xref: /openbmc/linux/arch/x86/include/asm/kvm_host.h (revision e65e175b07bef5974045cc42238de99057669ca7)
1 /* SPDX-License-Identifier: GPL-2.0-only */
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  *
5  * This header defines architecture specific interfaces, x86 version
6  */
7 
8 #ifndef _ASM_X86_KVM_HOST_H
9 #define _ASM_X86_KVM_HOST_H
10 
11 #include <linux/types.h>
12 #include <linux/mm.h>
13 #include <linux/mmu_notifier.h>
14 #include <linux/tracepoint.h>
15 #include <linux/cpumask.h>
16 #include <linux/irq_work.h>
17 #include <linux/irq.h>
18 #include <linux/workqueue.h>
19 
20 #include <linux/kvm.h>
21 #include <linux/kvm_para.h>
22 #include <linux/kvm_types.h>
23 #include <linux/perf_event.h>
24 #include <linux/pvclock_gtod.h>
25 #include <linux/clocksource.h>
26 #include <linux/irqbypass.h>
27 #include <linux/hyperv.h>
28 #include <linux/kfifo.h>
29 
30 #include <asm/apic.h>
31 #include <asm/pvclock-abi.h>
32 #include <asm/desc.h>
33 #include <asm/mtrr.h>
34 #include <asm/msr-index.h>
35 #include <asm/asm.h>
36 #include <asm/kvm_page_track.h>
37 #include <asm/kvm_vcpu_regs.h>
38 #include <asm/hyperv-tlfs.h>
39 
40 #define __KVM_HAVE_ARCH_VCPU_DEBUGFS
41 
42 #define KVM_MAX_VCPUS 1024
43 
44 /*
45  * In x86, the VCPU ID corresponds to the APIC ID, and APIC IDs
46  * might be larger than the actual number of VCPUs because the
47  * APIC ID encodes CPU topology information.
48  *
49  * In the worst case, we'll need less than one extra bit for the
50  * Core ID, and less than one extra bit for the Package (Die) ID,
51  * so ratio of 4 should be enough.
52  */
53 #define KVM_VCPU_ID_RATIO 4
54 #define KVM_MAX_VCPU_IDS (KVM_MAX_VCPUS * KVM_VCPU_ID_RATIO)
55 
56 /* memory slots that are not exposed to userspace */
57 #define KVM_INTERNAL_MEM_SLOTS 3
58 
59 #define KVM_HALT_POLL_NS_DEFAULT 200000
60 
61 #define KVM_IRQCHIP_NUM_PINS  KVM_IOAPIC_NUM_PINS
62 
63 #define KVM_DIRTY_LOG_MANUAL_CAPS   (KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE | \
64 					KVM_DIRTY_LOG_INITIALLY_SET)
65 
66 #define KVM_BUS_LOCK_DETECTION_VALID_MODE	(KVM_BUS_LOCK_DETECTION_OFF | \
67 						 KVM_BUS_LOCK_DETECTION_EXIT)
68 
69 #define KVM_X86_NOTIFY_VMEXIT_VALID_BITS	(KVM_X86_NOTIFY_VMEXIT_ENABLED | \
70 						 KVM_X86_NOTIFY_VMEXIT_USER)
71 
72 /* x86-specific vcpu->requests bit members */
73 #define KVM_REQ_MIGRATE_TIMER		KVM_ARCH_REQ(0)
74 #define KVM_REQ_REPORT_TPR_ACCESS	KVM_ARCH_REQ(1)
75 #define KVM_REQ_TRIPLE_FAULT		KVM_ARCH_REQ(2)
76 #define KVM_REQ_MMU_SYNC		KVM_ARCH_REQ(3)
77 #define KVM_REQ_CLOCK_UPDATE		KVM_ARCH_REQ(4)
78 #define KVM_REQ_LOAD_MMU_PGD		KVM_ARCH_REQ(5)
79 #define KVM_REQ_EVENT			KVM_ARCH_REQ(6)
80 #define KVM_REQ_APF_HALT		KVM_ARCH_REQ(7)
81 #define KVM_REQ_STEAL_UPDATE		KVM_ARCH_REQ(8)
82 #define KVM_REQ_NMI			KVM_ARCH_REQ(9)
83 #define KVM_REQ_PMU			KVM_ARCH_REQ(10)
84 #define KVM_REQ_PMI			KVM_ARCH_REQ(11)
85 #ifdef CONFIG_KVM_SMM
86 #define KVM_REQ_SMI			KVM_ARCH_REQ(12)
87 #endif
88 #define KVM_REQ_MASTERCLOCK_UPDATE	KVM_ARCH_REQ(13)
89 #define KVM_REQ_MCLOCK_INPROGRESS \
90 	KVM_ARCH_REQ_FLAGS(14, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
91 #define KVM_REQ_SCAN_IOAPIC \
92 	KVM_ARCH_REQ_FLAGS(15, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
93 #define KVM_REQ_GLOBAL_CLOCK_UPDATE	KVM_ARCH_REQ(16)
94 #define KVM_REQ_APIC_PAGE_RELOAD \
95 	KVM_ARCH_REQ_FLAGS(17, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
96 #define KVM_REQ_HV_CRASH		KVM_ARCH_REQ(18)
97 #define KVM_REQ_IOAPIC_EOI_EXIT		KVM_ARCH_REQ(19)
98 #define KVM_REQ_HV_RESET		KVM_ARCH_REQ(20)
99 #define KVM_REQ_HV_EXIT			KVM_ARCH_REQ(21)
100 #define KVM_REQ_HV_STIMER		KVM_ARCH_REQ(22)
101 #define KVM_REQ_LOAD_EOI_EXITMAP	KVM_ARCH_REQ(23)
102 #define KVM_REQ_GET_NESTED_STATE_PAGES	KVM_ARCH_REQ(24)
103 #define KVM_REQ_APICV_UPDATE \
104 	KVM_ARCH_REQ_FLAGS(25, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
105 #define KVM_REQ_TLB_FLUSH_CURRENT	KVM_ARCH_REQ(26)
106 #define KVM_REQ_TLB_FLUSH_GUEST \
107 	KVM_ARCH_REQ_FLAGS(27, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
108 #define KVM_REQ_APF_READY		KVM_ARCH_REQ(28)
109 #define KVM_REQ_MSR_FILTER_CHANGED	KVM_ARCH_REQ(29)
110 #define KVM_REQ_UPDATE_CPU_DIRTY_LOGGING \
111 	KVM_ARCH_REQ_FLAGS(30, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
112 #define KVM_REQ_MMU_FREE_OBSOLETE_ROOTS \
113 	KVM_ARCH_REQ_FLAGS(31, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
114 #define KVM_REQ_HV_TLB_FLUSH \
115 	KVM_ARCH_REQ_FLAGS(32, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
116 
117 #define CR0_RESERVED_BITS                                               \
118 	(~(unsigned long)(X86_CR0_PE | X86_CR0_MP | X86_CR0_EM | X86_CR0_TS \
119 			  | X86_CR0_ET | X86_CR0_NE | X86_CR0_WP | X86_CR0_AM \
120 			  | X86_CR0_NW | X86_CR0_CD | X86_CR0_PG))
121 
122 #define CR4_RESERVED_BITS                                               \
123 	(~(unsigned long)(X86_CR4_VME | X86_CR4_PVI | X86_CR4_TSD | X86_CR4_DE\
124 			  | X86_CR4_PSE | X86_CR4_PAE | X86_CR4_MCE     \
125 			  | X86_CR4_PGE | X86_CR4_PCE | X86_CR4_OSFXSR | X86_CR4_PCIDE \
126 			  | X86_CR4_OSXSAVE | X86_CR4_SMEP | X86_CR4_FSGSBASE \
127 			  | X86_CR4_OSXMMEXCPT | X86_CR4_LA57 | X86_CR4_VMXE \
128 			  | X86_CR4_SMAP | X86_CR4_PKE | X86_CR4_UMIP))
129 
130 #define CR8_RESERVED_BITS (~(unsigned long)X86_CR8_TPR)
131 
132 
133 
134 #define INVALID_PAGE (~(hpa_t)0)
135 #define VALID_PAGE(x) ((x) != INVALID_PAGE)
136 
137 #define INVALID_GPA (~(gpa_t)0)
138 
139 /* KVM Hugepage definitions for x86 */
140 #define KVM_MAX_HUGEPAGE_LEVEL	PG_LEVEL_1G
141 #define KVM_NR_PAGE_SIZES	(KVM_MAX_HUGEPAGE_LEVEL - PG_LEVEL_4K + 1)
142 #define KVM_HPAGE_GFN_SHIFT(x)	(((x) - 1) * 9)
143 #define KVM_HPAGE_SHIFT(x)	(PAGE_SHIFT + KVM_HPAGE_GFN_SHIFT(x))
144 #define KVM_HPAGE_SIZE(x)	(1UL << KVM_HPAGE_SHIFT(x))
145 #define KVM_HPAGE_MASK(x)	(~(KVM_HPAGE_SIZE(x) - 1))
146 #define KVM_PAGES_PER_HPAGE(x)	(KVM_HPAGE_SIZE(x) / PAGE_SIZE)
147 
148 #define KVM_MEMSLOT_PAGES_TO_MMU_PAGES_RATIO 50
149 #define KVM_MIN_ALLOC_MMU_PAGES 64UL
150 #define KVM_MMU_HASH_SHIFT 12
151 #define KVM_NUM_MMU_PAGES (1 << KVM_MMU_HASH_SHIFT)
152 #define KVM_MIN_FREE_MMU_PAGES 5
153 #define KVM_REFILL_PAGES 25
154 #define KVM_MAX_CPUID_ENTRIES 256
155 #define KVM_NR_FIXED_MTRR_REGION 88
156 #define KVM_NR_VAR_MTRR 8
157 
158 #define ASYNC_PF_PER_VCPU 64
159 
160 enum kvm_reg {
161 	VCPU_REGS_RAX = __VCPU_REGS_RAX,
162 	VCPU_REGS_RCX = __VCPU_REGS_RCX,
163 	VCPU_REGS_RDX = __VCPU_REGS_RDX,
164 	VCPU_REGS_RBX = __VCPU_REGS_RBX,
165 	VCPU_REGS_RSP = __VCPU_REGS_RSP,
166 	VCPU_REGS_RBP = __VCPU_REGS_RBP,
167 	VCPU_REGS_RSI = __VCPU_REGS_RSI,
168 	VCPU_REGS_RDI = __VCPU_REGS_RDI,
169 #ifdef CONFIG_X86_64
170 	VCPU_REGS_R8  = __VCPU_REGS_R8,
171 	VCPU_REGS_R9  = __VCPU_REGS_R9,
172 	VCPU_REGS_R10 = __VCPU_REGS_R10,
173 	VCPU_REGS_R11 = __VCPU_REGS_R11,
174 	VCPU_REGS_R12 = __VCPU_REGS_R12,
175 	VCPU_REGS_R13 = __VCPU_REGS_R13,
176 	VCPU_REGS_R14 = __VCPU_REGS_R14,
177 	VCPU_REGS_R15 = __VCPU_REGS_R15,
178 #endif
179 	VCPU_REGS_RIP,
180 	NR_VCPU_REGS,
181 
182 	VCPU_EXREG_PDPTR = NR_VCPU_REGS,
183 	VCPU_EXREG_CR0,
184 	VCPU_EXREG_CR3,
185 	VCPU_EXREG_CR4,
186 	VCPU_EXREG_RFLAGS,
187 	VCPU_EXREG_SEGMENTS,
188 	VCPU_EXREG_EXIT_INFO_1,
189 	VCPU_EXREG_EXIT_INFO_2,
190 };
191 
192 enum {
193 	VCPU_SREG_ES,
194 	VCPU_SREG_CS,
195 	VCPU_SREG_SS,
196 	VCPU_SREG_DS,
197 	VCPU_SREG_FS,
198 	VCPU_SREG_GS,
199 	VCPU_SREG_TR,
200 	VCPU_SREG_LDTR,
201 };
202 
203 enum exit_fastpath_completion {
204 	EXIT_FASTPATH_NONE,
205 	EXIT_FASTPATH_REENTER_GUEST,
206 	EXIT_FASTPATH_EXIT_HANDLED,
207 };
208 typedef enum exit_fastpath_completion fastpath_t;
209 
210 struct x86_emulate_ctxt;
211 struct x86_exception;
212 union kvm_smram;
213 enum x86_intercept;
214 enum x86_intercept_stage;
215 
216 #define KVM_NR_DB_REGS	4
217 
218 #define DR6_BUS_LOCK   (1 << 11)
219 #define DR6_BD		(1 << 13)
220 #define DR6_BS		(1 << 14)
221 #define DR6_BT		(1 << 15)
222 #define DR6_RTM		(1 << 16)
223 /*
224  * DR6_ACTIVE_LOW combines fixed-1 and active-low bits.
225  * We can regard all the bits in DR6_FIXED_1 as active_low bits;
226  * they will never be 0 for now, but when they are defined
227  * in the future it will require no code change.
228  *
229  * DR6_ACTIVE_LOW is also used as the init/reset value for DR6.
230  */
231 #define DR6_ACTIVE_LOW	0xffff0ff0
232 #define DR6_VOLATILE	0x0001e80f
233 #define DR6_FIXED_1	(DR6_ACTIVE_LOW & ~DR6_VOLATILE)
234 
235 #define DR7_BP_EN_MASK	0x000000ff
236 #define DR7_GE		(1 << 9)
237 #define DR7_GD		(1 << 13)
238 #define DR7_FIXED_1	0x00000400
239 #define DR7_VOLATILE	0xffff2bff
240 
241 #define KVM_GUESTDBG_VALID_MASK \
242 	(KVM_GUESTDBG_ENABLE | \
243 	KVM_GUESTDBG_SINGLESTEP | \
244 	KVM_GUESTDBG_USE_HW_BP | \
245 	KVM_GUESTDBG_USE_SW_BP | \
246 	KVM_GUESTDBG_INJECT_BP | \
247 	KVM_GUESTDBG_INJECT_DB | \
248 	KVM_GUESTDBG_BLOCKIRQ)
249 
250 
251 #define PFERR_PRESENT_BIT 0
252 #define PFERR_WRITE_BIT 1
253 #define PFERR_USER_BIT 2
254 #define PFERR_RSVD_BIT 3
255 #define PFERR_FETCH_BIT 4
256 #define PFERR_PK_BIT 5
257 #define PFERR_SGX_BIT 15
258 #define PFERR_GUEST_FINAL_BIT 32
259 #define PFERR_GUEST_PAGE_BIT 33
260 #define PFERR_IMPLICIT_ACCESS_BIT 48
261 
262 #define PFERR_PRESENT_MASK	BIT(PFERR_PRESENT_BIT)
263 #define PFERR_WRITE_MASK	BIT(PFERR_WRITE_BIT)
264 #define PFERR_USER_MASK		BIT(PFERR_USER_BIT)
265 #define PFERR_RSVD_MASK		BIT(PFERR_RSVD_BIT)
266 #define PFERR_FETCH_MASK	BIT(PFERR_FETCH_BIT)
267 #define PFERR_PK_MASK		BIT(PFERR_PK_BIT)
268 #define PFERR_SGX_MASK		BIT(PFERR_SGX_BIT)
269 #define PFERR_GUEST_FINAL_MASK	BIT_ULL(PFERR_GUEST_FINAL_BIT)
270 #define PFERR_GUEST_PAGE_MASK	BIT_ULL(PFERR_GUEST_PAGE_BIT)
271 #define PFERR_IMPLICIT_ACCESS	BIT_ULL(PFERR_IMPLICIT_ACCESS_BIT)
272 
273 #define PFERR_NESTED_GUEST_PAGE (PFERR_GUEST_PAGE_MASK |	\
274 				 PFERR_WRITE_MASK |		\
275 				 PFERR_PRESENT_MASK)
276 
277 /* apic attention bits */
278 #define KVM_APIC_CHECK_VAPIC	0
279 /*
280  * The following bit is set with PV-EOI, unset on EOI.
281  * We detect PV-EOI changes by guest by comparing
282  * this bit with PV-EOI in guest memory.
283  * See the implementation in apic_update_pv_eoi.
284  */
285 #define KVM_APIC_PV_EOI_PENDING	1
286 
287 struct kvm_kernel_irq_routing_entry;
288 
289 /*
290  * kvm_mmu_page_role tracks the properties of a shadow page (where shadow page
291  * also includes TDP pages) to determine whether or not a page can be used in
292  * the given MMU context.  This is a subset of the overall kvm_cpu_role to
293  * minimize the size of kvm_memory_slot.arch.gfn_track, i.e. allows allocating
294  * 2 bytes per gfn instead of 4 bytes per gfn.
295  *
296  * Upper-level shadow pages having gptes are tracked for write-protection via
297  * gfn_track.  As above, gfn_track is a 16 bit counter, so KVM must not create
298  * more than 2^16-1 upper-level shadow pages at a single gfn, otherwise
299  * gfn_track will overflow and explosions will ensure.
300  *
301  * A unique shadow page (SP) for a gfn is created if and only if an existing SP
302  * cannot be reused.  The ability to reuse a SP is tracked by its role, which
303  * incorporates various mode bits and properties of the SP.  Roughly speaking,
304  * the number of unique SPs that can theoretically be created is 2^n, where n
305  * is the number of bits that are used to compute the role.
306  *
307  * But, even though there are 19 bits in the mask below, not all combinations
308  * of modes and flags are possible:
309  *
310  *   - invalid shadow pages are not accounted, so the bits are effectively 18
311  *
312  *   - quadrant will only be used if has_4_byte_gpte=1 (non-PAE paging);
313  *     execonly and ad_disabled are only used for nested EPT which has
314  *     has_4_byte_gpte=0.  Therefore, 2 bits are always unused.
315  *
316  *   - the 4 bits of level are effectively limited to the values 2/3/4/5,
317  *     as 4k SPs are not tracked (allowed to go unsync).  In addition non-PAE
318  *     paging has exactly one upper level, making level completely redundant
319  *     when has_4_byte_gpte=1.
320  *
321  *   - on top of this, smep_andnot_wp and smap_andnot_wp are only set if
322  *     cr0_wp=0, therefore these three bits only give rise to 5 possibilities.
323  *
324  * Therefore, the maximum number of possible upper-level shadow pages for a
325  * single gfn is a bit less than 2^13.
326  */
327 union kvm_mmu_page_role {
328 	u32 word;
329 	struct {
330 		unsigned level:4;
331 		unsigned has_4_byte_gpte:1;
332 		unsigned quadrant:2;
333 		unsigned direct:1;
334 		unsigned access:3;
335 		unsigned invalid:1;
336 		unsigned efer_nx:1;
337 		unsigned cr0_wp:1;
338 		unsigned smep_andnot_wp:1;
339 		unsigned smap_andnot_wp:1;
340 		unsigned ad_disabled:1;
341 		unsigned guest_mode:1;
342 		unsigned passthrough:1;
343 		unsigned :5;
344 
345 		/*
346 		 * This is left at the top of the word so that
347 		 * kvm_memslots_for_spte_role can extract it with a
348 		 * simple shift.  While there is room, give it a whole
349 		 * byte so it is also faster to load it from memory.
350 		 */
351 		unsigned smm:8;
352 	};
353 };
354 
355 /*
356  * kvm_mmu_extended_role complements kvm_mmu_page_role, tracking properties
357  * relevant to the current MMU configuration.   When loading CR0, CR4, or EFER,
358  * including on nested transitions, if nothing in the full role changes then
359  * MMU re-configuration can be skipped. @valid bit is set on first usage so we
360  * don't treat all-zero structure as valid data.
361  *
362  * The properties that are tracked in the extended role but not the page role
363  * are for things that either (a) do not affect the validity of the shadow page
364  * or (b) are indirectly reflected in the shadow page's role.  For example,
365  * CR4.PKE only affects permission checks for software walks of the guest page
366  * tables (because KVM doesn't support Protection Keys with shadow paging), and
367  * CR0.PG, CR4.PAE, and CR4.PSE are indirectly reflected in role.level.
368  *
369  * Note, SMEP and SMAP are not redundant with sm*p_andnot_wp in the page role.
370  * If CR0.WP=1, KVM can reuse shadow pages for the guest regardless of SMEP and
371  * SMAP, but the MMU's permission checks for software walks need to be SMEP and
372  * SMAP aware regardless of CR0.WP.
373  */
374 union kvm_mmu_extended_role {
375 	u32 word;
376 	struct {
377 		unsigned int valid:1;
378 		unsigned int execonly:1;
379 		unsigned int cr4_pse:1;
380 		unsigned int cr4_pke:1;
381 		unsigned int cr4_smap:1;
382 		unsigned int cr4_smep:1;
383 		unsigned int cr4_la57:1;
384 		unsigned int efer_lma:1;
385 	};
386 };
387 
388 union kvm_cpu_role {
389 	u64 as_u64;
390 	struct {
391 		union kvm_mmu_page_role base;
392 		union kvm_mmu_extended_role ext;
393 	};
394 };
395 
396 struct kvm_rmap_head {
397 	unsigned long val;
398 };
399 
400 struct kvm_pio_request {
401 	unsigned long linear_rip;
402 	unsigned long count;
403 	int in;
404 	int port;
405 	int size;
406 };
407 
408 #define PT64_ROOT_MAX_LEVEL 5
409 
410 struct rsvd_bits_validate {
411 	u64 rsvd_bits_mask[2][PT64_ROOT_MAX_LEVEL];
412 	u64 bad_mt_xwr;
413 };
414 
415 struct kvm_mmu_root_info {
416 	gpa_t pgd;
417 	hpa_t hpa;
418 };
419 
420 #define KVM_MMU_ROOT_INFO_INVALID \
421 	((struct kvm_mmu_root_info) { .pgd = INVALID_PAGE, .hpa = INVALID_PAGE })
422 
423 #define KVM_MMU_NUM_PREV_ROOTS 3
424 
425 #define KVM_HAVE_MMU_RWLOCK
426 
427 struct kvm_mmu_page;
428 struct kvm_page_fault;
429 
430 /*
431  * x86 supports 4 paging modes (5-level 64-bit, 4-level 64-bit, 3-level 32-bit,
432  * and 2-level 32-bit).  The kvm_mmu structure abstracts the details of the
433  * current mmu mode.
434  */
435 struct kvm_mmu {
436 	unsigned long (*get_guest_pgd)(struct kvm_vcpu *vcpu);
437 	u64 (*get_pdptr)(struct kvm_vcpu *vcpu, int index);
438 	int (*page_fault)(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault);
439 	void (*inject_page_fault)(struct kvm_vcpu *vcpu,
440 				  struct x86_exception *fault);
441 	gpa_t (*gva_to_gpa)(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
442 			    gpa_t gva_or_gpa, u64 access,
443 			    struct x86_exception *exception);
444 	int (*sync_page)(struct kvm_vcpu *vcpu,
445 			 struct kvm_mmu_page *sp);
446 	void (*invlpg)(struct kvm_vcpu *vcpu, gva_t gva, hpa_t root_hpa);
447 	struct kvm_mmu_root_info root;
448 	union kvm_cpu_role cpu_role;
449 	union kvm_mmu_page_role root_role;
450 
451 	/*
452 	* The pkru_mask indicates if protection key checks are needed.  It
453 	* consists of 16 domains indexed by page fault error code bits [4:1],
454 	* with PFEC.RSVD replaced by ACC_USER_MASK from the page tables.
455 	* Each domain has 2 bits which are ANDed with AD and WD from PKRU.
456 	*/
457 	u32 pkru_mask;
458 
459 	struct kvm_mmu_root_info prev_roots[KVM_MMU_NUM_PREV_ROOTS];
460 
461 	/*
462 	 * Bitmap; bit set = permission fault
463 	 * Byte index: page fault error code [4:1]
464 	 * Bit index: pte permissions in ACC_* format
465 	 */
466 	u8 permissions[16];
467 
468 	u64 *pae_root;
469 	u64 *pml4_root;
470 	u64 *pml5_root;
471 
472 	/*
473 	 * check zero bits on shadow page table entries, these
474 	 * bits include not only hardware reserved bits but also
475 	 * the bits spte never used.
476 	 */
477 	struct rsvd_bits_validate shadow_zero_check;
478 
479 	struct rsvd_bits_validate guest_rsvd_check;
480 
481 	u64 pdptrs[4]; /* pae */
482 };
483 
484 struct kvm_tlb_range {
485 	u64 start_gfn;
486 	u64 pages;
487 };
488 
489 enum pmc_type {
490 	KVM_PMC_GP = 0,
491 	KVM_PMC_FIXED,
492 };
493 
494 struct kvm_pmc {
495 	enum pmc_type type;
496 	u8 idx;
497 	bool is_paused;
498 	bool intr;
499 	u64 counter;
500 	u64 prev_counter;
501 	u64 eventsel;
502 	struct perf_event *perf_event;
503 	struct kvm_vcpu *vcpu;
504 	/*
505 	 * only for creating or reusing perf_event,
506 	 * eventsel value for general purpose counters,
507 	 * ctrl value for fixed counters.
508 	 */
509 	u64 current_config;
510 };
511 
512 /* More counters may conflict with other existing Architectural MSRs */
513 #define KVM_INTEL_PMC_MAX_GENERIC	8
514 #define MSR_ARCH_PERFMON_PERFCTR_MAX	(MSR_ARCH_PERFMON_PERFCTR0 + KVM_INTEL_PMC_MAX_GENERIC - 1)
515 #define MSR_ARCH_PERFMON_EVENTSEL_MAX	(MSR_ARCH_PERFMON_EVENTSEL0 + KVM_INTEL_PMC_MAX_GENERIC - 1)
516 #define KVM_PMC_MAX_FIXED	3
517 #define KVM_AMD_PMC_MAX_GENERIC	6
518 struct kvm_pmu {
519 	unsigned nr_arch_gp_counters;
520 	unsigned nr_arch_fixed_counters;
521 	unsigned available_event_types;
522 	u64 fixed_ctr_ctrl;
523 	u64 fixed_ctr_ctrl_mask;
524 	u64 global_ctrl;
525 	u64 global_status;
526 	u64 counter_bitmask[2];
527 	u64 global_ctrl_mask;
528 	u64 global_ovf_ctrl_mask;
529 	u64 reserved_bits;
530 	u64 raw_event_mask;
531 	u8 version;
532 	struct kvm_pmc gp_counters[KVM_INTEL_PMC_MAX_GENERIC];
533 	struct kvm_pmc fixed_counters[KVM_PMC_MAX_FIXED];
534 	struct irq_work irq_work;
535 
536 	/*
537 	 * Overlay the bitmap with a 64-bit atomic so that all bits can be
538 	 * set in a single access, e.g. to reprogram all counters when the PMU
539 	 * filter changes.
540 	 */
541 	union {
542 		DECLARE_BITMAP(reprogram_pmi, X86_PMC_IDX_MAX);
543 		atomic64_t __reprogram_pmi;
544 	};
545 	DECLARE_BITMAP(all_valid_pmc_idx, X86_PMC_IDX_MAX);
546 	DECLARE_BITMAP(pmc_in_use, X86_PMC_IDX_MAX);
547 
548 	u64 ds_area;
549 	u64 pebs_enable;
550 	u64 pebs_enable_mask;
551 	u64 pebs_data_cfg;
552 	u64 pebs_data_cfg_mask;
553 
554 	/*
555 	 * If a guest counter is cross-mapped to host counter with different
556 	 * index, its PEBS capability will be temporarily disabled.
557 	 *
558 	 * The user should make sure that this mask is updated
559 	 * after disabling interrupts and before perf_guest_get_msrs();
560 	 */
561 	u64 host_cross_mapped_mask;
562 
563 	/*
564 	 * The gate to release perf_events not marked in
565 	 * pmc_in_use only once in a vcpu time slice.
566 	 */
567 	bool need_cleanup;
568 
569 	/*
570 	 * The total number of programmed perf_events and it helps to avoid
571 	 * redundant check before cleanup if guest don't use vPMU at all.
572 	 */
573 	u8 event_count;
574 };
575 
576 struct kvm_pmu_ops;
577 
578 enum {
579 	KVM_DEBUGREG_BP_ENABLED = 1,
580 	KVM_DEBUGREG_WONT_EXIT = 2,
581 };
582 
583 struct kvm_mtrr_range {
584 	u64 base;
585 	u64 mask;
586 	struct list_head node;
587 };
588 
589 struct kvm_mtrr {
590 	struct kvm_mtrr_range var_ranges[KVM_NR_VAR_MTRR];
591 	mtrr_type fixed_ranges[KVM_NR_FIXED_MTRR_REGION];
592 	u64 deftype;
593 
594 	struct list_head head;
595 };
596 
597 /* Hyper-V SynIC timer */
598 struct kvm_vcpu_hv_stimer {
599 	struct hrtimer timer;
600 	int index;
601 	union hv_stimer_config config;
602 	u64 count;
603 	u64 exp_time;
604 	struct hv_message msg;
605 	bool msg_pending;
606 };
607 
608 /* Hyper-V synthetic interrupt controller (SynIC)*/
609 struct kvm_vcpu_hv_synic {
610 	u64 version;
611 	u64 control;
612 	u64 msg_page;
613 	u64 evt_page;
614 	atomic64_t sint[HV_SYNIC_SINT_COUNT];
615 	atomic_t sint_to_gsi[HV_SYNIC_SINT_COUNT];
616 	DECLARE_BITMAP(auto_eoi_bitmap, 256);
617 	DECLARE_BITMAP(vec_bitmap, 256);
618 	bool active;
619 	bool dont_zero_synic_pages;
620 };
621 
622 /* The maximum number of entries on the TLB flush fifo. */
623 #define KVM_HV_TLB_FLUSH_FIFO_SIZE (16)
624 /*
625  * Note: the following 'magic' entry is made up by KVM to avoid putting
626  * anything besides GVA on the TLB flush fifo. It is theoretically possible
627  * to observe a request to flush 4095 PFNs starting from 0xfffffffffffff000
628  * which will look identical. KVM's action to 'flush everything' instead of
629  * flushing these particular addresses is, however, fully legitimate as
630  * flushing more than requested is always OK.
631  */
632 #define KVM_HV_TLB_FLUSHALL_ENTRY  ((u64)-1)
633 
634 enum hv_tlb_flush_fifos {
635 	HV_L1_TLB_FLUSH_FIFO,
636 	HV_L2_TLB_FLUSH_FIFO,
637 	HV_NR_TLB_FLUSH_FIFOS,
638 };
639 
640 struct kvm_vcpu_hv_tlb_flush_fifo {
641 	spinlock_t write_lock;
642 	DECLARE_KFIFO(entries, u64, KVM_HV_TLB_FLUSH_FIFO_SIZE);
643 };
644 
645 /* Hyper-V per vcpu emulation context */
646 struct kvm_vcpu_hv {
647 	struct kvm_vcpu *vcpu;
648 	u32 vp_index;
649 	u64 hv_vapic;
650 	s64 runtime_offset;
651 	struct kvm_vcpu_hv_synic synic;
652 	struct kvm_hyperv_exit exit;
653 	struct kvm_vcpu_hv_stimer stimer[HV_SYNIC_STIMER_COUNT];
654 	DECLARE_BITMAP(stimer_pending_bitmap, HV_SYNIC_STIMER_COUNT);
655 	bool enforce_cpuid;
656 	struct {
657 		u32 features_eax; /* HYPERV_CPUID_FEATURES.EAX */
658 		u32 features_ebx; /* HYPERV_CPUID_FEATURES.EBX */
659 		u32 features_edx; /* HYPERV_CPUID_FEATURES.EDX */
660 		u32 enlightenments_eax; /* HYPERV_CPUID_ENLIGHTMENT_INFO.EAX */
661 		u32 enlightenments_ebx; /* HYPERV_CPUID_ENLIGHTMENT_INFO.EBX */
662 		u32 syndbg_cap_eax; /* HYPERV_CPUID_SYNDBG_PLATFORM_CAPABILITIES.EAX */
663 		u32 nested_eax; /* HYPERV_CPUID_NESTED_FEATURES.EAX */
664 		u32 nested_ebx; /* HYPERV_CPUID_NESTED_FEATURES.EBX */
665 	} cpuid_cache;
666 
667 	struct kvm_vcpu_hv_tlb_flush_fifo tlb_flush_fifo[HV_NR_TLB_FLUSH_FIFOS];
668 
669 	/* Preallocated buffer for handling hypercalls passing sparse vCPU set */
670 	u64 sparse_banks[HV_MAX_SPARSE_VCPU_BANKS];
671 
672 	struct hv_vp_assist_page vp_assist_page;
673 
674 	struct {
675 		u64 pa_page_gpa;
676 		u64 vm_id;
677 		u32 vp_id;
678 	} nested;
679 };
680 
681 /* Xen HVM per vcpu emulation context */
682 struct kvm_vcpu_xen {
683 	u64 hypercall_rip;
684 	u32 current_runstate;
685 	u8 upcall_vector;
686 	struct gfn_to_pfn_cache vcpu_info_cache;
687 	struct gfn_to_pfn_cache vcpu_time_info_cache;
688 	struct gfn_to_pfn_cache runstate_cache;
689 	struct gfn_to_pfn_cache runstate2_cache;
690 	u64 last_steal;
691 	u64 runstate_entry_time;
692 	u64 runstate_times[4];
693 	unsigned long evtchn_pending_sel;
694 	u32 vcpu_id; /* The Xen / ACPI vCPU ID */
695 	u32 timer_virq;
696 	u64 timer_expires; /* In guest epoch */
697 	atomic_t timer_pending;
698 	struct hrtimer timer;
699 	int poll_evtchn;
700 	struct timer_list poll_timer;
701 };
702 
703 struct kvm_queued_exception {
704 	bool pending;
705 	bool injected;
706 	bool has_error_code;
707 	u8 vector;
708 	u32 error_code;
709 	unsigned long payload;
710 	bool has_payload;
711 };
712 
713 struct kvm_vcpu_arch {
714 	/*
715 	 * rip and regs accesses must go through
716 	 * kvm_{register,rip}_{read,write} functions.
717 	 */
718 	unsigned long regs[NR_VCPU_REGS];
719 	u32 regs_avail;
720 	u32 regs_dirty;
721 
722 	unsigned long cr0;
723 	unsigned long cr0_guest_owned_bits;
724 	unsigned long cr2;
725 	unsigned long cr3;
726 	unsigned long cr4;
727 	unsigned long cr4_guest_owned_bits;
728 	unsigned long cr4_guest_rsvd_bits;
729 	unsigned long cr8;
730 	u32 host_pkru;
731 	u32 pkru;
732 	u32 hflags;
733 	u64 efer;
734 	u64 apic_base;
735 	struct kvm_lapic *apic;    /* kernel irqchip context */
736 	bool load_eoi_exitmap_pending;
737 	DECLARE_BITMAP(ioapic_handled_vectors, 256);
738 	unsigned long apic_attention;
739 	int32_t apic_arb_prio;
740 	int mp_state;
741 	u64 ia32_misc_enable_msr;
742 	u64 smbase;
743 	u64 smi_count;
744 	bool at_instruction_boundary;
745 	bool tpr_access_reporting;
746 	bool xsaves_enabled;
747 	bool xfd_no_write_intercept;
748 	u64 ia32_xss;
749 	u64 microcode_version;
750 	u64 arch_capabilities;
751 	u64 perf_capabilities;
752 
753 	/*
754 	 * Paging state of the vcpu
755 	 *
756 	 * If the vcpu runs in guest mode with two level paging this still saves
757 	 * the paging mode of the l1 guest. This context is always used to
758 	 * handle faults.
759 	 */
760 	struct kvm_mmu *mmu;
761 
762 	/* Non-nested MMU for L1 */
763 	struct kvm_mmu root_mmu;
764 
765 	/* L1 MMU when running nested */
766 	struct kvm_mmu guest_mmu;
767 
768 	/*
769 	 * Paging state of an L2 guest (used for nested npt)
770 	 *
771 	 * This context will save all necessary information to walk page tables
772 	 * of an L2 guest. This context is only initialized for page table
773 	 * walking and not for faulting since we never handle l2 page faults on
774 	 * the host.
775 	 */
776 	struct kvm_mmu nested_mmu;
777 
778 	/*
779 	 * Pointer to the mmu context currently used for
780 	 * gva_to_gpa translations.
781 	 */
782 	struct kvm_mmu *walk_mmu;
783 
784 	struct kvm_mmu_memory_cache mmu_pte_list_desc_cache;
785 	struct kvm_mmu_memory_cache mmu_shadow_page_cache;
786 	struct kvm_mmu_memory_cache mmu_shadowed_info_cache;
787 	struct kvm_mmu_memory_cache mmu_page_header_cache;
788 
789 	/*
790 	 * QEMU userspace and the guest each have their own FPU state.
791 	 * In vcpu_run, we switch between the user and guest FPU contexts.
792 	 * While running a VCPU, the VCPU thread will have the guest FPU
793 	 * context.
794 	 *
795 	 * Note that while the PKRU state lives inside the fpu registers,
796 	 * it is switched out separately at VMENTER and VMEXIT time. The
797 	 * "guest_fpstate" state here contains the guest FPU context, with the
798 	 * host PRKU bits.
799 	 */
800 	struct fpu_guest guest_fpu;
801 
802 	u64 xcr0;
803 	u64 guest_supported_xcr0;
804 
805 	struct kvm_pio_request pio;
806 	void *pio_data;
807 	void *sev_pio_data;
808 	unsigned sev_pio_count;
809 
810 	u8 event_exit_inst_len;
811 
812 	bool exception_from_userspace;
813 
814 	/* Exceptions to be injected to the guest. */
815 	struct kvm_queued_exception exception;
816 	/* Exception VM-Exits to be synthesized to L1. */
817 	struct kvm_queued_exception exception_vmexit;
818 
819 	struct kvm_queued_interrupt {
820 		bool injected;
821 		bool soft;
822 		u8 nr;
823 	} interrupt;
824 
825 	int halt_request; /* real mode on Intel only */
826 
827 	int cpuid_nent;
828 	struct kvm_cpuid_entry2 *cpuid_entries;
829 	u32 kvm_cpuid_base;
830 
831 	u64 reserved_gpa_bits;
832 	int maxphyaddr;
833 
834 	/* emulate context */
835 
836 	struct x86_emulate_ctxt *emulate_ctxt;
837 	bool emulate_regs_need_sync_to_vcpu;
838 	bool emulate_regs_need_sync_from_vcpu;
839 	int (*complete_userspace_io)(struct kvm_vcpu *vcpu);
840 
841 	gpa_t time;
842 	struct pvclock_vcpu_time_info hv_clock;
843 	unsigned int hw_tsc_khz;
844 	struct gfn_to_pfn_cache pv_time;
845 	/* set guest stopped flag in pvclock flags field */
846 	bool pvclock_set_guest_stopped_request;
847 
848 	struct {
849 		u8 preempted;
850 		u64 msr_val;
851 		u64 last_steal;
852 		struct gfn_to_hva_cache cache;
853 	} st;
854 
855 	u64 l1_tsc_offset;
856 	u64 tsc_offset; /* current tsc offset */
857 	u64 last_guest_tsc;
858 	u64 last_host_tsc;
859 	u64 tsc_offset_adjustment;
860 	u64 this_tsc_nsec;
861 	u64 this_tsc_write;
862 	u64 this_tsc_generation;
863 	bool tsc_catchup;
864 	bool tsc_always_catchup;
865 	s8 virtual_tsc_shift;
866 	u32 virtual_tsc_mult;
867 	u32 virtual_tsc_khz;
868 	s64 ia32_tsc_adjust_msr;
869 	u64 msr_ia32_power_ctl;
870 	u64 l1_tsc_scaling_ratio;
871 	u64 tsc_scaling_ratio; /* current scaling ratio */
872 
873 	atomic_t nmi_queued;  /* unprocessed asynchronous NMIs */
874 	unsigned nmi_pending; /* NMI queued after currently running handler */
875 	bool nmi_injected;    /* Trying to inject an NMI this entry */
876 	bool smi_pending;    /* SMI queued after currently running handler */
877 	u8 handling_intr_from_guest;
878 
879 	struct kvm_mtrr mtrr_state;
880 	u64 pat;
881 
882 	unsigned switch_db_regs;
883 	unsigned long db[KVM_NR_DB_REGS];
884 	unsigned long dr6;
885 	unsigned long dr7;
886 	unsigned long eff_db[KVM_NR_DB_REGS];
887 	unsigned long guest_debug_dr7;
888 	u64 msr_platform_info;
889 	u64 msr_misc_features_enables;
890 
891 	u64 mcg_cap;
892 	u64 mcg_status;
893 	u64 mcg_ctl;
894 	u64 mcg_ext_ctl;
895 	u64 *mce_banks;
896 	u64 *mci_ctl2_banks;
897 
898 	/* Cache MMIO info */
899 	u64 mmio_gva;
900 	unsigned mmio_access;
901 	gfn_t mmio_gfn;
902 	u64 mmio_gen;
903 
904 	struct kvm_pmu pmu;
905 
906 	/* used for guest single stepping over the given code position */
907 	unsigned long singlestep_rip;
908 
909 	bool hyperv_enabled;
910 	struct kvm_vcpu_hv *hyperv;
911 	struct kvm_vcpu_xen xen;
912 
913 	cpumask_var_t wbinvd_dirty_mask;
914 
915 	unsigned long last_retry_eip;
916 	unsigned long last_retry_addr;
917 
918 	struct {
919 		bool halted;
920 		gfn_t gfns[ASYNC_PF_PER_VCPU];
921 		struct gfn_to_hva_cache data;
922 		u64 msr_en_val; /* MSR_KVM_ASYNC_PF_EN */
923 		u64 msr_int_val; /* MSR_KVM_ASYNC_PF_INT */
924 		u16 vec;
925 		u32 id;
926 		bool send_user_only;
927 		u32 host_apf_flags;
928 		bool delivery_as_pf_vmexit;
929 		bool pageready_pending;
930 	} apf;
931 
932 	/* OSVW MSRs (AMD only) */
933 	struct {
934 		u64 length;
935 		u64 status;
936 	} osvw;
937 
938 	struct {
939 		u64 msr_val;
940 		struct gfn_to_hva_cache data;
941 	} pv_eoi;
942 
943 	u64 msr_kvm_poll_control;
944 
945 	/*
946 	 * Indicates the guest is trying to write a gfn that contains one or
947 	 * more of the PTEs used to translate the write itself, i.e. the access
948 	 * is changing its own translation in the guest page tables.  KVM exits
949 	 * to userspace if emulation of the faulting instruction fails and this
950 	 * flag is set, as KVM cannot make forward progress.
951 	 *
952 	 * If emulation fails for a write to guest page tables, KVM unprotects
953 	 * (zaps) the shadow page for the target gfn and resumes the guest to
954 	 * retry the non-emulatable instruction (on hardware).  Unprotecting the
955 	 * gfn doesn't allow forward progress for a self-changing access because
956 	 * doing so also zaps the translation for the gfn, i.e. retrying the
957 	 * instruction will hit a !PRESENT fault, which results in a new shadow
958 	 * page and sends KVM back to square one.
959 	 */
960 	bool write_fault_to_shadow_pgtable;
961 
962 	/* set at EPT violation at this point */
963 	unsigned long exit_qualification;
964 
965 	/* pv related host specific info */
966 	struct {
967 		bool pv_unhalted;
968 	} pv;
969 
970 	int pending_ioapic_eoi;
971 	int pending_external_vector;
972 
973 	/* be preempted when it's in kernel-mode(cpl=0) */
974 	bool preempted_in_kernel;
975 
976 	/* Flush the L1 Data cache for L1TF mitigation on VMENTER */
977 	bool l1tf_flush_l1d;
978 
979 	/* Host CPU on which VM-entry was most recently attempted */
980 	int last_vmentry_cpu;
981 
982 	/* AMD MSRC001_0015 Hardware Configuration */
983 	u64 msr_hwcr;
984 
985 	/* pv related cpuid info */
986 	struct {
987 		/*
988 		 * value of the eax register in the KVM_CPUID_FEATURES CPUID
989 		 * leaf.
990 		 */
991 		u32 features;
992 
993 		/*
994 		 * indicates whether pv emulation should be disabled if features
995 		 * are not present in the guest's cpuid
996 		 */
997 		bool enforce;
998 	} pv_cpuid;
999 
1000 	/* Protected Guests */
1001 	bool guest_state_protected;
1002 
1003 	/*
1004 	 * Set when PDPTS were loaded directly by the userspace without
1005 	 * reading the guest memory
1006 	 */
1007 	bool pdptrs_from_userspace;
1008 
1009 #if IS_ENABLED(CONFIG_HYPERV)
1010 	hpa_t hv_root_tdp;
1011 #endif
1012 };
1013 
1014 struct kvm_lpage_info {
1015 	int disallow_lpage;
1016 };
1017 
1018 struct kvm_arch_memory_slot {
1019 	struct kvm_rmap_head *rmap[KVM_NR_PAGE_SIZES];
1020 	struct kvm_lpage_info *lpage_info[KVM_NR_PAGE_SIZES - 1];
1021 	unsigned short *gfn_track[KVM_PAGE_TRACK_MAX];
1022 };
1023 
1024 /*
1025  * We use as the mode the number of bits allocated in the LDR for the
1026  * logical processor ID.  It happens that these are all powers of two.
1027  * This makes it is very easy to detect cases where the APICs are
1028  * configured for multiple modes; in that case, we cannot use the map and
1029  * hence cannot use kvm_irq_delivery_to_apic_fast either.
1030  */
1031 #define KVM_APIC_MODE_XAPIC_CLUSTER          4
1032 #define KVM_APIC_MODE_XAPIC_FLAT             8
1033 #define KVM_APIC_MODE_X2APIC                16
1034 
1035 struct kvm_apic_map {
1036 	struct rcu_head rcu;
1037 	u8 mode;
1038 	u32 max_apic_id;
1039 	union {
1040 		struct kvm_lapic *xapic_flat_map[8];
1041 		struct kvm_lapic *xapic_cluster_map[16][4];
1042 	};
1043 	struct kvm_lapic *phys_map[];
1044 };
1045 
1046 /* Hyper-V synthetic debugger (SynDbg)*/
1047 struct kvm_hv_syndbg {
1048 	struct {
1049 		u64 control;
1050 		u64 status;
1051 		u64 send_page;
1052 		u64 recv_page;
1053 		u64 pending_page;
1054 	} control;
1055 	u64 options;
1056 };
1057 
1058 /* Current state of Hyper-V TSC page clocksource */
1059 enum hv_tsc_page_status {
1060 	/* TSC page was not set up or disabled */
1061 	HV_TSC_PAGE_UNSET = 0,
1062 	/* TSC page MSR was written by the guest, update pending */
1063 	HV_TSC_PAGE_GUEST_CHANGED,
1064 	/* TSC page update was triggered from the host side */
1065 	HV_TSC_PAGE_HOST_CHANGED,
1066 	/* TSC page was properly set up and is currently active  */
1067 	HV_TSC_PAGE_SET,
1068 	/* TSC page was set up with an inaccessible GPA */
1069 	HV_TSC_PAGE_BROKEN,
1070 };
1071 
1072 /* Hyper-V emulation context */
1073 struct kvm_hv {
1074 	struct mutex hv_lock;
1075 	u64 hv_guest_os_id;
1076 	u64 hv_hypercall;
1077 	u64 hv_tsc_page;
1078 	enum hv_tsc_page_status hv_tsc_page_status;
1079 
1080 	/* Hyper-v based guest crash (NT kernel bugcheck) parameters */
1081 	u64 hv_crash_param[HV_X64_MSR_CRASH_PARAMS];
1082 	u64 hv_crash_ctl;
1083 
1084 	struct ms_hyperv_tsc_page tsc_ref;
1085 
1086 	struct idr conn_to_evt;
1087 
1088 	u64 hv_reenlightenment_control;
1089 	u64 hv_tsc_emulation_control;
1090 	u64 hv_tsc_emulation_status;
1091 
1092 	/* How many vCPUs have VP index != vCPU index */
1093 	atomic_t num_mismatched_vp_indexes;
1094 
1095 	/*
1096 	 * How many SynICs use 'AutoEOI' feature
1097 	 * (protected by arch.apicv_update_lock)
1098 	 */
1099 	unsigned int synic_auto_eoi_used;
1100 
1101 	struct hv_partition_assist_pg *hv_pa_pg;
1102 	struct kvm_hv_syndbg hv_syndbg;
1103 };
1104 
1105 struct msr_bitmap_range {
1106 	u32 flags;
1107 	u32 nmsrs;
1108 	u32 base;
1109 	unsigned long *bitmap;
1110 };
1111 
1112 /* Xen emulation context */
1113 struct kvm_xen {
1114 	u32 xen_version;
1115 	bool long_mode;
1116 	bool runstate_update_flag;
1117 	u8 upcall_vector;
1118 	struct gfn_to_pfn_cache shinfo_cache;
1119 	struct idr evtchn_ports;
1120 	unsigned long poll_mask[BITS_TO_LONGS(KVM_MAX_VCPUS)];
1121 };
1122 
1123 enum kvm_irqchip_mode {
1124 	KVM_IRQCHIP_NONE,
1125 	KVM_IRQCHIP_KERNEL,       /* created with KVM_CREATE_IRQCHIP */
1126 	KVM_IRQCHIP_SPLIT,        /* created with KVM_CAP_SPLIT_IRQCHIP */
1127 };
1128 
1129 struct kvm_x86_msr_filter {
1130 	u8 count;
1131 	bool default_allow:1;
1132 	struct msr_bitmap_range ranges[16];
1133 };
1134 
1135 enum kvm_apicv_inhibit {
1136 
1137 	/********************************************************************/
1138 	/* INHIBITs that are relevant to both Intel's APICv and AMD's AVIC. */
1139 	/********************************************************************/
1140 
1141 	/*
1142 	 * APIC acceleration is disabled by a module parameter
1143 	 * and/or not supported in hardware.
1144 	 */
1145 	APICV_INHIBIT_REASON_DISABLE,
1146 
1147 	/*
1148 	 * APIC acceleration is inhibited because AutoEOI feature is
1149 	 * being used by a HyperV guest.
1150 	 */
1151 	APICV_INHIBIT_REASON_HYPERV,
1152 
1153 	/*
1154 	 * APIC acceleration is inhibited because the userspace didn't yet
1155 	 * enable the kernel/split irqchip.
1156 	 */
1157 	APICV_INHIBIT_REASON_ABSENT,
1158 
1159 	/* APIC acceleration is inhibited because KVM_GUESTDBG_BLOCKIRQ
1160 	 * (out of band, debug measure of blocking all interrupts on this vCPU)
1161 	 * was enabled, to avoid AVIC/APICv bypassing it.
1162 	 */
1163 	APICV_INHIBIT_REASON_BLOCKIRQ,
1164 
1165 	/*
1166 	 * For simplicity, the APIC acceleration is inhibited
1167 	 * first time either APIC ID or APIC base are changed by the guest
1168 	 * from their reset values.
1169 	 */
1170 	APICV_INHIBIT_REASON_APIC_ID_MODIFIED,
1171 	APICV_INHIBIT_REASON_APIC_BASE_MODIFIED,
1172 
1173 	/******************************************************/
1174 	/* INHIBITs that are relevant only to the AMD's AVIC. */
1175 	/******************************************************/
1176 
1177 	/*
1178 	 * AVIC is inhibited on a vCPU because it runs a nested guest.
1179 	 *
1180 	 * This is needed because unlike APICv, the peers of this vCPU
1181 	 * cannot use the doorbell mechanism to signal interrupts via AVIC when
1182 	 * a vCPU runs nested.
1183 	 */
1184 	APICV_INHIBIT_REASON_NESTED,
1185 
1186 	/*
1187 	 * On SVM, the wait for the IRQ window is implemented with pending vIRQ,
1188 	 * which cannot be injected when the AVIC is enabled, thus AVIC
1189 	 * is inhibited while KVM waits for IRQ window.
1190 	 */
1191 	APICV_INHIBIT_REASON_IRQWIN,
1192 
1193 	/*
1194 	 * PIT (i8254) 're-inject' mode, relies on EOI intercept,
1195 	 * which AVIC doesn't support for edge triggered interrupts.
1196 	 */
1197 	APICV_INHIBIT_REASON_PIT_REINJ,
1198 
1199 	/*
1200 	 * AVIC is disabled because SEV doesn't support it.
1201 	 */
1202 	APICV_INHIBIT_REASON_SEV,
1203 };
1204 
1205 struct kvm_arch {
1206 	unsigned long n_used_mmu_pages;
1207 	unsigned long n_requested_mmu_pages;
1208 	unsigned long n_max_mmu_pages;
1209 	unsigned int indirect_shadow_pages;
1210 	u8 mmu_valid_gen;
1211 	struct hlist_head mmu_page_hash[KVM_NUM_MMU_PAGES];
1212 	struct list_head active_mmu_pages;
1213 	struct list_head zapped_obsolete_pages;
1214 	/*
1215 	 * A list of kvm_mmu_page structs that, if zapped, could possibly be
1216 	 * replaced by an NX huge page.  A shadow page is on this list if its
1217 	 * existence disallows an NX huge page (nx_huge_page_disallowed is set)
1218 	 * and there are no other conditions that prevent a huge page, e.g.
1219 	 * the backing host page is huge, dirtly logging is not enabled for its
1220 	 * memslot, etc...  Note, zapping shadow pages on this list doesn't
1221 	 * guarantee an NX huge page will be created in its stead, e.g. if the
1222 	 * guest attempts to execute from the region then KVM obviously can't
1223 	 * create an NX huge page (without hanging the guest).
1224 	 */
1225 	struct list_head possible_nx_huge_pages;
1226 	struct kvm_page_track_notifier_node mmu_sp_tracker;
1227 	struct kvm_page_track_notifier_head track_notifier_head;
1228 	/*
1229 	 * Protects marking pages unsync during page faults, as TDP MMU page
1230 	 * faults only take mmu_lock for read.  For simplicity, the unsync
1231 	 * pages lock is always taken when marking pages unsync regardless of
1232 	 * whether mmu_lock is held for read or write.
1233 	 */
1234 	spinlock_t mmu_unsync_pages_lock;
1235 
1236 	struct list_head assigned_dev_head;
1237 	struct iommu_domain *iommu_domain;
1238 	bool iommu_noncoherent;
1239 #define __KVM_HAVE_ARCH_NONCOHERENT_DMA
1240 	atomic_t noncoherent_dma_count;
1241 #define __KVM_HAVE_ARCH_ASSIGNED_DEVICE
1242 	atomic_t assigned_device_count;
1243 	struct kvm_pic *vpic;
1244 	struct kvm_ioapic *vioapic;
1245 	struct kvm_pit *vpit;
1246 	atomic_t vapics_in_nmi_mode;
1247 	struct mutex apic_map_lock;
1248 	struct kvm_apic_map __rcu *apic_map;
1249 	atomic_t apic_map_dirty;
1250 
1251 	/* Protects apic_access_memslot_enabled and apicv_inhibit_reasons */
1252 	struct rw_semaphore apicv_update_lock;
1253 
1254 	bool apic_access_memslot_enabled;
1255 	unsigned long apicv_inhibit_reasons;
1256 
1257 	gpa_t wall_clock;
1258 
1259 	bool mwait_in_guest;
1260 	bool hlt_in_guest;
1261 	bool pause_in_guest;
1262 	bool cstate_in_guest;
1263 
1264 	unsigned long irq_sources_bitmap;
1265 	s64 kvmclock_offset;
1266 
1267 	/*
1268 	 * This also protects nr_vcpus_matched_tsc which is read from a
1269 	 * preemption-disabled region, so it must be a raw spinlock.
1270 	 */
1271 	raw_spinlock_t tsc_write_lock;
1272 	u64 last_tsc_nsec;
1273 	u64 last_tsc_write;
1274 	u32 last_tsc_khz;
1275 	u64 last_tsc_offset;
1276 	u64 cur_tsc_nsec;
1277 	u64 cur_tsc_write;
1278 	u64 cur_tsc_offset;
1279 	u64 cur_tsc_generation;
1280 	int nr_vcpus_matched_tsc;
1281 
1282 	u32 default_tsc_khz;
1283 
1284 	seqcount_raw_spinlock_t pvclock_sc;
1285 	bool use_master_clock;
1286 	u64 master_kernel_ns;
1287 	u64 master_cycle_now;
1288 	struct delayed_work kvmclock_update_work;
1289 	struct delayed_work kvmclock_sync_work;
1290 
1291 	struct kvm_xen_hvm_config xen_hvm_config;
1292 
1293 	/* reads protected by irq_srcu, writes by irq_lock */
1294 	struct hlist_head mask_notifier_list;
1295 
1296 	struct kvm_hv hyperv;
1297 	struct kvm_xen xen;
1298 
1299 	bool backwards_tsc_observed;
1300 	bool boot_vcpu_runs_old_kvmclock;
1301 	u32 bsp_vcpu_id;
1302 
1303 	u64 disabled_quirks;
1304 	int cpu_dirty_logging_count;
1305 
1306 	enum kvm_irqchip_mode irqchip_mode;
1307 	u8 nr_reserved_ioapic_pins;
1308 
1309 	bool disabled_lapic_found;
1310 
1311 	bool x2apic_format;
1312 	bool x2apic_broadcast_quirk_disabled;
1313 
1314 	bool guest_can_read_msr_platform_info;
1315 	bool exception_payload_enabled;
1316 
1317 	bool triple_fault_event;
1318 
1319 	bool bus_lock_detection_enabled;
1320 	bool enable_pmu;
1321 
1322 	u32 notify_window;
1323 	u32 notify_vmexit_flags;
1324 	/*
1325 	 * If exit_on_emulation_error is set, and the in-kernel instruction
1326 	 * emulator fails to emulate an instruction, allow userspace
1327 	 * the opportunity to look at it.
1328 	 */
1329 	bool exit_on_emulation_error;
1330 
1331 	/* Deflect RDMSR and WRMSR to user space when they trigger a #GP */
1332 	u32 user_space_msr_mask;
1333 	struct kvm_x86_msr_filter __rcu *msr_filter;
1334 
1335 	u32 hypercall_exit_enabled;
1336 
1337 	/* Guest can access the SGX PROVISIONKEY. */
1338 	bool sgx_provisioning_allowed;
1339 
1340 	struct kvm_pmu_event_filter __rcu *pmu_event_filter;
1341 	struct task_struct *nx_huge_page_recovery_thread;
1342 
1343 #ifdef CONFIG_X86_64
1344 	/*
1345 	 * Whether the TDP MMU is enabled for this VM. This contains a
1346 	 * snapshot of the TDP MMU module parameter from when the VM was
1347 	 * created and remains unchanged for the life of the VM. If this is
1348 	 * true, TDP MMU handler functions will run for various MMU
1349 	 * operations.
1350 	 */
1351 	bool tdp_mmu_enabled;
1352 
1353 	/* The number of TDP MMU pages across all roots. */
1354 	atomic64_t tdp_mmu_pages;
1355 
1356 	/*
1357 	 * List of kvm_mmu_page structs being used as roots.
1358 	 * All kvm_mmu_page structs in the list should have
1359 	 * tdp_mmu_page set.
1360 	 *
1361 	 * For reads, this list is protected by:
1362 	 *	the MMU lock in read mode + RCU or
1363 	 *	the MMU lock in write mode
1364 	 *
1365 	 * For writes, this list is protected by:
1366 	 *	the MMU lock in read mode + the tdp_mmu_pages_lock or
1367 	 *	the MMU lock in write mode
1368 	 *
1369 	 * Roots will remain in the list until their tdp_mmu_root_count
1370 	 * drops to zero, at which point the thread that decremented the
1371 	 * count to zero should removed the root from the list and clean
1372 	 * it up, freeing the root after an RCU grace period.
1373 	 */
1374 	struct list_head tdp_mmu_roots;
1375 
1376 	/*
1377 	 * Protects accesses to the following fields when the MMU lock
1378 	 * is held in read mode:
1379 	 *  - tdp_mmu_roots (above)
1380 	 *  - the link field of kvm_mmu_page structs used by the TDP MMU
1381 	 *  - possible_nx_huge_pages;
1382 	 *  - the possible_nx_huge_page_link field of kvm_mmu_page structs used
1383 	 *    by the TDP MMU
1384 	 * It is acceptable, but not necessary, to acquire this lock when
1385 	 * the thread holds the MMU lock in write mode.
1386 	 */
1387 	spinlock_t tdp_mmu_pages_lock;
1388 	struct workqueue_struct *tdp_mmu_zap_wq;
1389 #endif /* CONFIG_X86_64 */
1390 
1391 	/*
1392 	 * If set, at least one shadow root has been allocated. This flag
1393 	 * is used as one input when determining whether certain memslot
1394 	 * related allocations are necessary.
1395 	 */
1396 	bool shadow_root_allocated;
1397 
1398 #if IS_ENABLED(CONFIG_HYPERV)
1399 	hpa_t	hv_root_tdp;
1400 	spinlock_t hv_root_tdp_lock;
1401 #endif
1402 	/*
1403 	 * VM-scope maximum vCPU ID. Used to determine the size of structures
1404 	 * that increase along with the maximum vCPU ID, in which case, using
1405 	 * the global KVM_MAX_VCPU_IDS may lead to significant memory waste.
1406 	 */
1407 	u32 max_vcpu_ids;
1408 
1409 	bool disable_nx_huge_pages;
1410 
1411 	/*
1412 	 * Memory caches used to allocate shadow pages when performing eager
1413 	 * page splitting. No need for a shadowed_info_cache since eager page
1414 	 * splitting only allocates direct shadow pages.
1415 	 *
1416 	 * Protected by kvm->slots_lock.
1417 	 */
1418 	struct kvm_mmu_memory_cache split_shadow_page_cache;
1419 	struct kvm_mmu_memory_cache split_page_header_cache;
1420 
1421 	/*
1422 	 * Memory cache used to allocate pte_list_desc structs while splitting
1423 	 * huge pages. In the worst case, to split one huge page, 512
1424 	 * pte_list_desc structs are needed to add each lower level leaf sptep
1425 	 * to the rmap plus 1 to extend the parent_ptes rmap of the lower level
1426 	 * page table.
1427 	 *
1428 	 * Protected by kvm->slots_lock.
1429 	 */
1430 #define SPLIT_DESC_CACHE_MIN_NR_OBJECTS (SPTE_ENT_PER_PAGE + 1)
1431 	struct kvm_mmu_memory_cache split_desc_cache;
1432 };
1433 
1434 struct kvm_vm_stat {
1435 	struct kvm_vm_stat_generic generic;
1436 	u64 mmu_shadow_zapped;
1437 	u64 mmu_pte_write;
1438 	u64 mmu_pde_zapped;
1439 	u64 mmu_flooded;
1440 	u64 mmu_recycled;
1441 	u64 mmu_cache_miss;
1442 	u64 mmu_unsync;
1443 	union {
1444 		struct {
1445 			atomic64_t pages_4k;
1446 			atomic64_t pages_2m;
1447 			atomic64_t pages_1g;
1448 		};
1449 		atomic64_t pages[KVM_NR_PAGE_SIZES];
1450 	};
1451 	u64 nx_lpage_splits;
1452 	u64 max_mmu_page_hash_collisions;
1453 	u64 max_mmu_rmap_size;
1454 };
1455 
1456 struct kvm_vcpu_stat {
1457 	struct kvm_vcpu_stat_generic generic;
1458 	u64 pf_taken;
1459 	u64 pf_fixed;
1460 	u64 pf_emulate;
1461 	u64 pf_spurious;
1462 	u64 pf_fast;
1463 	u64 pf_mmio_spte_created;
1464 	u64 pf_guest;
1465 	u64 tlb_flush;
1466 	u64 invlpg;
1467 
1468 	u64 exits;
1469 	u64 io_exits;
1470 	u64 mmio_exits;
1471 	u64 signal_exits;
1472 	u64 irq_window_exits;
1473 	u64 nmi_window_exits;
1474 	u64 l1d_flush;
1475 	u64 halt_exits;
1476 	u64 request_irq_exits;
1477 	u64 irq_exits;
1478 	u64 host_state_reload;
1479 	u64 fpu_reload;
1480 	u64 insn_emulation;
1481 	u64 insn_emulation_fail;
1482 	u64 hypercalls;
1483 	u64 irq_injections;
1484 	u64 nmi_injections;
1485 	u64 req_event;
1486 	u64 nested_run;
1487 	u64 directed_yield_attempted;
1488 	u64 directed_yield_successful;
1489 	u64 preemption_reported;
1490 	u64 preemption_other;
1491 	u64 guest_mode;
1492 	u64 notify_window_exits;
1493 };
1494 
1495 struct x86_instruction_info;
1496 
1497 struct msr_data {
1498 	bool host_initiated;
1499 	u32 index;
1500 	u64 data;
1501 };
1502 
1503 struct kvm_lapic_irq {
1504 	u32 vector;
1505 	u16 delivery_mode;
1506 	u16 dest_mode;
1507 	bool level;
1508 	u16 trig_mode;
1509 	u32 shorthand;
1510 	u32 dest_id;
1511 	bool msi_redir_hint;
1512 };
1513 
1514 static inline u16 kvm_lapic_irq_dest_mode(bool dest_mode_logical)
1515 {
1516 	return dest_mode_logical ? APIC_DEST_LOGICAL : APIC_DEST_PHYSICAL;
1517 }
1518 
1519 struct kvm_x86_ops {
1520 	const char *name;
1521 
1522 	int (*hardware_enable)(void);
1523 	void (*hardware_disable)(void);
1524 	void (*hardware_unsetup)(void);
1525 	bool (*has_emulated_msr)(struct kvm *kvm, u32 index);
1526 	void (*vcpu_after_set_cpuid)(struct kvm_vcpu *vcpu);
1527 
1528 	unsigned int vm_size;
1529 	int (*vm_init)(struct kvm *kvm);
1530 	void (*vm_destroy)(struct kvm *kvm);
1531 
1532 	/* Create, but do not attach this VCPU */
1533 	int (*vcpu_precreate)(struct kvm *kvm);
1534 	int (*vcpu_create)(struct kvm_vcpu *vcpu);
1535 	void (*vcpu_free)(struct kvm_vcpu *vcpu);
1536 	void (*vcpu_reset)(struct kvm_vcpu *vcpu, bool init_event);
1537 
1538 	void (*prepare_switch_to_guest)(struct kvm_vcpu *vcpu);
1539 	void (*vcpu_load)(struct kvm_vcpu *vcpu, int cpu);
1540 	void (*vcpu_put)(struct kvm_vcpu *vcpu);
1541 
1542 	void (*update_exception_bitmap)(struct kvm_vcpu *vcpu);
1543 	int (*get_msr)(struct kvm_vcpu *vcpu, struct msr_data *msr);
1544 	int (*set_msr)(struct kvm_vcpu *vcpu, struct msr_data *msr);
1545 	u64 (*get_segment_base)(struct kvm_vcpu *vcpu, int seg);
1546 	void (*get_segment)(struct kvm_vcpu *vcpu,
1547 			    struct kvm_segment *var, int seg);
1548 	int (*get_cpl)(struct kvm_vcpu *vcpu);
1549 	void (*set_segment)(struct kvm_vcpu *vcpu,
1550 			    struct kvm_segment *var, int seg);
1551 	void (*get_cs_db_l_bits)(struct kvm_vcpu *vcpu, int *db, int *l);
1552 	void (*set_cr0)(struct kvm_vcpu *vcpu, unsigned long cr0);
1553 	void (*post_set_cr3)(struct kvm_vcpu *vcpu, unsigned long cr3);
1554 	bool (*is_valid_cr4)(struct kvm_vcpu *vcpu, unsigned long cr0);
1555 	void (*set_cr4)(struct kvm_vcpu *vcpu, unsigned long cr4);
1556 	int (*set_efer)(struct kvm_vcpu *vcpu, u64 efer);
1557 	void (*get_idt)(struct kvm_vcpu *vcpu, struct desc_ptr *dt);
1558 	void (*set_idt)(struct kvm_vcpu *vcpu, struct desc_ptr *dt);
1559 	void (*get_gdt)(struct kvm_vcpu *vcpu, struct desc_ptr *dt);
1560 	void (*set_gdt)(struct kvm_vcpu *vcpu, struct desc_ptr *dt);
1561 	void (*sync_dirty_debug_regs)(struct kvm_vcpu *vcpu);
1562 	void (*set_dr7)(struct kvm_vcpu *vcpu, unsigned long value);
1563 	void (*cache_reg)(struct kvm_vcpu *vcpu, enum kvm_reg reg);
1564 	unsigned long (*get_rflags)(struct kvm_vcpu *vcpu);
1565 	void (*set_rflags)(struct kvm_vcpu *vcpu, unsigned long rflags);
1566 	bool (*get_if_flag)(struct kvm_vcpu *vcpu);
1567 
1568 	void (*flush_tlb_all)(struct kvm_vcpu *vcpu);
1569 	void (*flush_tlb_current)(struct kvm_vcpu *vcpu);
1570 	int  (*tlb_remote_flush)(struct kvm *kvm);
1571 	int  (*tlb_remote_flush_with_range)(struct kvm *kvm,
1572 			struct kvm_tlb_range *range);
1573 
1574 	/*
1575 	 * Flush any TLB entries associated with the given GVA.
1576 	 * Does not need to flush GPA->HPA mappings.
1577 	 * Can potentially get non-canonical addresses through INVLPGs, which
1578 	 * the implementation may choose to ignore if appropriate.
1579 	 */
1580 	void (*flush_tlb_gva)(struct kvm_vcpu *vcpu, gva_t addr);
1581 
1582 	/*
1583 	 * Flush any TLB entries created by the guest.  Like tlb_flush_gva(),
1584 	 * does not need to flush GPA->HPA mappings.
1585 	 */
1586 	void (*flush_tlb_guest)(struct kvm_vcpu *vcpu);
1587 
1588 	int (*vcpu_pre_run)(struct kvm_vcpu *vcpu);
1589 	enum exit_fastpath_completion (*vcpu_run)(struct kvm_vcpu *vcpu);
1590 	int (*handle_exit)(struct kvm_vcpu *vcpu,
1591 		enum exit_fastpath_completion exit_fastpath);
1592 	int (*skip_emulated_instruction)(struct kvm_vcpu *vcpu);
1593 	void (*update_emulated_instruction)(struct kvm_vcpu *vcpu);
1594 	void (*set_interrupt_shadow)(struct kvm_vcpu *vcpu, int mask);
1595 	u32 (*get_interrupt_shadow)(struct kvm_vcpu *vcpu);
1596 	void (*patch_hypercall)(struct kvm_vcpu *vcpu,
1597 				unsigned char *hypercall_addr);
1598 	void (*inject_irq)(struct kvm_vcpu *vcpu, bool reinjected);
1599 	void (*inject_nmi)(struct kvm_vcpu *vcpu);
1600 	void (*inject_exception)(struct kvm_vcpu *vcpu);
1601 	void (*cancel_injection)(struct kvm_vcpu *vcpu);
1602 	int (*interrupt_allowed)(struct kvm_vcpu *vcpu, bool for_injection);
1603 	int (*nmi_allowed)(struct kvm_vcpu *vcpu, bool for_injection);
1604 	bool (*get_nmi_mask)(struct kvm_vcpu *vcpu);
1605 	void (*set_nmi_mask)(struct kvm_vcpu *vcpu, bool masked);
1606 	void (*enable_nmi_window)(struct kvm_vcpu *vcpu);
1607 	void (*enable_irq_window)(struct kvm_vcpu *vcpu);
1608 	void (*update_cr8_intercept)(struct kvm_vcpu *vcpu, int tpr, int irr);
1609 	bool (*check_apicv_inhibit_reasons)(enum kvm_apicv_inhibit reason);
1610 	void (*refresh_apicv_exec_ctrl)(struct kvm_vcpu *vcpu);
1611 	void (*hwapic_irr_update)(struct kvm_vcpu *vcpu, int max_irr);
1612 	void (*hwapic_isr_update)(int isr);
1613 	bool (*guest_apic_has_interrupt)(struct kvm_vcpu *vcpu);
1614 	void (*load_eoi_exitmap)(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap);
1615 	void (*set_virtual_apic_mode)(struct kvm_vcpu *vcpu);
1616 	void (*set_apic_access_page_addr)(struct kvm_vcpu *vcpu);
1617 	void (*deliver_interrupt)(struct kvm_lapic *apic, int delivery_mode,
1618 				  int trig_mode, int vector);
1619 	int (*sync_pir_to_irr)(struct kvm_vcpu *vcpu);
1620 	int (*set_tss_addr)(struct kvm *kvm, unsigned int addr);
1621 	int (*set_identity_map_addr)(struct kvm *kvm, u64 ident_addr);
1622 	u8 (*get_mt_mask)(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio);
1623 
1624 	void (*load_mmu_pgd)(struct kvm_vcpu *vcpu, hpa_t root_hpa,
1625 			     int root_level);
1626 
1627 	bool (*has_wbinvd_exit)(void);
1628 
1629 	u64 (*get_l2_tsc_offset)(struct kvm_vcpu *vcpu);
1630 	u64 (*get_l2_tsc_multiplier)(struct kvm_vcpu *vcpu);
1631 	void (*write_tsc_offset)(struct kvm_vcpu *vcpu, u64 offset);
1632 	void (*write_tsc_multiplier)(struct kvm_vcpu *vcpu, u64 multiplier);
1633 
1634 	/*
1635 	 * Retrieve somewhat arbitrary exit information.  Intended to
1636 	 * be used only from within tracepoints or error paths.
1637 	 */
1638 	void (*get_exit_info)(struct kvm_vcpu *vcpu, u32 *reason,
1639 			      u64 *info1, u64 *info2,
1640 			      u32 *exit_int_info, u32 *exit_int_info_err_code);
1641 
1642 	int (*check_intercept)(struct kvm_vcpu *vcpu,
1643 			       struct x86_instruction_info *info,
1644 			       enum x86_intercept_stage stage,
1645 			       struct x86_exception *exception);
1646 	void (*handle_exit_irqoff)(struct kvm_vcpu *vcpu);
1647 
1648 	void (*request_immediate_exit)(struct kvm_vcpu *vcpu);
1649 
1650 	void (*sched_in)(struct kvm_vcpu *kvm, int cpu);
1651 
1652 	/*
1653 	 * Size of the CPU's dirty log buffer, i.e. VMX's PML buffer.  A zero
1654 	 * value indicates CPU dirty logging is unsupported or disabled.
1655 	 */
1656 	int cpu_dirty_log_size;
1657 	void (*update_cpu_dirty_logging)(struct kvm_vcpu *vcpu);
1658 
1659 	const struct kvm_x86_nested_ops *nested_ops;
1660 
1661 	void (*vcpu_blocking)(struct kvm_vcpu *vcpu);
1662 	void (*vcpu_unblocking)(struct kvm_vcpu *vcpu);
1663 
1664 	int (*pi_update_irte)(struct kvm *kvm, unsigned int host_irq,
1665 			      uint32_t guest_irq, bool set);
1666 	void (*pi_start_assignment)(struct kvm *kvm);
1667 	void (*apicv_post_state_restore)(struct kvm_vcpu *vcpu);
1668 	bool (*dy_apicv_has_pending_interrupt)(struct kvm_vcpu *vcpu);
1669 
1670 	int (*set_hv_timer)(struct kvm_vcpu *vcpu, u64 guest_deadline_tsc,
1671 			    bool *expired);
1672 	void (*cancel_hv_timer)(struct kvm_vcpu *vcpu);
1673 
1674 	void (*setup_mce)(struct kvm_vcpu *vcpu);
1675 
1676 #ifdef CONFIG_KVM_SMM
1677 	int (*smi_allowed)(struct kvm_vcpu *vcpu, bool for_injection);
1678 	int (*enter_smm)(struct kvm_vcpu *vcpu, union kvm_smram *smram);
1679 	int (*leave_smm)(struct kvm_vcpu *vcpu, const union kvm_smram *smram);
1680 	void (*enable_smi_window)(struct kvm_vcpu *vcpu);
1681 #endif
1682 
1683 	int (*mem_enc_ioctl)(struct kvm *kvm, void __user *argp);
1684 	int (*mem_enc_register_region)(struct kvm *kvm, struct kvm_enc_region *argp);
1685 	int (*mem_enc_unregister_region)(struct kvm *kvm, struct kvm_enc_region *argp);
1686 	int (*vm_copy_enc_context_from)(struct kvm *kvm, unsigned int source_fd);
1687 	int (*vm_move_enc_context_from)(struct kvm *kvm, unsigned int source_fd);
1688 	void (*guest_memory_reclaimed)(struct kvm *kvm);
1689 
1690 	int (*get_msr_feature)(struct kvm_msr_entry *entry);
1691 
1692 	bool (*can_emulate_instruction)(struct kvm_vcpu *vcpu, int emul_type,
1693 					void *insn, int insn_len);
1694 
1695 	bool (*apic_init_signal_blocked)(struct kvm_vcpu *vcpu);
1696 	int (*enable_l2_tlb_flush)(struct kvm_vcpu *vcpu);
1697 
1698 	void (*migrate_timers)(struct kvm_vcpu *vcpu);
1699 	void (*msr_filter_changed)(struct kvm_vcpu *vcpu);
1700 	int (*complete_emulated_msr)(struct kvm_vcpu *vcpu, int err);
1701 
1702 	void (*vcpu_deliver_sipi_vector)(struct kvm_vcpu *vcpu, u8 vector);
1703 
1704 	/*
1705 	 * Returns vCPU specific APICv inhibit reasons
1706 	 */
1707 	unsigned long (*vcpu_get_apicv_inhibit_reasons)(struct kvm_vcpu *vcpu);
1708 };
1709 
1710 struct kvm_x86_nested_ops {
1711 	void (*leave_nested)(struct kvm_vcpu *vcpu);
1712 	bool (*is_exception_vmexit)(struct kvm_vcpu *vcpu, u8 vector,
1713 				    u32 error_code);
1714 	int (*check_events)(struct kvm_vcpu *vcpu);
1715 	bool (*has_events)(struct kvm_vcpu *vcpu);
1716 	void (*triple_fault)(struct kvm_vcpu *vcpu);
1717 	int (*get_state)(struct kvm_vcpu *vcpu,
1718 			 struct kvm_nested_state __user *user_kvm_nested_state,
1719 			 unsigned user_data_size);
1720 	int (*set_state)(struct kvm_vcpu *vcpu,
1721 			 struct kvm_nested_state __user *user_kvm_nested_state,
1722 			 struct kvm_nested_state *kvm_state);
1723 	bool (*get_nested_state_pages)(struct kvm_vcpu *vcpu);
1724 	int (*write_log_dirty)(struct kvm_vcpu *vcpu, gpa_t l2_gpa);
1725 
1726 	int (*enable_evmcs)(struct kvm_vcpu *vcpu,
1727 			    uint16_t *vmcs_version);
1728 	uint16_t (*get_evmcs_version)(struct kvm_vcpu *vcpu);
1729 	void (*hv_inject_synthetic_vmexit_post_tlb_flush)(struct kvm_vcpu *vcpu);
1730 };
1731 
1732 struct kvm_x86_init_ops {
1733 	int (*cpu_has_kvm_support)(void);
1734 	int (*disabled_by_bios)(void);
1735 	int (*check_processor_compatibility)(void);
1736 	int (*hardware_setup)(void);
1737 	unsigned int (*handle_intel_pt_intr)(void);
1738 
1739 	struct kvm_x86_ops *runtime_ops;
1740 	struct kvm_pmu_ops *pmu_ops;
1741 };
1742 
1743 struct kvm_arch_async_pf {
1744 	u32 token;
1745 	gfn_t gfn;
1746 	unsigned long cr3;
1747 	bool direct_map;
1748 };
1749 
1750 extern u32 __read_mostly kvm_nr_uret_msrs;
1751 extern u64 __read_mostly host_efer;
1752 extern bool __read_mostly allow_smaller_maxphyaddr;
1753 extern bool __read_mostly enable_apicv;
1754 extern struct kvm_x86_ops kvm_x86_ops;
1755 
1756 #define KVM_X86_OP(func) \
1757 	DECLARE_STATIC_CALL(kvm_x86_##func, *(((struct kvm_x86_ops *)0)->func));
1758 #define KVM_X86_OP_OPTIONAL KVM_X86_OP
1759 #define KVM_X86_OP_OPTIONAL_RET0 KVM_X86_OP
1760 #include <asm/kvm-x86-ops.h>
1761 
1762 #define __KVM_HAVE_ARCH_VM_ALLOC
1763 static inline struct kvm *kvm_arch_alloc_vm(void)
1764 {
1765 	return __vmalloc(kvm_x86_ops.vm_size, GFP_KERNEL_ACCOUNT | __GFP_ZERO);
1766 }
1767 
1768 #define __KVM_HAVE_ARCH_VM_FREE
1769 void kvm_arch_free_vm(struct kvm *kvm);
1770 
1771 #define __KVM_HAVE_ARCH_FLUSH_REMOTE_TLB
1772 static inline int kvm_arch_flush_remote_tlb(struct kvm *kvm)
1773 {
1774 	if (kvm_x86_ops.tlb_remote_flush &&
1775 	    !static_call(kvm_x86_tlb_remote_flush)(kvm))
1776 		return 0;
1777 	else
1778 		return -ENOTSUPP;
1779 }
1780 
1781 #define kvm_arch_pmi_in_guest(vcpu) \
1782 	((vcpu) && (vcpu)->arch.handling_intr_from_guest)
1783 
1784 void __init kvm_mmu_x86_module_init(void);
1785 int kvm_mmu_vendor_module_init(void);
1786 void kvm_mmu_vendor_module_exit(void);
1787 
1788 void kvm_mmu_destroy(struct kvm_vcpu *vcpu);
1789 int kvm_mmu_create(struct kvm_vcpu *vcpu);
1790 int kvm_mmu_init_vm(struct kvm *kvm);
1791 void kvm_mmu_uninit_vm(struct kvm *kvm);
1792 
1793 void kvm_mmu_after_set_cpuid(struct kvm_vcpu *vcpu);
1794 void kvm_mmu_reset_context(struct kvm_vcpu *vcpu);
1795 void kvm_mmu_slot_remove_write_access(struct kvm *kvm,
1796 				      const struct kvm_memory_slot *memslot,
1797 				      int start_level);
1798 void kvm_mmu_slot_try_split_huge_pages(struct kvm *kvm,
1799 				       const struct kvm_memory_slot *memslot,
1800 				       int target_level);
1801 void kvm_mmu_try_split_huge_pages(struct kvm *kvm,
1802 				  const struct kvm_memory_slot *memslot,
1803 				  u64 start, u64 end,
1804 				  int target_level);
1805 void kvm_mmu_zap_collapsible_sptes(struct kvm *kvm,
1806 				   const struct kvm_memory_slot *memslot);
1807 void kvm_mmu_slot_leaf_clear_dirty(struct kvm *kvm,
1808 				   const struct kvm_memory_slot *memslot);
1809 void kvm_mmu_zap_all(struct kvm *kvm);
1810 void kvm_mmu_invalidate_mmio_sptes(struct kvm *kvm, u64 gen);
1811 void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned long kvm_nr_mmu_pages);
1812 
1813 int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3);
1814 
1815 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
1816 			  const void *val, int bytes);
1817 
1818 struct kvm_irq_mask_notifier {
1819 	void (*func)(struct kvm_irq_mask_notifier *kimn, bool masked);
1820 	int irq;
1821 	struct hlist_node link;
1822 };
1823 
1824 void kvm_register_irq_mask_notifier(struct kvm *kvm, int irq,
1825 				    struct kvm_irq_mask_notifier *kimn);
1826 void kvm_unregister_irq_mask_notifier(struct kvm *kvm, int irq,
1827 				      struct kvm_irq_mask_notifier *kimn);
1828 void kvm_fire_mask_notifiers(struct kvm *kvm, unsigned irqchip, unsigned pin,
1829 			     bool mask);
1830 
1831 extern bool tdp_enabled;
1832 
1833 u64 vcpu_tsc_khz(struct kvm_vcpu *vcpu);
1834 
1835 /*
1836  * EMULTYPE_NO_DECODE - Set when re-emulating an instruction (after completing
1837  *			userspace I/O) to indicate that the emulation context
1838  *			should be reused as is, i.e. skip initialization of
1839  *			emulation context, instruction fetch and decode.
1840  *
1841  * EMULTYPE_TRAP_UD - Set when emulating an intercepted #UD from hardware.
1842  *		      Indicates that only select instructions (tagged with
1843  *		      EmulateOnUD) should be emulated (to minimize the emulator
1844  *		      attack surface).  See also EMULTYPE_TRAP_UD_FORCED.
1845  *
1846  * EMULTYPE_SKIP - Set when emulating solely to skip an instruction, i.e. to
1847  *		   decode the instruction length.  For use *only* by
1848  *		   kvm_x86_ops.skip_emulated_instruction() implementations if
1849  *		   EMULTYPE_COMPLETE_USER_EXIT is not set.
1850  *
1851  * EMULTYPE_ALLOW_RETRY_PF - Set when the emulator should resume the guest to
1852  *			     retry native execution under certain conditions,
1853  *			     Can only be set in conjunction with EMULTYPE_PF.
1854  *
1855  * EMULTYPE_TRAP_UD_FORCED - Set when emulating an intercepted #UD that was
1856  *			     triggered by KVM's magic "force emulation" prefix,
1857  *			     which is opt in via module param (off by default).
1858  *			     Bypasses EmulateOnUD restriction despite emulating
1859  *			     due to an intercepted #UD (see EMULTYPE_TRAP_UD).
1860  *			     Used to test the full emulator from userspace.
1861  *
1862  * EMULTYPE_VMWARE_GP - Set when emulating an intercepted #GP for VMware
1863  *			backdoor emulation, which is opt in via module param.
1864  *			VMware backdoor emulation handles select instructions
1865  *			and reinjects the #GP for all other cases.
1866  *
1867  * EMULTYPE_PF - Set when emulating MMIO by way of an intercepted #PF, in which
1868  *		 case the CR2/GPA value pass on the stack is valid.
1869  *
1870  * EMULTYPE_COMPLETE_USER_EXIT - Set when the emulator should update interruptibility
1871  *				 state and inject single-step #DBs after skipping
1872  *				 an instruction (after completing userspace I/O).
1873  */
1874 #define EMULTYPE_NO_DECODE	    (1 << 0)
1875 #define EMULTYPE_TRAP_UD	    (1 << 1)
1876 #define EMULTYPE_SKIP		    (1 << 2)
1877 #define EMULTYPE_ALLOW_RETRY_PF	    (1 << 3)
1878 #define EMULTYPE_TRAP_UD_FORCED	    (1 << 4)
1879 #define EMULTYPE_VMWARE_GP	    (1 << 5)
1880 #define EMULTYPE_PF		    (1 << 6)
1881 #define EMULTYPE_COMPLETE_USER_EXIT (1 << 7)
1882 
1883 int kvm_emulate_instruction(struct kvm_vcpu *vcpu, int emulation_type);
1884 int kvm_emulate_instruction_from_buffer(struct kvm_vcpu *vcpu,
1885 					void *insn, int insn_len);
1886 void __kvm_prepare_emulation_failure_exit(struct kvm_vcpu *vcpu,
1887 					  u64 *data, u8 ndata);
1888 void kvm_prepare_emulation_failure_exit(struct kvm_vcpu *vcpu);
1889 
1890 void kvm_enable_efer_bits(u64);
1891 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer);
1892 int __kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data, bool host_initiated);
1893 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data);
1894 int kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data);
1895 int kvm_emulate_rdmsr(struct kvm_vcpu *vcpu);
1896 int kvm_emulate_wrmsr(struct kvm_vcpu *vcpu);
1897 int kvm_emulate_as_nop(struct kvm_vcpu *vcpu);
1898 int kvm_emulate_invd(struct kvm_vcpu *vcpu);
1899 int kvm_emulate_mwait(struct kvm_vcpu *vcpu);
1900 int kvm_handle_invalid_op(struct kvm_vcpu *vcpu);
1901 int kvm_emulate_monitor(struct kvm_vcpu *vcpu);
1902 
1903 int kvm_fast_pio(struct kvm_vcpu *vcpu, int size, unsigned short port, int in);
1904 int kvm_emulate_cpuid(struct kvm_vcpu *vcpu);
1905 int kvm_emulate_halt(struct kvm_vcpu *vcpu);
1906 int kvm_emulate_halt_noskip(struct kvm_vcpu *vcpu);
1907 int kvm_emulate_ap_reset_hold(struct kvm_vcpu *vcpu);
1908 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu);
1909 
1910 void kvm_get_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg);
1911 void kvm_set_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg);
1912 int kvm_load_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector, int seg);
1913 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector);
1914 
1915 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
1916 		    int reason, bool has_error_code, u32 error_code);
1917 
1918 void kvm_post_set_cr0(struct kvm_vcpu *vcpu, unsigned long old_cr0, unsigned long cr0);
1919 void kvm_post_set_cr4(struct kvm_vcpu *vcpu, unsigned long old_cr4, unsigned long cr4);
1920 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0);
1921 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3);
1922 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4);
1923 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8);
1924 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val);
1925 void kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val);
1926 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu);
1927 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw);
1928 int kvm_emulate_xsetbv(struct kvm_vcpu *vcpu);
1929 
1930 int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr);
1931 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr);
1932 
1933 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu);
1934 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags);
1935 int kvm_emulate_rdpmc(struct kvm_vcpu *vcpu);
1936 
1937 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr);
1938 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code);
1939 void kvm_queue_exception_p(struct kvm_vcpu *vcpu, unsigned nr, unsigned long payload);
1940 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr);
1941 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code);
1942 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault);
1943 void kvm_inject_emulated_page_fault(struct kvm_vcpu *vcpu,
1944 				    struct x86_exception *fault);
1945 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl);
1946 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr);
1947 
1948 static inline int __kvm_irq_line_state(unsigned long *irq_state,
1949 				       int irq_source_id, int level)
1950 {
1951 	/* Logical OR for level trig interrupt */
1952 	if (level)
1953 		__set_bit(irq_source_id, irq_state);
1954 	else
1955 		__clear_bit(irq_source_id, irq_state);
1956 
1957 	return !!(*irq_state);
1958 }
1959 
1960 #define KVM_MMU_ROOT_CURRENT		BIT(0)
1961 #define KVM_MMU_ROOT_PREVIOUS(i)	BIT(1+i)
1962 #define KVM_MMU_ROOTS_ALL		(~0UL)
1963 
1964 int kvm_pic_set_irq(struct kvm_pic *pic, int irq, int irq_source_id, int level);
1965 void kvm_pic_clear_all(struct kvm_pic *pic, int irq_source_id);
1966 
1967 void kvm_inject_nmi(struct kvm_vcpu *vcpu);
1968 
1969 void kvm_update_dr7(struct kvm_vcpu *vcpu);
1970 
1971 int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn);
1972 void kvm_mmu_free_roots(struct kvm *kvm, struct kvm_mmu *mmu,
1973 			ulong roots_to_free);
1974 void kvm_mmu_free_guest_mode_roots(struct kvm *kvm, struct kvm_mmu *mmu);
1975 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
1976 			      struct x86_exception *exception);
1977 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
1978 			       struct x86_exception *exception);
1979 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
1980 				struct x86_exception *exception);
1981 
1982 bool kvm_apicv_activated(struct kvm *kvm);
1983 bool kvm_vcpu_apicv_activated(struct kvm_vcpu *vcpu);
1984 void kvm_vcpu_update_apicv(struct kvm_vcpu *vcpu);
1985 void __kvm_set_or_clear_apicv_inhibit(struct kvm *kvm,
1986 				      enum kvm_apicv_inhibit reason, bool set);
1987 void kvm_set_or_clear_apicv_inhibit(struct kvm *kvm,
1988 				    enum kvm_apicv_inhibit reason, bool set);
1989 
1990 static inline void kvm_set_apicv_inhibit(struct kvm *kvm,
1991 					 enum kvm_apicv_inhibit reason)
1992 {
1993 	kvm_set_or_clear_apicv_inhibit(kvm, reason, true);
1994 }
1995 
1996 static inline void kvm_clear_apicv_inhibit(struct kvm *kvm,
1997 					   enum kvm_apicv_inhibit reason)
1998 {
1999 	kvm_set_or_clear_apicv_inhibit(kvm, reason, false);
2000 }
2001 
2002 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu);
2003 
2004 int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, u64 error_code,
2005 		       void *insn, int insn_len);
2006 void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva);
2007 void kvm_mmu_invalidate_gva(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
2008 			    gva_t gva, hpa_t root_hpa);
2009 void kvm_mmu_invpcid_gva(struct kvm_vcpu *vcpu, gva_t gva, unsigned long pcid);
2010 void kvm_mmu_new_pgd(struct kvm_vcpu *vcpu, gpa_t new_pgd);
2011 
2012 void kvm_configure_mmu(bool enable_tdp, int tdp_forced_root_level,
2013 		       int tdp_max_root_level, int tdp_huge_page_level);
2014 
2015 static inline u16 kvm_read_ldt(void)
2016 {
2017 	u16 ldt;
2018 	asm("sldt %0" : "=g"(ldt));
2019 	return ldt;
2020 }
2021 
2022 static inline void kvm_load_ldt(u16 sel)
2023 {
2024 	asm("lldt %0" : : "rm"(sel));
2025 }
2026 
2027 #ifdef CONFIG_X86_64
2028 static inline unsigned long read_msr(unsigned long msr)
2029 {
2030 	u64 value;
2031 
2032 	rdmsrl(msr, value);
2033 	return value;
2034 }
2035 #endif
2036 
2037 static inline void kvm_inject_gp(struct kvm_vcpu *vcpu, u32 error_code)
2038 {
2039 	kvm_queue_exception_e(vcpu, GP_VECTOR, error_code);
2040 }
2041 
2042 #define TSS_IOPB_BASE_OFFSET 0x66
2043 #define TSS_BASE_SIZE 0x68
2044 #define TSS_IOPB_SIZE (65536 / 8)
2045 #define TSS_REDIRECTION_SIZE (256 / 8)
2046 #define RMODE_TSS_SIZE							\
2047 	(TSS_BASE_SIZE + TSS_REDIRECTION_SIZE + TSS_IOPB_SIZE + 1)
2048 
2049 enum {
2050 	TASK_SWITCH_CALL = 0,
2051 	TASK_SWITCH_IRET = 1,
2052 	TASK_SWITCH_JMP = 2,
2053 	TASK_SWITCH_GATE = 3,
2054 };
2055 
2056 #define HF_GIF_MASK		(1 << 0)
2057 #define HF_NMI_MASK		(1 << 3)
2058 #define HF_IRET_MASK		(1 << 4)
2059 #define HF_GUEST_MASK		(1 << 5) /* VCPU is in guest-mode */
2060 
2061 #ifdef CONFIG_KVM_SMM
2062 #define HF_SMM_MASK		(1 << 6)
2063 #define HF_SMM_INSIDE_NMI_MASK	(1 << 7)
2064 
2065 # define __KVM_VCPU_MULTIPLE_ADDRESS_SPACE
2066 # define KVM_ADDRESS_SPACE_NUM 2
2067 # define kvm_arch_vcpu_memslots_id(vcpu) ((vcpu)->arch.hflags & HF_SMM_MASK ? 1 : 0)
2068 # define kvm_memslots_for_spte_role(kvm, role) __kvm_memslots(kvm, (role).smm)
2069 #else
2070 # define kvm_memslots_for_spte_role(kvm, role) __kvm_memslots(kvm, 0)
2071 #endif
2072 
2073 #define KVM_ARCH_WANT_MMU_NOTIFIER
2074 
2075 int kvm_cpu_has_injectable_intr(struct kvm_vcpu *v);
2076 int kvm_cpu_has_interrupt(struct kvm_vcpu *vcpu);
2077 int kvm_cpu_has_extint(struct kvm_vcpu *v);
2078 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu);
2079 int kvm_cpu_get_interrupt(struct kvm_vcpu *v);
2080 void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event);
2081 
2082 int kvm_pv_send_ipi(struct kvm *kvm, unsigned long ipi_bitmap_low,
2083 		    unsigned long ipi_bitmap_high, u32 min,
2084 		    unsigned long icr, int op_64_bit);
2085 
2086 int kvm_add_user_return_msr(u32 msr);
2087 int kvm_find_user_return_msr(u32 msr);
2088 int kvm_set_user_return_msr(unsigned index, u64 val, u64 mask);
2089 
2090 static inline bool kvm_is_supported_user_return_msr(u32 msr)
2091 {
2092 	return kvm_find_user_return_msr(msr) >= 0;
2093 }
2094 
2095 u64 kvm_scale_tsc(u64 tsc, u64 ratio);
2096 u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc);
2097 u64 kvm_calc_nested_tsc_offset(u64 l1_offset, u64 l2_offset, u64 l2_multiplier);
2098 u64 kvm_calc_nested_tsc_multiplier(u64 l1_multiplier, u64 l2_multiplier);
2099 
2100 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu);
2101 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip);
2102 
2103 void kvm_make_scan_ioapic_request(struct kvm *kvm);
2104 void kvm_make_scan_ioapic_request_mask(struct kvm *kvm,
2105 				       unsigned long *vcpu_bitmap);
2106 
2107 bool kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
2108 				     struct kvm_async_pf *work);
2109 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
2110 				 struct kvm_async_pf *work);
2111 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu,
2112 			       struct kvm_async_pf *work);
2113 void kvm_arch_async_page_present_queued(struct kvm_vcpu *vcpu);
2114 bool kvm_arch_can_dequeue_async_page_present(struct kvm_vcpu *vcpu);
2115 extern bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn);
2116 
2117 int kvm_skip_emulated_instruction(struct kvm_vcpu *vcpu);
2118 int kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err);
2119 void __kvm_request_immediate_exit(struct kvm_vcpu *vcpu);
2120 
2121 void __user *__x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa,
2122 				     u32 size);
2123 bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu);
2124 bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu);
2125 
2126 bool kvm_intr_is_single_vcpu(struct kvm *kvm, struct kvm_lapic_irq *irq,
2127 			     struct kvm_vcpu **dest_vcpu);
2128 
2129 void kvm_set_msi_irq(struct kvm *kvm, struct kvm_kernel_irq_routing_entry *e,
2130 		     struct kvm_lapic_irq *irq);
2131 
2132 static inline bool kvm_irq_is_postable(struct kvm_lapic_irq *irq)
2133 {
2134 	/* We can only post Fixed and LowPrio IRQs */
2135 	return (irq->delivery_mode == APIC_DM_FIXED ||
2136 		irq->delivery_mode == APIC_DM_LOWEST);
2137 }
2138 
2139 static inline void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu)
2140 {
2141 	static_call_cond(kvm_x86_vcpu_blocking)(vcpu);
2142 }
2143 
2144 static inline void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu)
2145 {
2146 	static_call_cond(kvm_x86_vcpu_unblocking)(vcpu);
2147 }
2148 
2149 static inline int kvm_cpu_get_apicid(int mps_cpu)
2150 {
2151 #ifdef CONFIG_X86_LOCAL_APIC
2152 	return default_cpu_present_to_apicid(mps_cpu);
2153 #else
2154 	WARN_ON_ONCE(1);
2155 	return BAD_APICID;
2156 #endif
2157 }
2158 
2159 int memslot_rmap_alloc(struct kvm_memory_slot *slot, unsigned long npages);
2160 
2161 #define KVM_CLOCK_VALID_FLAGS						\
2162 	(KVM_CLOCK_TSC_STABLE | KVM_CLOCK_REALTIME | KVM_CLOCK_HOST_TSC)
2163 
2164 #define KVM_X86_VALID_QUIRKS			\
2165 	(KVM_X86_QUIRK_LINT0_REENABLED |	\
2166 	 KVM_X86_QUIRK_CD_NW_CLEARED |		\
2167 	 KVM_X86_QUIRK_LAPIC_MMIO_HOLE |	\
2168 	 KVM_X86_QUIRK_OUT_7E_INC_RIP |		\
2169 	 KVM_X86_QUIRK_MISC_ENABLE_NO_MWAIT |	\
2170 	 KVM_X86_QUIRK_FIX_HYPERCALL_INSN |	\
2171 	 KVM_X86_QUIRK_MWAIT_NEVER_UD_FAULTS)
2172 
2173 #endif /* _ASM_X86_KVM_HOST_H */
2174