883 /* pv related cpuid info */ 884 struct { 885 /* 886 * value of the eax register in the KVM_CPUID_FEATURES CPUID 887 * leaf. 888 */ 889 u32 features; 890 891 /* 892 * indicates whether pv emulation should be disabled if features 893 * are not present in the guest's cpuid 894 */ 895 bool enforce; 896 } pv_cpuid; 897 898 /* Protected Guests */ 899 bool guest_state_protected; 900 901 /* 902 * Set when PDPTS were loaded directly by the userspace without 903 * reading the guest memory 904 */ 905 bool pdptrs_from_userspace; 906 907 #if IS_ENABLED(CONFIG_HYPERV) 908 hpa_t hv_root_tdp; 909 #endif 910 }; 911 912 struct kvm_lpage_info { 913 int disallow_lpage; 914 }; 915 916 struct kvm_arch_memory_slot { 917 struct kvm_rmap_head *rmap[KVM_NR_PAGE_SIZES]; 918 struct kvm_lpage_info *lpage_info[KVM_NR_PAGE_SIZES - 1]; 919 unsigned short *gfn_track[KVM_PAGE_TRACK_MAX]; 920 }; 921 922 /* 923 * We use as the mode the number of bits allocated in the LDR for the 924 * logical processor ID. It happens that these are all powers of two. 925 * This makes it is very easy to detect cases where the APICs are 926 * configured for multiple modes; in that case, we cannot use the map and 927 * hence cannot use kvm_irq_delivery_to_apic_fast either. 928 */ 929 #define KVM_APIC_MODE_XAPIC_CLUSTER 4 930 #define KVM_APIC_MODE_XAPIC_FLAT 8 931 #define KVM_APIC_MODE_X2APIC 16 932 933 struct kvm_apic_map { 934 struct rcu_head rcu; 935 u8 mode; 936 u32 max_apic_id; 937 union { 938 struct kvm_lapic *xapic_flat_map[8]; 939 struct kvm_lapic *xapic_cluster_map[16][4]; 940 }; 941 struct kvm_lapic *phys_map[]; 942 }; 943 944 /* Hyper-V synthetic debugger (SynDbg)*/ 945 struct kvm_hv_syndbg { 946 struct { 947 u64 control; 948 u64 status; 949 u64 send_page; 950 u64 recv_page; 951 u64 pending_page; 952 } control; 953 u64 options; 954 }; 955 956 /* Current state of Hyper-V TSC page clocksource */ 957 enum hv_tsc_page_status { 958 /* TSC page was not set up or disabled */ 959 HV_TSC_PAGE_UNSET = 0, 960 /* TSC page MSR was written by the guest, update pending */ 961 HV_TSC_PAGE_GUEST_CHANGED, 962 /* TSC page MSR was written by KVM userspace, update pending */ 963 HV_TSC_PAGE_HOST_CHANGED, 964 /* TSC page was properly set up and is currently active */ 965 HV_TSC_PAGE_SET, 966 /* TSC page is currently being updated and therefore is inactive */ 967 HV_TSC_PAGE_UPDATING, 968 /* TSC page was set up with an inaccessible GPA */ 969 HV_TSC_PAGE_BROKEN, 970 }; 971 972 /* Hyper-V emulation context */ 973 struct kvm_hv { 974 struct mutex hv_lock; 975 u64 hv_guest_os_id; 976 u64 hv_hypercall; 977 u64 hv_tsc_page; 978 enum hv_tsc_page_status hv_tsc_page_status; 979 980 /* Hyper-v based guest crash (NT kernel bugcheck) parameters */ 981 u64 hv_crash_param[HV_X64_MSR_CRASH_PARAMS]; 982 u64 hv_crash_ctl; 983 984 struct ms_hyperv_tsc_page tsc_ref; 985 986 struct idr conn_to_evt; 987 988 u64 hv_reenlightenment_control; 989 u64 hv_tsc_emulation_control; 990 u64 hv_tsc_emulation_status; 991 992 /* How many vCPUs have VP index != vCPU index */ 993 atomic_t num_mismatched_vp_indexes; 994 995 /* 996 * How many SynICs use 'AutoEOI' feature 997 * (protected by arch.apicv_update_lock) 998 */ 999 unsigned int synic_auto_eoi_used; 1000 1001 struct hv_partition_assist_pg *hv_pa_pg; 1002 struct kvm_hv_syndbg hv_syndbg; 1003 }; 1004 1005 struct msr_bitmap_range { 1006 u32 flags; 1007 u32 nmsrs; 1008 u32 base; 1009 unsigned long *bitmap; 1010 }; 1011 1012 /* Xen emulation context */ 1013 struct kvm_xen { 1014 bool long_mode; 1015 u8 upcall_vector; 1016 gfn_t shinfo_gfn; 1017 }; 1018 1019 enum kvm_irqchip_mode { 1020 KVM_IRQCHIP_NONE, 1021 KVM_IRQCHIP_KERNEL, /* created with KVM_CREATE_IRQCHIP */ 1022 KVM_IRQCHIP_SPLIT, /* created with KVM_CAP_SPLIT_IRQCHIP */ 1023 }; 1024 1025 struct kvm_x86_msr_filter { 1026 u8 count; 1027 bool default_allow:1; 1028 struct msr_bitmap_range ranges[16]; 1029 }; 1030 1031 #define APICV_INHIBIT_REASON_DISABLE 0 1032 #define APICV_INHIBIT_REASON_HYPERV 1 1033 #define APICV_INHIBIT_REASON_NESTED 2 1034 #define APICV_INHIBIT_REASON_IRQWIN 3 1035 #define APICV_INHIBIT_REASON_PIT_REINJ 4 1036 #define APICV_INHIBIT_REASON_X2APIC 5 1037 #define APICV_INHIBIT_REASON_BLOCKIRQ 6 1038 1039 struct kvm_arch { 1040 unsigned long n_used_mmu_pages; 1041 unsigned long n_requested_mmu_pages; 1042 unsigned long n_max_mmu_pages; 1043 unsigned int indirect_shadow_pages; 1044 u8 mmu_valid_gen; 1045 struct hlist_head mmu_page_hash[KVM_NUM_MMU_PAGES]; 1046 struct list_head active_mmu_pages; 1047 struct list_head zapped_obsolete_pages; 1048 struct list_head lpage_disallowed_mmu_pages; 1049 struct kvm_page_track_notifier_node mmu_sp_tracker; 1050 struct kvm_page_track_notifier_head track_notifier_head; 1051 /* 1052 * Protects marking pages unsync during page faults, as TDP MMU page 1053 * faults only take mmu_lock for read. For simplicity, the unsync 1054 * pages lock is always taken when marking pages unsync regardless of 1055 * whether mmu_lock is held for read or write. 1056 */ 1057 spinlock_t mmu_unsync_pages_lock; 1058 1059 struct list_head assigned_dev_head; 1060 struct iommu_domain *iommu_domain; 1061 bool iommu_noncoherent; 1062 #define __KVM_HAVE_ARCH_NONCOHERENT_DMA 1063 atomic_t noncoherent_dma_count; 1064 #define __KVM_HAVE_ARCH_ASSIGNED_DEVICE 1065 atomic_t assigned_device_count; 1066 struct kvm_pic *vpic; 1067 struct kvm_ioapic *vioapic; 1068 struct kvm_pit *vpit; 1069 atomic_t vapics_in_nmi_mode; 1070 struct mutex apic_map_lock; 1071 struct kvm_apic_map __rcu *apic_map; 1072 atomic_t apic_map_dirty; 1073 1074 /* Protects apic_access_memslot_enabled and apicv_inhibit_reasons */ 1075 struct rw_semaphore apicv_update_lock; 1076 1077 bool apic_access_memslot_enabled; 1078 unsigned long apicv_inhibit_reasons; 1079 1080 gpa_t wall_clock; 1081 1082 bool mwait_in_guest; 1083 bool hlt_in_guest; 1084 bool pause_in_guest; 1085 bool cstate_in_guest; 1086 1087 unsigned long irq_sources_bitmap; 1088 s64 kvmclock_offset; 1089 1090 /* 1091 * This also protects nr_vcpus_matched_tsc which is read from a 1092 * preemption-disabled region, so it must be a raw spinlock. 1093 */ 1094 raw_spinlock_t tsc_write_lock; 1095 u64 last_tsc_nsec; 1096 u64 last_tsc_write; 1097 u32 last_tsc_khz; 1098 u64 last_tsc_offset; 1099 u64 cur_tsc_nsec; 1100 u64 cur_tsc_write; 1101 u64 cur_tsc_offset; 1102 u64 cur_tsc_generation; 1103 int nr_vcpus_matched_tsc; 1104 1105 seqcount_raw_spinlock_t pvclock_sc; 1106 bool use_master_clock; 1107 u64 master_kernel_ns; 1108 u64 master_cycle_now; 1109 struct delayed_work kvmclock_update_work; 1110 struct delayed_work kvmclock_sync_work; 1111 1112 struct kvm_xen_hvm_config xen_hvm_config; 1113 1114 /* reads protected by irq_srcu, writes by irq_lock */ 1115 struct hlist_head mask_notifier_list; 1116 1117 struct kvm_hv hyperv; 1118 struct kvm_xen xen; 1119 1120 #ifdef CONFIG_KVM_MMU_AUDIT 1121 int audit_point; 1122 #endif 1123 1124 bool backwards_tsc_observed; 1125 bool boot_vcpu_runs_old_kvmclock; 1126 u32 bsp_vcpu_id; 1127 1128 u64 disabled_quirks; 1129 int cpu_dirty_logging_count; 1130 1131 enum kvm_irqchip_mode irqchip_mode; 1132 u8 nr_reserved_ioapic_pins; 1133 1134 bool disabled_lapic_found; 1135 1136 bool x2apic_format; 1137 bool x2apic_broadcast_quirk_disabled; 1138 1139 bool guest_can_read_msr_platform_info; 1140 bool exception_payload_enabled; 1141 1142 bool bus_lock_detection_enabled; 1143 /* 1144 * If exit_on_emulation_error is set, and the in-kernel instruction 1145 * emulator fails to emulate an instruction, allow userspace 1146 * the opportunity to look at it. 1147 */ 1148 bool exit_on_emulation_error; 1149 1150 /* Deflect RDMSR and WRMSR to user space when they trigger a #GP */ 1151 u32 user_space_msr_mask; 1152 struct kvm_x86_msr_filter __rcu *msr_filter; 1153 1154 u32 hypercall_exit_enabled; 1155 1156 /* Guest can access the SGX PROVISIONKEY. */ 1157 bool sgx_provisioning_allowed; 1158 1159 struct kvm_pmu_event_filter __rcu *pmu_event_filter; 1160 struct task_struct *nx_lpage_recovery_thread; 1161 1162 #ifdef CONFIG_X86_64 1163 /* 1164 * Whether the TDP MMU is enabled for this VM. This contains a 1165 * snapshot of the TDP MMU module parameter from when the VM was 1166 * created and remains unchanged for the life of the VM. If this is 1167 * true, TDP MMU handler functions will run for various MMU 1168 * operations. 1169 */ 1170 bool tdp_mmu_enabled; 1171 1172 /* 1173 * List of struct kvm_mmu_pages being used as roots. 1174 * All struct kvm_mmu_pages in the list should have 1175 * tdp_mmu_page set. 1176 * 1177 * For reads, this list is protected by: 1178 * the MMU lock in read mode + RCU or 1179 * the MMU lock in write mode 1180 * 1181 * For writes, this list is protected by: 1182 * the MMU lock in read mode + the tdp_mmu_pages_lock or 1183 * the MMU lock in write mode 1184 * 1185 * Roots will remain in the list until their tdp_mmu_root_count 1186 * drops to zero, at which point the thread that decremented the 1187 * count to zero should removed the root from the list and clean 1188 * it up, freeing the root after an RCU grace period. 1189 */ 1190 struct list_head tdp_mmu_roots; 1191 1192 /* 1193 * List of struct kvmp_mmu_pages not being used as roots. 1194 * All struct kvm_mmu_pages in the list should have 1195 * tdp_mmu_page set and a tdp_mmu_root_count of 0. 1196 */ 1197 struct list_head tdp_mmu_pages; 1198 1199 /* 1200 * Protects accesses to the following fields when the MMU lock 1201 * is held in read mode: 1202 * - tdp_mmu_roots (above) 1203 * - tdp_mmu_pages (above) 1204 * - the link field of struct kvm_mmu_pages used by the TDP MMU 1205 * - lpage_disallowed_mmu_pages 1206 * - the lpage_disallowed_link field of struct kvm_mmu_pages used 1207 * by the TDP MMU 1208 * It is acceptable, but not necessary, to acquire this lock when 1209 * the thread holds the MMU lock in write mode. 1210 */ 1211 spinlock_t tdp_mmu_pages_lock; 1212 #endif /* CONFIG_X86_64 */ 1213 1214 /* 1215 * If set, at least one shadow root has been allocated. This flag 1216 * is used as one input when determining whether certain memslot 1217 * related allocations are necessary. 1218 */ 1219 bool shadow_root_allocated; 1220 1221 #if IS_ENABLED(CONFIG_HYPERV) 1222 hpa_t hv_root_tdp; 1223 spinlock_t hv_root_tdp_lock; 1224 #endif 1225 }; 1226 1227 struct kvm_vm_stat { 1228 struct kvm_vm_stat_generic generic; 1229 u64 mmu_shadow_zapped; 1230 u64 mmu_pte_write; 1231 u64 mmu_pde_zapped; 1232 u64 mmu_flooded; 1233 u64 mmu_recycled; 1234 u64 mmu_cache_miss; 1235 u64 mmu_unsync; 1236 union { 1237 struct { 1238 atomic64_t pages_4k; 1239 atomic64_t pages_2m; 1240 atomic64_t pages_1g; 1241 }; 1242 atomic64_t pages[KVM_NR_PAGE_SIZES]; 1243 }; 1244 u64 nx_lpage_splits; 1245 u64 max_mmu_page_hash_collisions; 1246 u64 max_mmu_rmap_size; 1247 }; 1248 1249 struct kvm_vcpu_stat { 1250 struct kvm_vcpu_stat_generic generic; 1251 u64 pf_fixed; 1252 u64 pf_guest; 1253 u64 tlb_flush; 1254 u64 invlpg; 1255 1256 u64 exits; 1257 u64 io_exits; 1258 u64 mmio_exits; 1259 u64 signal_exits; 1260 u64 irq_window_exits; 1261 u64 nmi_window_exits; 1262 u64 l1d_flush; 1263 u64 halt_exits; 1264 u64 request_irq_exits; 1265 u64 irq_exits; 1266 u64 host_state_reload; 1267 u64 fpu_reload; 1268 u64 insn_emulation; 1269 u64 insn_emulation_fail; 1270 u64 hypercalls; 1271 u64 irq_injections; 1272 u64 nmi_injections; 1273 u64 req_event; 1274 u64 nested_run; 1275 u64 directed_yield_attempted; 1276 u64 directed_yield_successful; 1277 u64 guest_mode; 1278 }; 1279 1280 struct x86_instruction_info; 1281 1282 struct msr_data { 1283 bool host_initiated; 1284 u32 index; 1285 u64 data; 1286 }; 1287 1288 struct kvm_lapic_irq { 1289 u32 vector; 1290 u16 delivery_mode; 1291 u16 dest_mode; 1292 bool level; 1293 u16 trig_mode; 1294 u32 shorthand; 1295 u32 dest_id; 1296 bool msi_redir_hint; 1297 }; 1298 1299 static inline u16 kvm_lapic_irq_dest_mode(bool dest_mode_logical) 1300 { 1301 return dest_mode_logical ? APIC_DEST_LOGICAL : APIC_DEST_PHYSICAL; 1302 } 1303 1304 struct kvm_x86_ops { 1305 const char *name; 1306 1307 int (*hardware_enable)(void); 1308 void (*hardware_disable)(void); 1309 void (*hardware_unsetup)(void); 1310 bool (*cpu_has_accelerated_tpr)(void); 1311 bool (*has_emulated_msr)(struct kvm *kvm, u32 index); 1312 void (*vcpu_after_set_cpuid)(struct kvm_vcpu *vcpu); 1313 1314 unsigned int vm_size; 1315 int (*vm_init)(struct kvm *kvm); 1316 void (*vm_destroy)(struct kvm *kvm); 1317 1318 /* Create, but do not attach this VCPU */ 1319 int (*vcpu_create)(struct kvm_vcpu *vcpu); 1320 void (*vcpu_free)(struct kvm_vcpu *vcpu); 1321 void (*vcpu_reset)(struct kvm_vcpu *vcpu, bool init_event); 1322 1323 void (*prepare_guest_switch)(struct kvm_vcpu *vcpu); 1324 void (*vcpu_load)(struct kvm_vcpu *vcpu, int cpu); 1325 void (*vcpu_put)(struct kvm_vcpu *vcpu); 1326 1327 void (*update_exception_bitmap)(struct kvm_vcpu *vcpu); 1328 int (*get_msr)(struct kvm_vcpu *vcpu, struct msr_data *msr); 1329 int (*set_msr)(struct kvm_vcpu *vcpu, struct msr_data *msr); 1330 u64 (*get_segment_base)(struct kvm_vcpu *vcpu, int seg); 1331 void (*get_segment)(struct kvm_vcpu *vcpu, 1332 struct kvm_segment *var, int seg); 1333 int (*get_cpl)(struct kvm_vcpu *vcpu); 1334 void (*set_segment)(struct kvm_vcpu *vcpu, 1335 struct kvm_segment *var, int seg); 1336 void (*get_cs_db_l_bits)(struct kvm_vcpu *vcpu, int *db, int *l); 1337 void (*set_cr0)(struct kvm_vcpu *vcpu, unsigned long cr0); 1338 bool (*is_valid_cr4)(struct kvm_vcpu *vcpu, unsigned long cr0); 1339 void (*set_cr4)(struct kvm_vcpu *vcpu, unsigned long cr4); 1340 int (*set_efer)(struct kvm_vcpu *vcpu, u64 efer); 1341 void (*get_idt)(struct kvm_vcpu *vcpu, struct desc_ptr *dt); 1342 void (*set_idt)(struct kvm_vcpu *vcpu, struct desc_ptr *dt); 1343 void (*get_gdt)(struct kvm_vcpu *vcpu, struct desc_ptr *dt); 1344 void (*set_gdt)(struct kvm_vcpu *vcpu, struct desc_ptr *dt); 1345 void (*sync_dirty_debug_regs)(struct kvm_vcpu *vcpu); 1346 void (*set_dr7)(struct kvm_vcpu *vcpu, unsigned long value); 1347 void (*cache_reg)(struct kvm_vcpu *vcpu, enum kvm_reg reg); 1348 unsigned long (*get_rflags)(struct kvm_vcpu *vcpu); 1349 void (*set_rflags)(struct kvm_vcpu *vcpu, unsigned long rflags); 1350 1351 void (*tlb_flush_all)(struct kvm_vcpu *vcpu); 1352 void (*tlb_flush_current)(struct kvm_vcpu *vcpu); 1353 int (*tlb_remote_flush)(struct kvm *kvm); 1354 int (*tlb_remote_flush_with_range)(struct kvm *kvm, 1355 struct kvm_tlb_range *range); 1356 1357 /* 1358 * Flush any TLB entries associated with the given GVA. 1359 * Does not need to flush GPA->HPA mappings. 1360 * Can potentially get non-canonical addresses through INVLPGs, which 1361 * the implementation may choose to ignore if appropriate. 1362 */ 1363 void (*tlb_flush_gva)(struct kvm_vcpu *vcpu, gva_t addr); 1364 1365 /* 1366 * Flush any TLB entries created by the guest. Like tlb_flush_gva(), 1367 * does not need to flush GPA->HPA mappings. 1368 */ 1369 void (*tlb_flush_guest)(struct kvm_vcpu *vcpu); 1370 1371 enum exit_fastpath_completion (*run)(struct kvm_vcpu *vcpu); 1372 int (*handle_exit)(struct kvm_vcpu *vcpu, 1373 enum exit_fastpath_completion exit_fastpath); 1374 int (*skip_emulated_instruction)(struct kvm_vcpu *vcpu); 1375 void (*update_emulated_instruction)(struct kvm_vcpu *vcpu); 1376 void (*set_interrupt_shadow)(struct kvm_vcpu *vcpu, int mask); 1377 u32 (*get_interrupt_shadow)(struct kvm_vcpu *vcpu); 1378 void (*patch_hypercall)(struct kvm_vcpu *vcpu, 1379 unsigned char *hypercall_addr); 1380 void (*set_irq)(struct kvm_vcpu *vcpu); 1381 void (*set_nmi)(struct kvm_vcpu *vcpu); 1382 void (*queue_exception)(struct kvm_vcpu *vcpu); 1383 void (*cancel_injection)(struct kvm_vcpu *vcpu); 1384 int (*interrupt_allowed)(struct kvm_vcpu *vcpu, bool for_injection); 1385 int (*nmi_allowed)(struct kvm_vcpu *vcpu, bool for_injection); 1386 bool (*get_nmi_mask)(struct kvm_vcpu *vcpu); 1387 void (*set_nmi_mask)(struct kvm_vcpu *vcpu, bool masked); 1388 void (*enable_nmi_window)(struct kvm_vcpu *vcpu); 1389 void (*enable_irq_window)(struct kvm_vcpu *vcpu); 1390 void (*update_cr8_intercept)(struct kvm_vcpu *vcpu, int tpr, int irr); 1391 bool (*check_apicv_inhibit_reasons)(ulong bit); 1392 void (*refresh_apicv_exec_ctrl)(struct kvm_vcpu *vcpu); 1393 void (*hwapic_irr_update)(struct kvm_vcpu *vcpu, int max_irr); 1394 void (*hwapic_isr_update)(struct kvm_vcpu *vcpu, int isr); 1395 bool (*guest_apic_has_interrupt)(struct kvm_vcpu *vcpu); 1396 void (*load_eoi_exitmap)(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap); 1397 void (*set_virtual_apic_mode)(struct kvm_vcpu *vcpu); 1398 void (*set_apic_access_page_addr)(struct kvm_vcpu *vcpu); 1399 int (*deliver_posted_interrupt)(struct kvm_vcpu *vcpu, int vector); 1400 int (*sync_pir_to_irr)(struct kvm_vcpu *vcpu); 1401 int (*set_tss_addr)(struct kvm *kvm, unsigned int addr); 1402 int (*set_identity_map_addr)(struct kvm *kvm, u64 ident_addr); 1403 u64 (*get_mt_mask)(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio); 1404 1405 void (*load_mmu_pgd)(struct kvm_vcpu *vcpu, hpa_t root_hpa, 1406 int root_level); 1407 1408 bool (*has_wbinvd_exit)(void); 1409 1410 u64 (*get_l2_tsc_offset)(struct kvm_vcpu *vcpu); 1411 u64 (*get_l2_tsc_multiplier)(struct kvm_vcpu *vcpu); 1412 void (*write_tsc_offset)(struct kvm_vcpu *vcpu, u64 offset); 1413 void (*write_tsc_multiplier)(struct kvm_vcpu *vcpu, u64 multiplier); 1414 1415 /* 1416 * Retrieve somewhat arbitrary exit information. Intended to 1417 * be used only from within tracepoints or error paths. 1418 */ 1419 void (*get_exit_info)(struct kvm_vcpu *vcpu, u32 *reason, 1420 u64 *info1, u64 *info2, 1421 u32 *exit_int_info, u32 *exit_int_info_err_code); 1422 1423 int (*check_intercept)(struct kvm_vcpu *vcpu, 1424 struct x86_instruction_info *info, 1425 enum x86_intercept_stage stage, 1426 struct x86_exception *exception); 1427 void (*handle_exit_irqoff)(struct kvm_vcpu *vcpu); 1428 1429 void (*request_immediate_exit)(struct kvm_vcpu *vcpu); 1430 1431 void (*sched_in)(struct kvm_vcpu *kvm, int cpu); 1432 1433 /* 1434 * Size of the CPU's dirty log buffer, i.e. VMX's PML buffer. A zero 1435 * value indicates CPU dirty logging is unsupported or disabled. 1436 */ 1437 int cpu_dirty_log_size; 1438 void (*update_cpu_dirty_logging)(struct kvm_vcpu *vcpu); 1439 1440 /* pmu operations of sub-arch */ 1441 const struct kvm_pmu_ops *pmu_ops; 1442 const struct kvm_x86_nested_ops *nested_ops; 1443 1444 /* 1445 * Architecture specific hooks for vCPU blocking due to 1446 * HLT instruction. 1447 * Returns for .pre_block(): 1448 * - 0 means continue to block the vCPU. 1449 * - 1 means we cannot block the vCPU since some event 1450 * happens during this period, such as, 'ON' bit in 1451 * posted-interrupts descriptor is set. 1452 */ 1453 int (*pre_block)(struct kvm_vcpu *vcpu); 1454 void (*post_block)(struct kvm_vcpu *vcpu); 1455 1456 void (*vcpu_blocking)(struct kvm_vcpu *vcpu); 1457 void (*vcpu_unblocking)(struct kvm_vcpu *vcpu); 1458 1459 int (*update_pi_irte)(struct kvm *kvm, unsigned int host_irq, 1460 uint32_t guest_irq, bool set); 1461 void (*start_assignment)(struct kvm *kvm); 1462 void (*apicv_post_state_restore)(struct kvm_vcpu *vcpu); 1463 bool (*dy_apicv_has_pending_interrupt)(struct kvm_vcpu *vcpu); 1464 1465 int (*set_hv_timer)(struct kvm_vcpu *vcpu, u64 guest_deadline_tsc, 1466 bool *expired); 1467 void (*cancel_hv_timer)(struct kvm_vcpu *vcpu); 1468 1469 void (*setup_mce)(struct kvm_vcpu *vcpu); 1470 1471 int (*smi_allowed)(struct kvm_vcpu *vcpu, bool for_injection); 1472 int (*enter_smm)(struct kvm_vcpu *vcpu, char *smstate); 1473 int (*leave_smm)(struct kvm_vcpu *vcpu, const char *smstate); 1474 void (*enable_smi_window)(struct kvm_vcpu *vcpu); 1475 1476 int (*mem_enc_op)(struct kvm *kvm, void __user *argp); 1477 int (*mem_enc_reg_region)(struct kvm *kvm, struct kvm_enc_region *argp); 1478 int (*mem_enc_unreg_region)(struct kvm *kvm, struct kvm_enc_region *argp); 1479 int (*vm_copy_enc_context_from)(struct kvm *kvm, unsigned int source_fd); 1480 int (*vm_move_enc_context_from)(struct kvm *kvm, unsigned int source_fd); 1481 1482 int (*get_msr_feature)(struct kvm_msr_entry *entry); 1483 1484 bool (*can_emulate_instruction)(struct kvm_vcpu *vcpu, void *insn, int insn_len); 1485 1486 bool (*apic_init_signal_blocked)(struct kvm_vcpu *vcpu); 1487 int (*enable_direct_tlbflush)(struct kvm_vcpu *vcpu); 1488 1489 void (*migrate_timers)(struct kvm_vcpu *vcpu); 1490 void (*msr_filter_changed)(struct kvm_vcpu *vcpu); 1491 int (*complete_emulated_msr)(struct kvm_vcpu *vcpu, int err); 1492 1493 void (*vcpu_deliver_sipi_vector)(struct kvm_vcpu *vcpu, u8 vector); 1494 }; 1495 1496 struct kvm_x86_nested_ops { 1497 int (*check_events)(struct kvm_vcpu *vcpu); 1498 bool (*hv_timer_pending)(struct kvm_vcpu *vcpu); 1499 void (*triple_fault)(struct kvm_vcpu *vcpu); 1500 int (*get_state)(struct kvm_vcpu *vcpu, 1501 struct kvm_nested_state __user *user_kvm_nested_state, 1502 unsigned user_data_size); 1503 int (*set_state)(struct kvm_vcpu *vcpu, 1504 struct kvm_nested_state __user *user_kvm_nested_state, 1505 struct kvm_nested_state *kvm_state); 1506 bool (*get_nested_state_pages)(struct kvm_vcpu *vcpu); 1507 int (*write_log_dirty)(struct kvm_vcpu *vcpu, gpa_t l2_gpa); 1508 1509 int (*enable_evmcs)(struct kvm_vcpu *vcpu, 1510 uint16_t *vmcs_version); 1511 uint16_t (*get_evmcs_version)(struct kvm_vcpu *vcpu); 1512 }; 1513 1514 struct kvm_x86_init_ops { 1515 int (*cpu_has_kvm_support)(void); 1516 int (*disabled_by_bios)(void); 1517 int (*check_processor_compatibility)(void); 1518 int (*hardware_setup)(void); 1519 1520 struct kvm_x86_ops *runtime_ops; 1521 }; 1522 1523 struct kvm_arch_async_pf { 1524 u32 token; 1525 gfn_t gfn; 1526 unsigned long cr3; 1527 bool direct_map; 1528 }; 1529 1530 extern u32 __read_mostly kvm_nr_uret_msrs; 1531 extern u64 __read_mostly host_efer; 1532 extern bool __read_mostly allow_smaller_maxphyaddr; 1533 extern bool __read_mostly enable_apicv; 1534 extern struct kvm_x86_ops kvm_x86_ops; 1535 1536 #define KVM_X86_OP(func) \ 1537 DECLARE_STATIC_CALL(kvm_x86_##func, *(((struct kvm_x86_ops *)0)->func)); 1538 #define KVM_X86_OP_NULL KVM_X86_OP 1539 #include <asm/kvm-x86-ops.h> 1540 1541 static inline void kvm_ops_static_call_update(void) 1542 { 1543 #define KVM_X86_OP(func) \ 1544 static_call_update(kvm_x86_##func, kvm_x86_ops.func); 1545 #define KVM_X86_OP_NULL KVM_X86_OP 1546 #include <asm/kvm-x86-ops.h> 1547 } 1548 1549 #define __KVM_HAVE_ARCH_VM_ALLOC 1550 static inline struct kvm *kvm_arch_alloc_vm(void) 1551 { 1552 return __vmalloc(kvm_x86_ops.vm_size, GFP_KERNEL_ACCOUNT | __GFP_ZERO); 1553 } 1554 1555 #define __KVM_HAVE_ARCH_VM_FREE 1556 void kvm_arch_free_vm(struct kvm *kvm); 1557 1558 #define __KVM_HAVE_ARCH_FLUSH_REMOTE_TLB 1559 static inline int kvm_arch_flush_remote_tlb(struct kvm *kvm) 1560 { 1561 if (kvm_x86_ops.tlb_remote_flush && 1562 !static_call(kvm_x86_tlb_remote_flush)(kvm)) 1563 return 0; 1564 else 1565 return -ENOTSUPP; 1566 } 1567 1568 int kvm_mmu_module_init(void); 1569 void kvm_mmu_module_exit(void); 1570 1571 void kvm_mmu_destroy(struct kvm_vcpu *vcpu); 1572 int kvm_mmu_create(struct kvm_vcpu *vcpu); 1573 void kvm_mmu_init_vm(struct kvm *kvm); 1574 void kvm_mmu_uninit_vm(struct kvm *kvm); 1575 1576 void kvm_mmu_after_set_cpuid(struct kvm_vcpu *vcpu); 1577 void kvm_mmu_reset_context(struct kvm_vcpu *vcpu); 1578 void kvm_mmu_slot_remove_write_access(struct kvm *kvm, 1579 const struct kvm_memory_slot *memslot, 1580 int start_level); 1581 void kvm_mmu_zap_collapsible_sptes(struct kvm *kvm, 1582 const struct kvm_memory_slot *memslot); 1583 void kvm_mmu_slot_leaf_clear_dirty(struct kvm *kvm, 1584 const struct kvm_memory_slot *memslot); 1585 void kvm_mmu_zap_all(struct kvm *kvm); 1586 void kvm_mmu_invalidate_mmio_sptes(struct kvm *kvm, u64 gen); 1587 unsigned long kvm_mmu_calculate_default_mmu_pages(struct kvm *kvm); 1588 void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned long kvm_nr_mmu_pages); 1589 1590 int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3); 1591 1592 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa, 1593 const void *val, int bytes); 1594 1595 struct kvm_irq_mask_notifier { 1596 void (*func)(struct kvm_irq_mask_notifier *kimn, bool masked); 1597 int irq; 1598 struct hlist_node link; 1599 }; 1600 1601 void kvm_register_irq_mask_notifier(struct kvm *kvm, int irq, 1602 struct kvm_irq_mask_notifier *kimn); 1603 void kvm_unregister_irq_mask_notifier(struct kvm *kvm, int irq, 1604 struct kvm_irq_mask_notifier *kimn); 1605 void kvm_fire_mask_notifiers(struct kvm *kvm, unsigned irqchip, unsigned pin, 1606 bool mask); 1607 1608 extern bool tdp_enabled; 1609 1610 u64 vcpu_tsc_khz(struct kvm_vcpu *vcpu); 1611 1612 /* control of guest tsc rate supported? */ 1613 extern bool kvm_has_tsc_control; 1614 /* maximum supported tsc_khz for guests */ 1615 extern u32 kvm_max_guest_tsc_khz; 1616 /* number of bits of the fractional part of the TSC scaling ratio */ 1617 extern u8 kvm_tsc_scaling_ratio_frac_bits; 1618 /* maximum allowed value of TSC scaling ratio */ 1619 extern u64 kvm_max_tsc_scaling_ratio; 1620 /* 1ull << kvm_tsc_scaling_ratio_frac_bits */ 1621 extern u64 kvm_default_tsc_scaling_ratio; 1622 /* bus lock detection supported? */ 1623 extern bool kvm_has_bus_lock_exit; 1624 1625 extern u64 kvm_mce_cap_supported; 1626 1627 /* 1628 * EMULTYPE_NO_DECODE - Set when re-emulating an instruction (after completing 1629 * userspace I/O) to indicate that the emulation context 1630 * should be reused as is, i.e. skip initialization of 1631 * emulation context, instruction fetch and decode. 1632 * 1633 * EMULTYPE_TRAP_UD - Set when emulating an intercepted #UD from hardware. 1634 * Indicates that only select instructions (tagged with 1635 * EmulateOnUD) should be emulated (to minimize the emulator 1636 * attack surface). See also EMULTYPE_TRAP_UD_FORCED. 1637 * 1638 * EMULTYPE_SKIP - Set when emulating solely to skip an instruction, i.e. to 1639 * decode the instruction length. For use *only* by 1640 * kvm_x86_ops.skip_emulated_instruction() implementations. 1641 * 1642 * EMULTYPE_ALLOW_RETRY_PF - Set when the emulator should resume the guest to 1643 * retry native execution under certain conditions, 1644 * Can only be set in conjunction with EMULTYPE_PF. 1645 * 1646 * EMULTYPE_TRAP_UD_FORCED - Set when emulating an intercepted #UD that was 1647 * triggered by KVM's magic "force emulation" prefix, 1648 * which is opt in via module param (off by default). 1649 * Bypasses EmulateOnUD restriction despite emulating 1650 * due to an intercepted #UD (see EMULTYPE_TRAP_UD). 1651 * Used to test the full emulator from userspace. 1652 * 1653 * EMULTYPE_VMWARE_GP - Set when emulating an intercepted #GP for VMware 1654 * backdoor emulation, which is opt in via module param. 1655 * VMware backdoor emulation handles select instructions 1656 * and reinjects the #GP for all other cases. 1657 * 1658 * EMULTYPE_PF - Set when emulating MMIO by way of an intercepted #PF, in which 1659 * case the CR2/GPA value pass on the stack is valid. 1660 */ 1661 #define EMULTYPE_NO_DECODE (1 << 0) 1662 #define EMULTYPE_TRAP_UD (1 << 1) 1663 #define EMULTYPE_SKIP (1 << 2) 1664 #define EMULTYPE_ALLOW_RETRY_PF (1 << 3) 1665 #define EMULTYPE_TRAP_UD_FORCED (1 << 4) 1666 #define EMULTYPE_VMWARE_GP (1 << 5) 1667 #define EMULTYPE_PF (1 << 6) 1668 1669 int kvm_emulate_instruction(struct kvm_vcpu *vcpu, int emulation_type); 1670 int kvm_emulate_instruction_from_buffer(struct kvm_vcpu *vcpu, 1671 void *insn, int insn_len); 1672 void __kvm_prepare_emulation_failure_exit(struct kvm_vcpu *vcpu, 1673 u64 *data, u8 ndata); 1674 void kvm_prepare_emulation_failure_exit(struct kvm_vcpu *vcpu); 1675 1676 void kvm_enable_efer_bits(u64); 1677 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer); 1678 int __kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data, bool host_initiated); 1679 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data); 1680 int kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data); 1681 int kvm_emulate_rdmsr(struct kvm_vcpu *vcpu); 1682 int kvm_emulate_wrmsr(struct kvm_vcpu *vcpu); 1683 int kvm_emulate_as_nop(struct kvm_vcpu *vcpu); 1684 int kvm_emulate_invd(struct kvm_vcpu *vcpu); 1685 int kvm_emulate_mwait(struct kvm_vcpu *vcpu); 1686 int kvm_handle_invalid_op(struct kvm_vcpu *vcpu); 1687 int kvm_emulate_monitor(struct kvm_vcpu *vcpu); 1688 1689 int kvm_fast_pio(struct kvm_vcpu *vcpu, int size, unsigned short port, int in); 1690 int kvm_emulate_cpuid(struct kvm_vcpu *vcpu); 1691 int kvm_emulate_halt(struct kvm_vcpu *vcpu); 1692 int kvm_vcpu_halt(struct kvm_vcpu *vcpu); 1693 int kvm_emulate_ap_reset_hold(struct kvm_vcpu *vcpu); 1694 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu); 1695 1696 void kvm_get_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg); 1697 int kvm_load_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector, int seg); 1698 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector); 1699 1700 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index, 1701 int reason, bool has_error_code, u32 error_code); 1702 1703 void kvm_post_set_cr0(struct kvm_vcpu *vcpu, unsigned long old_cr0, unsigned long cr0); 1704 void kvm_post_set_cr4(struct kvm_vcpu *vcpu, unsigned long old_cr4, unsigned long cr4); 1705 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0); 1706 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3); 1707 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4); 1708 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8); 1709 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val); 1710 void kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val); 1711 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu); 1712 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw); 1713 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l); 1714 int kvm_emulate_xsetbv(struct kvm_vcpu *vcpu); 1715 1716 int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr); 1717 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr); 1718 1719 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu); 1720 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags); 1721 int kvm_emulate_rdpmc(struct kvm_vcpu *vcpu); 1722 1723 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr); 1724 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code); 1725 void kvm_queue_exception_p(struct kvm_vcpu *vcpu, unsigned nr, unsigned long payload); 1726 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr); 1727 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code); 1728 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault); 1729 bool kvm_inject_emulated_page_fault(struct kvm_vcpu *vcpu, 1730 struct x86_exception *fault); 1731 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl); 1732 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr); 1733 1734 static inline int __kvm_irq_line_state(unsigned long *irq_state, 1735 int irq_source_id, int level) 1736 { 1737 /* Logical OR for level trig interrupt */ 1738 if (level) 1739 __set_bit(irq_source_id, irq_state); 1740 else 1741 __clear_bit(irq_source_id, irq_state); 1742 1743 return !!(*irq_state); 1744 } 1745 1746 #define KVM_MMU_ROOT_CURRENT BIT(0) 1747 #define KVM_MMU_ROOT_PREVIOUS(i) BIT(1+i) 1748 #define KVM_MMU_ROOTS_ALL (~0UL) 1749 1750 int kvm_pic_set_irq(struct kvm_pic *pic, int irq, int irq_source_id, int level); 1751 void kvm_pic_clear_all(struct kvm_pic *pic, int irq_source_id); 1752 1753 void kvm_inject_nmi(struct kvm_vcpu *vcpu); 1754 1755 void kvm_update_dr7(struct kvm_vcpu *vcpu); 1756 1757 int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn); 1758 void __kvm_mmu_free_some_pages(struct kvm_vcpu *vcpu); 1759 void kvm_mmu_free_roots(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, 1760 ulong roots_to_free); 1761 void kvm_mmu_free_guest_mode_roots(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu); 1762 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access, 1763 struct x86_exception *exception); 1764 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva, 1765 struct x86_exception *exception); 1766 gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva, 1767 struct x86_exception *exception); 1768 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva, 1769 struct x86_exception *exception); 1770 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva, 1771 struct x86_exception *exception); 1772 1773 bool kvm_apicv_activated(struct kvm *kvm); 1774 void kvm_vcpu_update_apicv(struct kvm_vcpu *vcpu); 1775 void kvm_request_apicv_update(struct kvm *kvm, bool activate, 1776 unsigned long bit); 1777 1778 void __kvm_request_apicv_update(struct kvm *kvm, bool activate, 1779 unsigned long bit); 1780 1781 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu); 1782 1783 int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, u64 error_code, 1784 void *insn, int insn_len); 1785 void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva); 1786 void kvm_mmu_invalidate_gva(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, 1787 gva_t gva, hpa_t root_hpa); 1788 void kvm_mmu_invpcid_gva(struct kvm_vcpu *vcpu, gva_t gva, unsigned long pcid); 1789 void kvm_mmu_new_pgd(struct kvm_vcpu *vcpu, gpa_t new_pgd); 1790 1791 void kvm_configure_mmu(bool enable_tdp, int tdp_forced_root_level, 1792 int tdp_max_root_level, int tdp_huge_page_level); 1793 1794 static inline u16 kvm_read_ldt(void) 1795 { 1796 u16 ldt; 1797 asm("sldt %0" : "=g"(ldt)); 1798 return ldt; 1799 } 1800 1801 static inline void kvm_load_ldt(u16 sel) 1802 { 1803 asm("lldt %0" : : "rm"(sel)); 1804 } 1805 1806 #ifdef CONFIG_X86_64 1807 static inline unsigned long read_msr(unsigned long msr) 1808 { 1809 u64 value; 1810 1811 rdmsrl(msr, value); 1812 return value; 1813 } 1814 #endif 1815 1816 static inline void kvm_inject_gp(struct kvm_vcpu *vcpu, u32 error_code) 1817 { 1818 kvm_queue_exception_e(vcpu, GP_VECTOR, error_code); 1819 } 1820 1821 #define TSS_IOPB_BASE_OFFSET 0x66 1822 #define TSS_BASE_SIZE 0x68 1823 #define TSS_IOPB_SIZE (65536 / 8) 1824 #define TSS_REDIRECTION_SIZE (256 / 8) 1825 #define RMODE_TSS_SIZE \ 1826 (TSS_BASE_SIZE + TSS_REDIRECTION_SIZE + TSS_IOPB_SIZE + 1) 1827 1828 enum { 1829 TASK_SWITCH_CALL = 0, 1830 TASK_SWITCH_IRET = 1, 1831 TASK_SWITCH_JMP = 2, 1832 TASK_SWITCH_GATE = 3, 1833 }; 1834 1835 #define HF_GIF_MASK (1 << 0) 1836 #define HF_NMI_MASK (1 << 3) 1837 #define HF_IRET_MASK (1 << 4) 1838 #define HF_GUEST_MASK (1 << 5) /* VCPU is in guest-mode */ 1839 #define HF_SMM_MASK (1 << 6) 1840 #define HF_SMM_INSIDE_NMI_MASK (1 << 7) 1841 1842 #define __KVM_VCPU_MULTIPLE_ADDRESS_SPACE 1843 #define KVM_ADDRESS_SPACE_NUM 2 1844 1845 #define kvm_arch_vcpu_memslots_id(vcpu) ((vcpu)->arch.hflags & HF_SMM_MASK ? 1 : 0) 1846 #define kvm_memslots_for_spte_role(kvm, role) __kvm_memslots(kvm, (role).smm) 1847 1848 #define KVM_ARCH_WANT_MMU_NOTIFIER 1849 1850 int kvm_cpu_has_injectable_intr(struct kvm_vcpu *v); 1851 int kvm_cpu_has_interrupt(struct kvm_vcpu *vcpu); 1852 int kvm_cpu_has_extint(struct kvm_vcpu *v); 1853 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu); 1854 int kvm_cpu_get_interrupt(struct kvm_vcpu *v); 1855 void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event); 1856 void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu); 1857 1858 int kvm_pv_send_ipi(struct kvm *kvm, unsigned long ipi_bitmap_low, 1859 unsigned long ipi_bitmap_high, u32 min, 1860 unsigned long icr, int op_64_bit); 1861 1862 int kvm_add_user_return_msr(u32 msr); 1863 int kvm_find_user_return_msr(u32 msr); 1864 int kvm_set_user_return_msr(unsigned index, u64 val, u64 mask); 1865 1866 static inline bool kvm_is_supported_user_return_msr(u32 msr) 1867 { 1868 return kvm_find_user_return_msr(msr) >= 0; 1869 } 1870 1871 u64 kvm_scale_tsc(struct kvm_vcpu *vcpu, u64 tsc, u64 ratio); 1872 u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc); 1873 u64 kvm_calc_nested_tsc_offset(u64 l1_offset, u64 l2_offset, u64 l2_multiplier); 1874 u64 kvm_calc_nested_tsc_multiplier(u64 l1_multiplier, u64 l2_multiplier); 1875 1876 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu); 1877 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip); 1878 1879 void kvm_make_scan_ioapic_request(struct kvm *kvm); 1880 void kvm_make_scan_ioapic_request_mask(struct kvm *kvm, 1881 unsigned long *vcpu_bitmap); 1882 1883 bool kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu, 1884 struct kvm_async_pf *work); 1885 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu, 1886 struct kvm_async_pf *work); 1887 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, 1888 struct kvm_async_pf *work); 1889 void kvm_arch_async_page_present_queued(struct kvm_vcpu *vcpu); 1890 bool kvm_arch_can_dequeue_async_page_present(struct kvm_vcpu *vcpu); 1891 extern bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn); 1892 1893 int kvm_skip_emulated_instruction(struct kvm_vcpu *vcpu); 1894 int kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err); 1895 void __kvm_request_immediate_exit(struct kvm_vcpu *vcpu); 1896 1897 int kvm_is_in_guest(void); 1898 1899 void __user *__x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, 1900 u32 size); 1901 bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu); 1902 bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu); 1903 1904 bool kvm_intr_is_single_vcpu(struct kvm *kvm, struct kvm_lapic_irq *irq, 1905 struct kvm_vcpu **dest_vcpu); 1906 1907 void kvm_set_msi_irq(struct kvm *kvm, struct kvm_kernel_irq_routing_entry *e, 1908 struct kvm_lapic_irq *irq); 1909 1910 static inline bool kvm_irq_is_postable(struct kvm_lapic_irq *irq) 1911 { 1912 /* We can only post Fixed and LowPrio IRQs */ 1913 return (irq->delivery_mode == APIC_DM_FIXED || 1914 irq->delivery_mode == APIC_DM_LOWEST); 1915 } 1916 1917 static inline void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu) 1918 { 1919 static_call_cond(kvm_x86_vcpu_blocking)(vcpu); 1920 } 1921 1922 static inline void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu) 1923 { 1924 static_call_cond(kvm_x86_vcpu_unblocking)(vcpu); 1925 } 1926 1927 static inline void kvm_arch_vcpu_block_finish(struct kvm_vcpu *vcpu) {} 1928 1929 static inline int kvm_cpu_get_apicid(int mps_cpu) 1930 { 1931 #ifdef CONFIG_X86_LOCAL_APIC 1932 return default_cpu_present_to_apicid(mps_cpu); 1933 #else 1934 WARN_ON_ONCE(1); 1935 return BAD_APICID; 1936 #endif 1937 } 1938 1939 #define put_smstate(type, buf, offset, val) \ 1940 *(type *)((buf) + (offset) - 0x7e00) = val 1941 1942 #define GET_SMSTATE(type, buf, offset) \ 1943 (*(type *)((buf) + (offset) - 0x7e00)) 1944 1945 int kvm_cpu_dirty_log_size(void); 1946 1947 int memslot_rmap_alloc(struct kvm_memory_slot *slot, unsigned long npages); 1948 1949 #define KVM_CLOCK_VALID_FLAGS \ 1950 (KVM_CLOCK_TSC_STABLE | KVM_CLOCK_REALTIME | KVM_CLOCK_HOST_TSC) 1951 1952 #endif /* _ASM_X86_KVM_HOST_H */ 1953