1 /* SPDX-License-Identifier: GPL-2.0-only */ 2 /* 3 * Kernel-based Virtual Machine driver for Linux 4 * 5 * This header defines architecture specific interfaces, x86 version 6 */ 7 8 #ifndef _ASM_X86_KVM_HOST_H 9 #define _ASM_X86_KVM_HOST_H 10 11 #include <linux/types.h> 12 #include <linux/mm.h> 13 #include <linux/mmu_notifier.h> 14 #include <linux/tracepoint.h> 15 #include <linux/cpumask.h> 16 #include <linux/irq_work.h> 17 #include <linux/irq.h> 18 19 #include <linux/kvm.h> 20 #include <linux/kvm_para.h> 21 #include <linux/kvm_types.h> 22 #include <linux/perf_event.h> 23 #include <linux/pvclock_gtod.h> 24 #include <linux/clocksource.h> 25 #include <linux/irqbypass.h> 26 #include <linux/hyperv.h> 27 28 #include <asm/apic.h> 29 #include <asm/pvclock-abi.h> 30 #include <asm/desc.h> 31 #include <asm/mtrr.h> 32 #include <asm/msr-index.h> 33 #include <asm/asm.h> 34 #include <asm/kvm_page_track.h> 35 #include <asm/kvm_vcpu_regs.h> 36 #include <asm/hyperv-tlfs.h> 37 38 #define __KVM_HAVE_ARCH_VCPU_DEBUGFS 39 40 #define KVM_MAX_VCPUS 288 41 #define KVM_SOFT_MAX_VCPUS 240 42 #define KVM_MAX_VCPU_ID 1023 43 #define KVM_USER_MEM_SLOTS 509 44 /* memory slots that are not exposed to userspace */ 45 #define KVM_PRIVATE_MEM_SLOTS 3 46 #define KVM_MEM_SLOTS_NUM (KVM_USER_MEM_SLOTS + KVM_PRIVATE_MEM_SLOTS) 47 48 #define KVM_HALT_POLL_NS_DEFAULT 200000 49 50 #define KVM_IRQCHIP_NUM_PINS KVM_IOAPIC_NUM_PINS 51 52 /* x86-specific vcpu->requests bit members */ 53 #define KVM_REQ_MIGRATE_TIMER KVM_ARCH_REQ(0) 54 #define KVM_REQ_REPORT_TPR_ACCESS KVM_ARCH_REQ(1) 55 #define KVM_REQ_TRIPLE_FAULT KVM_ARCH_REQ(2) 56 #define KVM_REQ_MMU_SYNC KVM_ARCH_REQ(3) 57 #define KVM_REQ_CLOCK_UPDATE KVM_ARCH_REQ(4) 58 #define KVM_REQ_LOAD_CR3 KVM_ARCH_REQ(5) 59 #define KVM_REQ_EVENT KVM_ARCH_REQ(6) 60 #define KVM_REQ_APF_HALT KVM_ARCH_REQ(7) 61 #define KVM_REQ_STEAL_UPDATE KVM_ARCH_REQ(8) 62 #define KVM_REQ_NMI KVM_ARCH_REQ(9) 63 #define KVM_REQ_PMU KVM_ARCH_REQ(10) 64 #define KVM_REQ_PMI KVM_ARCH_REQ(11) 65 #define KVM_REQ_SMI KVM_ARCH_REQ(12) 66 #define KVM_REQ_MASTERCLOCK_UPDATE KVM_ARCH_REQ(13) 67 #define KVM_REQ_MCLOCK_INPROGRESS \ 68 KVM_ARCH_REQ_FLAGS(14, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP) 69 #define KVM_REQ_SCAN_IOAPIC \ 70 KVM_ARCH_REQ_FLAGS(15, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP) 71 #define KVM_REQ_GLOBAL_CLOCK_UPDATE KVM_ARCH_REQ(16) 72 #define KVM_REQ_APIC_PAGE_RELOAD \ 73 KVM_ARCH_REQ_FLAGS(17, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP) 74 #define KVM_REQ_HV_CRASH KVM_ARCH_REQ(18) 75 #define KVM_REQ_IOAPIC_EOI_EXIT KVM_ARCH_REQ(19) 76 #define KVM_REQ_HV_RESET KVM_ARCH_REQ(20) 77 #define KVM_REQ_HV_EXIT KVM_ARCH_REQ(21) 78 #define KVM_REQ_HV_STIMER KVM_ARCH_REQ(22) 79 #define KVM_REQ_LOAD_EOI_EXITMAP KVM_ARCH_REQ(23) 80 #define KVM_REQ_GET_VMCS12_PAGES KVM_ARCH_REQ(24) 81 82 #define CR0_RESERVED_BITS \ 83 (~(unsigned long)(X86_CR0_PE | X86_CR0_MP | X86_CR0_EM | X86_CR0_TS \ 84 | X86_CR0_ET | X86_CR0_NE | X86_CR0_WP | X86_CR0_AM \ 85 | X86_CR0_NW | X86_CR0_CD | X86_CR0_PG)) 86 87 #define CR4_RESERVED_BITS \ 88 (~(unsigned long)(X86_CR4_VME | X86_CR4_PVI | X86_CR4_TSD | X86_CR4_DE\ 89 | X86_CR4_PSE | X86_CR4_PAE | X86_CR4_MCE \ 90 | X86_CR4_PGE | X86_CR4_PCE | X86_CR4_OSFXSR | X86_CR4_PCIDE \ 91 | X86_CR4_OSXSAVE | X86_CR4_SMEP | X86_CR4_FSGSBASE \ 92 | X86_CR4_OSXMMEXCPT | X86_CR4_LA57 | X86_CR4_VMXE \ 93 | X86_CR4_SMAP | X86_CR4_PKE | X86_CR4_UMIP)) 94 95 #define CR8_RESERVED_BITS (~(unsigned long)X86_CR8_TPR) 96 97 98 99 #define INVALID_PAGE (~(hpa_t)0) 100 #define VALID_PAGE(x) ((x) != INVALID_PAGE) 101 102 #define UNMAPPED_GVA (~(gpa_t)0) 103 104 /* KVM Hugepage definitions for x86 */ 105 enum { 106 PT_PAGE_TABLE_LEVEL = 1, 107 PT_DIRECTORY_LEVEL = 2, 108 PT_PDPE_LEVEL = 3, 109 /* set max level to the biggest one */ 110 PT_MAX_HUGEPAGE_LEVEL = PT_PDPE_LEVEL, 111 }; 112 #define KVM_NR_PAGE_SIZES (PT_MAX_HUGEPAGE_LEVEL - \ 113 PT_PAGE_TABLE_LEVEL + 1) 114 #define KVM_HPAGE_GFN_SHIFT(x) (((x) - 1) * 9) 115 #define KVM_HPAGE_SHIFT(x) (PAGE_SHIFT + KVM_HPAGE_GFN_SHIFT(x)) 116 #define KVM_HPAGE_SIZE(x) (1UL << KVM_HPAGE_SHIFT(x)) 117 #define KVM_HPAGE_MASK(x) (~(KVM_HPAGE_SIZE(x) - 1)) 118 #define KVM_PAGES_PER_HPAGE(x) (KVM_HPAGE_SIZE(x) / PAGE_SIZE) 119 120 static inline gfn_t gfn_to_index(gfn_t gfn, gfn_t base_gfn, int level) 121 { 122 /* KVM_HPAGE_GFN_SHIFT(PT_PAGE_TABLE_LEVEL) must be 0. */ 123 return (gfn >> KVM_HPAGE_GFN_SHIFT(level)) - 124 (base_gfn >> KVM_HPAGE_GFN_SHIFT(level)); 125 } 126 127 #define KVM_PERMILLE_MMU_PAGES 20 128 #define KVM_MIN_ALLOC_MMU_PAGES 64UL 129 #define KVM_MMU_HASH_SHIFT 12 130 #define KVM_NUM_MMU_PAGES (1 << KVM_MMU_HASH_SHIFT) 131 #define KVM_MIN_FREE_MMU_PAGES 5 132 #define KVM_REFILL_PAGES 25 133 #define KVM_MAX_CPUID_ENTRIES 80 134 #define KVM_NR_FIXED_MTRR_REGION 88 135 #define KVM_NR_VAR_MTRR 8 136 137 #define ASYNC_PF_PER_VCPU 64 138 139 enum kvm_reg { 140 VCPU_REGS_RAX = __VCPU_REGS_RAX, 141 VCPU_REGS_RCX = __VCPU_REGS_RCX, 142 VCPU_REGS_RDX = __VCPU_REGS_RDX, 143 VCPU_REGS_RBX = __VCPU_REGS_RBX, 144 VCPU_REGS_RSP = __VCPU_REGS_RSP, 145 VCPU_REGS_RBP = __VCPU_REGS_RBP, 146 VCPU_REGS_RSI = __VCPU_REGS_RSI, 147 VCPU_REGS_RDI = __VCPU_REGS_RDI, 148 #ifdef CONFIG_X86_64 149 VCPU_REGS_R8 = __VCPU_REGS_R8, 150 VCPU_REGS_R9 = __VCPU_REGS_R9, 151 VCPU_REGS_R10 = __VCPU_REGS_R10, 152 VCPU_REGS_R11 = __VCPU_REGS_R11, 153 VCPU_REGS_R12 = __VCPU_REGS_R12, 154 VCPU_REGS_R13 = __VCPU_REGS_R13, 155 VCPU_REGS_R14 = __VCPU_REGS_R14, 156 VCPU_REGS_R15 = __VCPU_REGS_R15, 157 #endif 158 VCPU_REGS_RIP, 159 NR_VCPU_REGS 160 }; 161 162 enum kvm_reg_ex { 163 VCPU_EXREG_PDPTR = NR_VCPU_REGS, 164 VCPU_EXREG_CR3, 165 VCPU_EXREG_RFLAGS, 166 VCPU_EXREG_SEGMENTS, 167 }; 168 169 enum { 170 VCPU_SREG_ES, 171 VCPU_SREG_CS, 172 VCPU_SREG_SS, 173 VCPU_SREG_DS, 174 VCPU_SREG_FS, 175 VCPU_SREG_GS, 176 VCPU_SREG_TR, 177 VCPU_SREG_LDTR, 178 }; 179 180 #include <asm/kvm_emulate.h> 181 182 #define KVM_NR_MEM_OBJS 40 183 184 #define KVM_NR_DB_REGS 4 185 186 #define DR6_BD (1 << 13) 187 #define DR6_BS (1 << 14) 188 #define DR6_BT (1 << 15) 189 #define DR6_RTM (1 << 16) 190 #define DR6_FIXED_1 0xfffe0ff0 191 #define DR6_INIT 0xffff0ff0 192 #define DR6_VOLATILE 0x0001e00f 193 194 #define DR7_BP_EN_MASK 0x000000ff 195 #define DR7_GE (1 << 9) 196 #define DR7_GD (1 << 13) 197 #define DR7_FIXED_1 0x00000400 198 #define DR7_VOLATILE 0xffff2bff 199 200 #define PFERR_PRESENT_BIT 0 201 #define PFERR_WRITE_BIT 1 202 #define PFERR_USER_BIT 2 203 #define PFERR_RSVD_BIT 3 204 #define PFERR_FETCH_BIT 4 205 #define PFERR_PK_BIT 5 206 #define PFERR_GUEST_FINAL_BIT 32 207 #define PFERR_GUEST_PAGE_BIT 33 208 209 #define PFERR_PRESENT_MASK (1U << PFERR_PRESENT_BIT) 210 #define PFERR_WRITE_MASK (1U << PFERR_WRITE_BIT) 211 #define PFERR_USER_MASK (1U << PFERR_USER_BIT) 212 #define PFERR_RSVD_MASK (1U << PFERR_RSVD_BIT) 213 #define PFERR_FETCH_MASK (1U << PFERR_FETCH_BIT) 214 #define PFERR_PK_MASK (1U << PFERR_PK_BIT) 215 #define PFERR_GUEST_FINAL_MASK (1ULL << PFERR_GUEST_FINAL_BIT) 216 #define PFERR_GUEST_PAGE_MASK (1ULL << PFERR_GUEST_PAGE_BIT) 217 218 #define PFERR_NESTED_GUEST_PAGE (PFERR_GUEST_PAGE_MASK | \ 219 PFERR_WRITE_MASK | \ 220 PFERR_PRESENT_MASK) 221 222 /* 223 * The mask used to denote special SPTEs, which can be either MMIO SPTEs or 224 * Access Tracking SPTEs. We use bit 62 instead of bit 63 to avoid conflicting 225 * with the SVE bit in EPT PTEs. 226 */ 227 #define SPTE_SPECIAL_MASK (1ULL << 62) 228 229 /* apic attention bits */ 230 #define KVM_APIC_CHECK_VAPIC 0 231 /* 232 * The following bit is set with PV-EOI, unset on EOI. 233 * We detect PV-EOI changes by guest by comparing 234 * this bit with PV-EOI in guest memory. 235 * See the implementation in apic_update_pv_eoi. 236 */ 237 #define KVM_APIC_PV_EOI_PENDING 1 238 239 struct kvm_kernel_irq_routing_entry; 240 241 /* 242 * We don't want allocation failures within the mmu code, so we preallocate 243 * enough memory for a single page fault in a cache. 244 */ 245 struct kvm_mmu_memory_cache { 246 int nobjs; 247 void *objects[KVM_NR_MEM_OBJS]; 248 }; 249 250 /* 251 * the pages used as guest page table on soft mmu are tracked by 252 * kvm_memory_slot.arch.gfn_track which is 16 bits, so the role bits used 253 * by indirect shadow page can not be more than 15 bits. 254 * 255 * Currently, we used 14 bits that are @level, @gpte_is_8_bytes, @quadrant, @access, 256 * @nxe, @cr0_wp, @smep_andnot_wp and @smap_andnot_wp. 257 */ 258 union kvm_mmu_page_role { 259 u32 word; 260 struct { 261 unsigned level:4; 262 unsigned gpte_is_8_bytes:1; 263 unsigned quadrant:2; 264 unsigned direct:1; 265 unsigned access:3; 266 unsigned invalid:1; 267 unsigned nxe:1; 268 unsigned cr0_wp:1; 269 unsigned smep_andnot_wp:1; 270 unsigned smap_andnot_wp:1; 271 unsigned ad_disabled:1; 272 unsigned guest_mode:1; 273 unsigned :6; 274 275 /* 276 * This is left at the top of the word so that 277 * kvm_memslots_for_spte_role can extract it with a 278 * simple shift. While there is room, give it a whole 279 * byte so it is also faster to load it from memory. 280 */ 281 unsigned smm:8; 282 }; 283 }; 284 285 union kvm_mmu_extended_role { 286 /* 287 * This structure complements kvm_mmu_page_role caching everything needed for 288 * MMU configuration. If nothing in both these structures changed, MMU 289 * re-configuration can be skipped. @valid bit is set on first usage so we don't 290 * treat all-zero structure as valid data. 291 */ 292 u32 word; 293 struct { 294 unsigned int valid:1; 295 unsigned int execonly:1; 296 unsigned int cr0_pg:1; 297 unsigned int cr4_pae:1; 298 unsigned int cr4_pse:1; 299 unsigned int cr4_pke:1; 300 unsigned int cr4_smap:1; 301 unsigned int cr4_smep:1; 302 unsigned int cr4_la57:1; 303 unsigned int maxphyaddr:6; 304 }; 305 }; 306 307 union kvm_mmu_role { 308 u64 as_u64; 309 struct { 310 union kvm_mmu_page_role base; 311 union kvm_mmu_extended_role ext; 312 }; 313 }; 314 315 struct kvm_rmap_head { 316 unsigned long val; 317 }; 318 319 struct kvm_mmu_page { 320 struct list_head link; 321 struct hlist_node hash_link; 322 bool unsync; 323 bool mmio_cached; 324 325 /* 326 * The following two entries are used to key the shadow page in the 327 * hash table. 328 */ 329 union kvm_mmu_page_role role; 330 gfn_t gfn; 331 332 u64 *spt; 333 /* hold the gfn of each spte inside spt */ 334 gfn_t *gfns; 335 int root_count; /* Currently serving as active root */ 336 unsigned int unsync_children; 337 struct kvm_rmap_head parent_ptes; /* rmap pointers to parent sptes */ 338 DECLARE_BITMAP(unsync_child_bitmap, 512); 339 340 #ifdef CONFIG_X86_32 341 /* 342 * Used out of the mmu-lock to avoid reading spte values while an 343 * update is in progress; see the comments in __get_spte_lockless(). 344 */ 345 int clear_spte_count; 346 #endif 347 348 /* Number of writes since the last time traversal visited this page. */ 349 atomic_t write_flooding_count; 350 }; 351 352 struct kvm_pio_request { 353 unsigned long linear_rip; 354 unsigned long count; 355 int in; 356 int port; 357 int size; 358 }; 359 360 #define PT64_ROOT_MAX_LEVEL 5 361 362 struct rsvd_bits_validate { 363 u64 rsvd_bits_mask[2][PT64_ROOT_MAX_LEVEL]; 364 u64 bad_mt_xwr; 365 }; 366 367 struct kvm_mmu_root_info { 368 gpa_t cr3; 369 hpa_t hpa; 370 }; 371 372 #define KVM_MMU_ROOT_INFO_INVALID \ 373 ((struct kvm_mmu_root_info) { .cr3 = INVALID_PAGE, .hpa = INVALID_PAGE }) 374 375 #define KVM_MMU_NUM_PREV_ROOTS 3 376 377 /* 378 * x86 supports 4 paging modes (5-level 64-bit, 4-level 64-bit, 3-level 32-bit, 379 * and 2-level 32-bit). The kvm_mmu structure abstracts the details of the 380 * current mmu mode. 381 */ 382 struct kvm_mmu { 383 void (*set_cr3)(struct kvm_vcpu *vcpu, unsigned long root); 384 unsigned long (*get_cr3)(struct kvm_vcpu *vcpu); 385 u64 (*get_pdptr)(struct kvm_vcpu *vcpu, int index); 386 int (*page_fault)(struct kvm_vcpu *vcpu, gva_t gva, u32 err, 387 bool prefault); 388 void (*inject_page_fault)(struct kvm_vcpu *vcpu, 389 struct x86_exception *fault); 390 gpa_t (*gva_to_gpa)(struct kvm_vcpu *vcpu, gva_t gva, u32 access, 391 struct x86_exception *exception); 392 gpa_t (*translate_gpa)(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access, 393 struct x86_exception *exception); 394 int (*sync_page)(struct kvm_vcpu *vcpu, 395 struct kvm_mmu_page *sp); 396 void (*invlpg)(struct kvm_vcpu *vcpu, gva_t gva, hpa_t root_hpa); 397 void (*update_pte)(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp, 398 u64 *spte, const void *pte); 399 hpa_t root_hpa; 400 gpa_t root_cr3; 401 union kvm_mmu_role mmu_role; 402 u8 root_level; 403 u8 shadow_root_level; 404 u8 ept_ad; 405 bool direct_map; 406 struct kvm_mmu_root_info prev_roots[KVM_MMU_NUM_PREV_ROOTS]; 407 408 /* 409 * Bitmap; bit set = permission fault 410 * Byte index: page fault error code [4:1] 411 * Bit index: pte permissions in ACC_* format 412 */ 413 u8 permissions[16]; 414 415 /* 416 * The pkru_mask indicates if protection key checks are needed. It 417 * consists of 16 domains indexed by page fault error code bits [4:1], 418 * with PFEC.RSVD replaced by ACC_USER_MASK from the page tables. 419 * Each domain has 2 bits which are ANDed with AD and WD from PKRU. 420 */ 421 u32 pkru_mask; 422 423 u64 *pae_root; 424 u64 *lm_root; 425 426 /* 427 * check zero bits on shadow page table entries, these 428 * bits include not only hardware reserved bits but also 429 * the bits spte never used. 430 */ 431 struct rsvd_bits_validate shadow_zero_check; 432 433 struct rsvd_bits_validate guest_rsvd_check; 434 435 /* Can have large pages at levels 2..last_nonleaf_level-1. */ 436 u8 last_nonleaf_level; 437 438 bool nx; 439 440 u64 pdptrs[4]; /* pae */ 441 }; 442 443 struct kvm_tlb_range { 444 u64 start_gfn; 445 u64 pages; 446 }; 447 448 enum pmc_type { 449 KVM_PMC_GP = 0, 450 KVM_PMC_FIXED, 451 }; 452 453 struct kvm_pmc { 454 enum pmc_type type; 455 u8 idx; 456 u64 counter; 457 u64 eventsel; 458 struct perf_event *perf_event; 459 struct kvm_vcpu *vcpu; 460 }; 461 462 struct kvm_pmu { 463 unsigned nr_arch_gp_counters; 464 unsigned nr_arch_fixed_counters; 465 unsigned available_event_types; 466 u64 fixed_ctr_ctrl; 467 u64 global_ctrl; 468 u64 global_status; 469 u64 global_ovf_ctrl; 470 u64 counter_bitmask[2]; 471 u64 global_ctrl_mask; 472 u64 global_ovf_ctrl_mask; 473 u64 reserved_bits; 474 u8 version; 475 struct kvm_pmc gp_counters[INTEL_PMC_MAX_GENERIC]; 476 struct kvm_pmc fixed_counters[INTEL_PMC_MAX_FIXED]; 477 struct irq_work irq_work; 478 u64 reprogram_pmi; 479 }; 480 481 struct kvm_pmu_ops; 482 483 enum { 484 KVM_DEBUGREG_BP_ENABLED = 1, 485 KVM_DEBUGREG_WONT_EXIT = 2, 486 KVM_DEBUGREG_RELOAD = 4, 487 }; 488 489 struct kvm_mtrr_range { 490 u64 base; 491 u64 mask; 492 struct list_head node; 493 }; 494 495 struct kvm_mtrr { 496 struct kvm_mtrr_range var_ranges[KVM_NR_VAR_MTRR]; 497 mtrr_type fixed_ranges[KVM_NR_FIXED_MTRR_REGION]; 498 u64 deftype; 499 500 struct list_head head; 501 }; 502 503 /* Hyper-V SynIC timer */ 504 struct kvm_vcpu_hv_stimer { 505 struct hrtimer timer; 506 int index; 507 union hv_stimer_config config; 508 u64 count; 509 u64 exp_time; 510 struct hv_message msg; 511 bool msg_pending; 512 }; 513 514 /* Hyper-V synthetic interrupt controller (SynIC)*/ 515 struct kvm_vcpu_hv_synic { 516 u64 version; 517 u64 control; 518 u64 msg_page; 519 u64 evt_page; 520 atomic64_t sint[HV_SYNIC_SINT_COUNT]; 521 atomic_t sint_to_gsi[HV_SYNIC_SINT_COUNT]; 522 DECLARE_BITMAP(auto_eoi_bitmap, 256); 523 DECLARE_BITMAP(vec_bitmap, 256); 524 bool active; 525 bool dont_zero_synic_pages; 526 }; 527 528 /* Hyper-V per vcpu emulation context */ 529 struct kvm_vcpu_hv { 530 u32 vp_index; 531 u64 hv_vapic; 532 s64 runtime_offset; 533 struct kvm_vcpu_hv_synic synic; 534 struct kvm_hyperv_exit exit; 535 struct kvm_vcpu_hv_stimer stimer[HV_SYNIC_STIMER_COUNT]; 536 DECLARE_BITMAP(stimer_pending_bitmap, HV_SYNIC_STIMER_COUNT); 537 cpumask_t tlb_flush; 538 }; 539 540 struct kvm_vcpu_arch { 541 /* 542 * rip and regs accesses must go through 543 * kvm_{register,rip}_{read,write} functions. 544 */ 545 unsigned long regs[NR_VCPU_REGS]; 546 u32 regs_avail; 547 u32 regs_dirty; 548 549 unsigned long cr0; 550 unsigned long cr0_guest_owned_bits; 551 unsigned long cr2; 552 unsigned long cr3; 553 unsigned long cr4; 554 unsigned long cr4_guest_owned_bits; 555 unsigned long cr8; 556 u32 pkru; 557 u32 hflags; 558 u64 efer; 559 u64 apic_base; 560 struct kvm_lapic *apic; /* kernel irqchip context */ 561 bool apicv_active; 562 bool load_eoi_exitmap_pending; 563 DECLARE_BITMAP(ioapic_handled_vectors, 256); 564 unsigned long apic_attention; 565 int32_t apic_arb_prio; 566 int mp_state; 567 u64 ia32_misc_enable_msr; 568 u64 smbase; 569 u64 smi_count; 570 bool tpr_access_reporting; 571 u64 ia32_xss; 572 u64 microcode_version; 573 u64 arch_capabilities; 574 575 /* 576 * Paging state of the vcpu 577 * 578 * If the vcpu runs in guest mode with two level paging this still saves 579 * the paging mode of the l1 guest. This context is always used to 580 * handle faults. 581 */ 582 struct kvm_mmu *mmu; 583 584 /* Non-nested MMU for L1 */ 585 struct kvm_mmu root_mmu; 586 587 /* L1 MMU when running nested */ 588 struct kvm_mmu guest_mmu; 589 590 /* 591 * Paging state of an L2 guest (used for nested npt) 592 * 593 * This context will save all necessary information to walk page tables 594 * of the an L2 guest. This context is only initialized for page table 595 * walking and not for faulting since we never handle l2 page faults on 596 * the host. 597 */ 598 struct kvm_mmu nested_mmu; 599 600 /* 601 * Pointer to the mmu context currently used for 602 * gva_to_gpa translations. 603 */ 604 struct kvm_mmu *walk_mmu; 605 606 struct kvm_mmu_memory_cache mmu_pte_list_desc_cache; 607 struct kvm_mmu_memory_cache mmu_page_cache; 608 struct kvm_mmu_memory_cache mmu_page_header_cache; 609 610 /* 611 * QEMU userspace and the guest each have their own FPU state. 612 * In vcpu_run, we switch between the user and guest FPU contexts. 613 * While running a VCPU, the VCPU thread will have the guest FPU 614 * context. 615 * 616 * Note that while the PKRU state lives inside the fpu registers, 617 * it is switched out separately at VMENTER and VMEXIT time. The 618 * "guest_fpu" state here contains the guest FPU context, with the 619 * host PRKU bits. 620 */ 621 struct fpu *user_fpu; 622 struct fpu *guest_fpu; 623 624 u64 xcr0; 625 u64 guest_supported_xcr0; 626 u32 guest_xstate_size; 627 628 struct kvm_pio_request pio; 629 void *pio_data; 630 631 u8 event_exit_inst_len; 632 633 struct kvm_queued_exception { 634 bool pending; 635 bool injected; 636 bool has_error_code; 637 u8 nr; 638 u32 error_code; 639 unsigned long payload; 640 bool has_payload; 641 u8 nested_apf; 642 } exception; 643 644 struct kvm_queued_interrupt { 645 bool injected; 646 bool soft; 647 u8 nr; 648 } interrupt; 649 650 int halt_request; /* real mode on Intel only */ 651 652 int cpuid_nent; 653 struct kvm_cpuid_entry2 cpuid_entries[KVM_MAX_CPUID_ENTRIES]; 654 655 int maxphyaddr; 656 657 /* emulate context */ 658 659 struct x86_emulate_ctxt emulate_ctxt; 660 bool emulate_regs_need_sync_to_vcpu; 661 bool emulate_regs_need_sync_from_vcpu; 662 int (*complete_userspace_io)(struct kvm_vcpu *vcpu); 663 664 gpa_t time; 665 struct pvclock_vcpu_time_info hv_clock; 666 unsigned int hw_tsc_khz; 667 struct gfn_to_hva_cache pv_time; 668 bool pv_time_enabled; 669 /* set guest stopped flag in pvclock flags field */ 670 bool pvclock_set_guest_stopped_request; 671 672 struct { 673 u64 msr_val; 674 u64 last_steal; 675 struct gfn_to_hva_cache stime; 676 struct kvm_steal_time steal; 677 } st; 678 679 u64 tsc_offset; 680 u64 last_guest_tsc; 681 u64 last_host_tsc; 682 u64 tsc_offset_adjustment; 683 u64 this_tsc_nsec; 684 u64 this_tsc_write; 685 u64 this_tsc_generation; 686 bool tsc_catchup; 687 bool tsc_always_catchup; 688 s8 virtual_tsc_shift; 689 u32 virtual_tsc_mult; 690 u32 virtual_tsc_khz; 691 s64 ia32_tsc_adjust_msr; 692 u64 msr_ia32_power_ctl; 693 u64 tsc_scaling_ratio; 694 695 atomic_t nmi_queued; /* unprocessed asynchronous NMIs */ 696 unsigned nmi_pending; /* NMI queued after currently running handler */ 697 bool nmi_injected; /* Trying to inject an NMI this entry */ 698 bool smi_pending; /* SMI queued after currently running handler */ 699 700 struct kvm_mtrr mtrr_state; 701 u64 pat; 702 703 unsigned switch_db_regs; 704 unsigned long db[KVM_NR_DB_REGS]; 705 unsigned long dr6; 706 unsigned long dr7; 707 unsigned long eff_db[KVM_NR_DB_REGS]; 708 unsigned long guest_debug_dr7; 709 u64 msr_platform_info; 710 u64 msr_misc_features_enables; 711 712 u64 mcg_cap; 713 u64 mcg_status; 714 u64 mcg_ctl; 715 u64 mcg_ext_ctl; 716 u64 *mce_banks; 717 718 /* Cache MMIO info */ 719 u64 mmio_gva; 720 unsigned access; 721 gfn_t mmio_gfn; 722 u64 mmio_gen; 723 724 struct kvm_pmu pmu; 725 726 /* used for guest single stepping over the given code position */ 727 unsigned long singlestep_rip; 728 729 struct kvm_vcpu_hv hyperv; 730 731 cpumask_var_t wbinvd_dirty_mask; 732 733 unsigned long last_retry_eip; 734 unsigned long last_retry_addr; 735 736 struct { 737 bool halted; 738 gfn_t gfns[roundup_pow_of_two(ASYNC_PF_PER_VCPU)]; 739 struct gfn_to_hva_cache data; 740 u64 msr_val; 741 u32 id; 742 bool send_user_only; 743 u32 host_apf_reason; 744 unsigned long nested_apf_token; 745 bool delivery_as_pf_vmexit; 746 } apf; 747 748 /* OSVW MSRs (AMD only) */ 749 struct { 750 u64 length; 751 u64 status; 752 } osvw; 753 754 struct { 755 u64 msr_val; 756 struct gfn_to_hva_cache data; 757 } pv_eoi; 758 759 u64 msr_kvm_poll_control; 760 761 /* 762 * Indicate whether the access faults on its page table in guest 763 * which is set when fix page fault and used to detect unhandeable 764 * instruction. 765 */ 766 bool write_fault_to_shadow_pgtable; 767 768 /* set at EPT violation at this point */ 769 unsigned long exit_qualification; 770 771 /* pv related host specific info */ 772 struct { 773 bool pv_unhalted; 774 } pv; 775 776 int pending_ioapic_eoi; 777 int pending_external_vector; 778 779 /* GPA available */ 780 bool gpa_available; 781 gpa_t gpa_val; 782 783 /* be preempted when it's in kernel-mode(cpl=0) */ 784 bool preempted_in_kernel; 785 786 /* Flush the L1 Data cache for L1TF mitigation on VMENTER */ 787 bool l1tf_flush_l1d; 788 789 /* AMD MSRC001_0015 Hardware Configuration */ 790 u64 msr_hwcr; 791 }; 792 793 struct kvm_lpage_info { 794 int disallow_lpage; 795 }; 796 797 struct kvm_arch_memory_slot { 798 struct kvm_rmap_head *rmap[KVM_NR_PAGE_SIZES]; 799 struct kvm_lpage_info *lpage_info[KVM_NR_PAGE_SIZES - 1]; 800 unsigned short *gfn_track[KVM_PAGE_TRACK_MAX]; 801 }; 802 803 /* 804 * We use as the mode the number of bits allocated in the LDR for the 805 * logical processor ID. It happens that these are all powers of two. 806 * This makes it is very easy to detect cases where the APICs are 807 * configured for multiple modes; in that case, we cannot use the map and 808 * hence cannot use kvm_irq_delivery_to_apic_fast either. 809 */ 810 #define KVM_APIC_MODE_XAPIC_CLUSTER 4 811 #define KVM_APIC_MODE_XAPIC_FLAT 8 812 #define KVM_APIC_MODE_X2APIC 16 813 814 struct kvm_apic_map { 815 struct rcu_head rcu; 816 u8 mode; 817 u32 max_apic_id; 818 union { 819 struct kvm_lapic *xapic_flat_map[8]; 820 struct kvm_lapic *xapic_cluster_map[16][4]; 821 }; 822 struct kvm_lapic *phys_map[]; 823 }; 824 825 /* Hyper-V emulation context */ 826 struct kvm_hv { 827 struct mutex hv_lock; 828 u64 hv_guest_os_id; 829 u64 hv_hypercall; 830 u64 hv_tsc_page; 831 832 /* Hyper-v based guest crash (NT kernel bugcheck) parameters */ 833 u64 hv_crash_param[HV_X64_MSR_CRASH_PARAMS]; 834 u64 hv_crash_ctl; 835 836 HV_REFERENCE_TSC_PAGE tsc_ref; 837 838 struct idr conn_to_evt; 839 840 u64 hv_reenlightenment_control; 841 u64 hv_tsc_emulation_control; 842 u64 hv_tsc_emulation_status; 843 844 /* How many vCPUs have VP index != vCPU index */ 845 atomic_t num_mismatched_vp_indexes; 846 }; 847 848 enum kvm_irqchip_mode { 849 KVM_IRQCHIP_NONE, 850 KVM_IRQCHIP_KERNEL, /* created with KVM_CREATE_IRQCHIP */ 851 KVM_IRQCHIP_SPLIT, /* created with KVM_CAP_SPLIT_IRQCHIP */ 852 }; 853 854 struct kvm_arch { 855 unsigned long n_used_mmu_pages; 856 unsigned long n_requested_mmu_pages; 857 unsigned long n_max_mmu_pages; 858 unsigned int indirect_shadow_pages; 859 struct hlist_head mmu_page_hash[KVM_NUM_MMU_PAGES]; 860 /* 861 * Hash table of struct kvm_mmu_page. 862 */ 863 struct list_head active_mmu_pages; 864 struct kvm_page_track_notifier_node mmu_sp_tracker; 865 struct kvm_page_track_notifier_head track_notifier_head; 866 867 struct list_head assigned_dev_head; 868 struct iommu_domain *iommu_domain; 869 bool iommu_noncoherent; 870 #define __KVM_HAVE_ARCH_NONCOHERENT_DMA 871 atomic_t noncoherent_dma_count; 872 #define __KVM_HAVE_ARCH_ASSIGNED_DEVICE 873 atomic_t assigned_device_count; 874 struct kvm_pic *vpic; 875 struct kvm_ioapic *vioapic; 876 struct kvm_pit *vpit; 877 atomic_t vapics_in_nmi_mode; 878 struct mutex apic_map_lock; 879 struct kvm_apic_map *apic_map; 880 881 bool apic_access_page_done; 882 883 gpa_t wall_clock; 884 885 bool mwait_in_guest; 886 bool hlt_in_guest; 887 bool pause_in_guest; 888 bool cstate_in_guest; 889 890 unsigned long irq_sources_bitmap; 891 s64 kvmclock_offset; 892 raw_spinlock_t tsc_write_lock; 893 u64 last_tsc_nsec; 894 u64 last_tsc_write; 895 u32 last_tsc_khz; 896 u64 cur_tsc_nsec; 897 u64 cur_tsc_write; 898 u64 cur_tsc_offset; 899 u64 cur_tsc_generation; 900 int nr_vcpus_matched_tsc; 901 902 spinlock_t pvclock_gtod_sync_lock; 903 bool use_master_clock; 904 u64 master_kernel_ns; 905 u64 master_cycle_now; 906 struct delayed_work kvmclock_update_work; 907 struct delayed_work kvmclock_sync_work; 908 909 struct kvm_xen_hvm_config xen_hvm_config; 910 911 /* reads protected by irq_srcu, writes by irq_lock */ 912 struct hlist_head mask_notifier_list; 913 914 struct kvm_hv hyperv; 915 916 #ifdef CONFIG_KVM_MMU_AUDIT 917 int audit_point; 918 #endif 919 920 bool backwards_tsc_observed; 921 bool boot_vcpu_runs_old_kvmclock; 922 u32 bsp_vcpu_id; 923 924 u64 disabled_quirks; 925 926 enum kvm_irqchip_mode irqchip_mode; 927 u8 nr_reserved_ioapic_pins; 928 929 bool disabled_lapic_found; 930 931 bool x2apic_format; 932 bool x2apic_broadcast_quirk_disabled; 933 934 bool guest_can_read_msr_platform_info; 935 bool exception_payload_enabled; 936 937 struct kvm_pmu_event_filter *pmu_event_filter; 938 }; 939 940 struct kvm_vm_stat { 941 ulong mmu_shadow_zapped; 942 ulong mmu_pte_write; 943 ulong mmu_pte_updated; 944 ulong mmu_pde_zapped; 945 ulong mmu_flooded; 946 ulong mmu_recycled; 947 ulong mmu_cache_miss; 948 ulong mmu_unsync; 949 ulong remote_tlb_flush; 950 ulong lpages; 951 ulong max_mmu_page_hash_collisions; 952 }; 953 954 struct kvm_vcpu_stat { 955 u64 pf_fixed; 956 u64 pf_guest; 957 u64 tlb_flush; 958 u64 invlpg; 959 960 u64 exits; 961 u64 io_exits; 962 u64 mmio_exits; 963 u64 signal_exits; 964 u64 irq_window_exits; 965 u64 nmi_window_exits; 966 u64 l1d_flush; 967 u64 halt_exits; 968 u64 halt_successful_poll; 969 u64 halt_attempted_poll; 970 u64 halt_poll_invalid; 971 u64 halt_wakeup; 972 u64 request_irq_exits; 973 u64 irq_exits; 974 u64 host_state_reload; 975 u64 fpu_reload; 976 u64 insn_emulation; 977 u64 insn_emulation_fail; 978 u64 hypercalls; 979 u64 irq_injections; 980 u64 nmi_injections; 981 u64 req_event; 982 }; 983 984 struct x86_instruction_info; 985 986 struct msr_data { 987 bool host_initiated; 988 u32 index; 989 u64 data; 990 }; 991 992 struct kvm_lapic_irq { 993 u32 vector; 994 u16 delivery_mode; 995 u16 dest_mode; 996 bool level; 997 u16 trig_mode; 998 u32 shorthand; 999 u32 dest_id; 1000 bool msi_redir_hint; 1001 }; 1002 1003 struct kvm_x86_ops { 1004 int (*cpu_has_kvm_support)(void); /* __init */ 1005 int (*disabled_by_bios)(void); /* __init */ 1006 int (*hardware_enable)(void); 1007 void (*hardware_disable)(void); 1008 int (*check_processor_compatibility)(void);/* __init */ 1009 int (*hardware_setup)(void); /* __init */ 1010 void (*hardware_unsetup)(void); /* __exit */ 1011 bool (*cpu_has_accelerated_tpr)(void); 1012 bool (*has_emulated_msr)(int index); 1013 void (*cpuid_update)(struct kvm_vcpu *vcpu); 1014 1015 struct kvm *(*vm_alloc)(void); 1016 void (*vm_free)(struct kvm *); 1017 int (*vm_init)(struct kvm *kvm); 1018 void (*vm_destroy)(struct kvm *kvm); 1019 1020 /* Create, but do not attach this VCPU */ 1021 struct kvm_vcpu *(*vcpu_create)(struct kvm *kvm, unsigned id); 1022 void (*vcpu_free)(struct kvm_vcpu *vcpu); 1023 void (*vcpu_reset)(struct kvm_vcpu *vcpu, bool init_event); 1024 1025 void (*prepare_guest_switch)(struct kvm_vcpu *vcpu); 1026 void (*vcpu_load)(struct kvm_vcpu *vcpu, int cpu); 1027 void (*vcpu_put)(struct kvm_vcpu *vcpu); 1028 1029 void (*update_bp_intercept)(struct kvm_vcpu *vcpu); 1030 int (*get_msr)(struct kvm_vcpu *vcpu, struct msr_data *msr); 1031 int (*set_msr)(struct kvm_vcpu *vcpu, struct msr_data *msr); 1032 u64 (*get_segment_base)(struct kvm_vcpu *vcpu, int seg); 1033 void (*get_segment)(struct kvm_vcpu *vcpu, 1034 struct kvm_segment *var, int seg); 1035 int (*get_cpl)(struct kvm_vcpu *vcpu); 1036 void (*set_segment)(struct kvm_vcpu *vcpu, 1037 struct kvm_segment *var, int seg); 1038 void (*get_cs_db_l_bits)(struct kvm_vcpu *vcpu, int *db, int *l); 1039 void (*decache_cr0_guest_bits)(struct kvm_vcpu *vcpu); 1040 void (*decache_cr3)(struct kvm_vcpu *vcpu); 1041 void (*decache_cr4_guest_bits)(struct kvm_vcpu *vcpu); 1042 void (*set_cr0)(struct kvm_vcpu *vcpu, unsigned long cr0); 1043 void (*set_cr3)(struct kvm_vcpu *vcpu, unsigned long cr3); 1044 int (*set_cr4)(struct kvm_vcpu *vcpu, unsigned long cr4); 1045 void (*set_efer)(struct kvm_vcpu *vcpu, u64 efer); 1046 void (*get_idt)(struct kvm_vcpu *vcpu, struct desc_ptr *dt); 1047 void (*set_idt)(struct kvm_vcpu *vcpu, struct desc_ptr *dt); 1048 void (*get_gdt)(struct kvm_vcpu *vcpu, struct desc_ptr *dt); 1049 void (*set_gdt)(struct kvm_vcpu *vcpu, struct desc_ptr *dt); 1050 u64 (*get_dr6)(struct kvm_vcpu *vcpu); 1051 void (*set_dr6)(struct kvm_vcpu *vcpu, unsigned long value); 1052 void (*sync_dirty_debug_regs)(struct kvm_vcpu *vcpu); 1053 void (*set_dr7)(struct kvm_vcpu *vcpu, unsigned long value); 1054 void (*cache_reg)(struct kvm_vcpu *vcpu, enum kvm_reg reg); 1055 unsigned long (*get_rflags)(struct kvm_vcpu *vcpu); 1056 void (*set_rflags)(struct kvm_vcpu *vcpu, unsigned long rflags); 1057 1058 void (*tlb_flush)(struct kvm_vcpu *vcpu, bool invalidate_gpa); 1059 int (*tlb_remote_flush)(struct kvm *kvm); 1060 int (*tlb_remote_flush_with_range)(struct kvm *kvm, 1061 struct kvm_tlb_range *range); 1062 1063 /* 1064 * Flush any TLB entries associated with the given GVA. 1065 * Does not need to flush GPA->HPA mappings. 1066 * Can potentially get non-canonical addresses through INVLPGs, which 1067 * the implementation may choose to ignore if appropriate. 1068 */ 1069 void (*tlb_flush_gva)(struct kvm_vcpu *vcpu, gva_t addr); 1070 1071 void (*run)(struct kvm_vcpu *vcpu); 1072 int (*handle_exit)(struct kvm_vcpu *vcpu); 1073 void (*skip_emulated_instruction)(struct kvm_vcpu *vcpu); 1074 void (*set_interrupt_shadow)(struct kvm_vcpu *vcpu, int mask); 1075 u32 (*get_interrupt_shadow)(struct kvm_vcpu *vcpu); 1076 void (*patch_hypercall)(struct kvm_vcpu *vcpu, 1077 unsigned char *hypercall_addr); 1078 void (*set_irq)(struct kvm_vcpu *vcpu); 1079 void (*set_nmi)(struct kvm_vcpu *vcpu); 1080 void (*queue_exception)(struct kvm_vcpu *vcpu); 1081 void (*cancel_injection)(struct kvm_vcpu *vcpu); 1082 int (*interrupt_allowed)(struct kvm_vcpu *vcpu); 1083 int (*nmi_allowed)(struct kvm_vcpu *vcpu); 1084 bool (*get_nmi_mask)(struct kvm_vcpu *vcpu); 1085 void (*set_nmi_mask)(struct kvm_vcpu *vcpu, bool masked); 1086 void (*enable_nmi_window)(struct kvm_vcpu *vcpu); 1087 void (*enable_irq_window)(struct kvm_vcpu *vcpu); 1088 void (*update_cr8_intercept)(struct kvm_vcpu *vcpu, int tpr, int irr); 1089 bool (*get_enable_apicv)(struct kvm_vcpu *vcpu); 1090 void (*refresh_apicv_exec_ctrl)(struct kvm_vcpu *vcpu); 1091 void (*hwapic_irr_update)(struct kvm_vcpu *vcpu, int max_irr); 1092 void (*hwapic_isr_update)(struct kvm_vcpu *vcpu, int isr); 1093 bool (*guest_apic_has_interrupt)(struct kvm_vcpu *vcpu); 1094 void (*load_eoi_exitmap)(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap); 1095 void (*set_virtual_apic_mode)(struct kvm_vcpu *vcpu); 1096 void (*set_apic_access_page_addr)(struct kvm_vcpu *vcpu, hpa_t hpa); 1097 void (*deliver_posted_interrupt)(struct kvm_vcpu *vcpu, int vector); 1098 int (*sync_pir_to_irr)(struct kvm_vcpu *vcpu); 1099 int (*set_tss_addr)(struct kvm *kvm, unsigned int addr); 1100 int (*set_identity_map_addr)(struct kvm *kvm, u64 ident_addr); 1101 int (*get_tdp_level)(struct kvm_vcpu *vcpu); 1102 u64 (*get_mt_mask)(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio); 1103 int (*get_lpage_level)(void); 1104 bool (*rdtscp_supported)(void); 1105 bool (*invpcid_supported)(void); 1106 1107 void (*set_tdp_cr3)(struct kvm_vcpu *vcpu, unsigned long cr3); 1108 1109 void (*set_supported_cpuid)(u32 func, struct kvm_cpuid_entry2 *entry); 1110 1111 bool (*has_wbinvd_exit)(void); 1112 1113 u64 (*read_l1_tsc_offset)(struct kvm_vcpu *vcpu); 1114 /* Returns actual tsc_offset set in active VMCS */ 1115 u64 (*write_l1_tsc_offset)(struct kvm_vcpu *vcpu, u64 offset); 1116 1117 void (*get_exit_info)(struct kvm_vcpu *vcpu, u64 *info1, u64 *info2); 1118 1119 int (*check_intercept)(struct kvm_vcpu *vcpu, 1120 struct x86_instruction_info *info, 1121 enum x86_intercept_stage stage); 1122 void (*handle_exit_irqoff)(struct kvm_vcpu *vcpu); 1123 bool (*mpx_supported)(void); 1124 bool (*xsaves_supported)(void); 1125 bool (*umip_emulated)(void); 1126 bool (*pt_supported)(void); 1127 1128 int (*check_nested_events)(struct kvm_vcpu *vcpu, bool external_intr); 1129 void (*request_immediate_exit)(struct kvm_vcpu *vcpu); 1130 1131 void (*sched_in)(struct kvm_vcpu *kvm, int cpu); 1132 1133 /* 1134 * Arch-specific dirty logging hooks. These hooks are only supposed to 1135 * be valid if the specific arch has hardware-accelerated dirty logging 1136 * mechanism. Currently only for PML on VMX. 1137 * 1138 * - slot_enable_log_dirty: 1139 * called when enabling log dirty mode for the slot. 1140 * - slot_disable_log_dirty: 1141 * called when disabling log dirty mode for the slot. 1142 * also called when slot is created with log dirty disabled. 1143 * - flush_log_dirty: 1144 * called before reporting dirty_bitmap to userspace. 1145 * - enable_log_dirty_pt_masked: 1146 * called when reenabling log dirty for the GFNs in the mask after 1147 * corresponding bits are cleared in slot->dirty_bitmap. 1148 */ 1149 void (*slot_enable_log_dirty)(struct kvm *kvm, 1150 struct kvm_memory_slot *slot); 1151 void (*slot_disable_log_dirty)(struct kvm *kvm, 1152 struct kvm_memory_slot *slot); 1153 void (*flush_log_dirty)(struct kvm *kvm); 1154 void (*enable_log_dirty_pt_masked)(struct kvm *kvm, 1155 struct kvm_memory_slot *slot, 1156 gfn_t offset, unsigned long mask); 1157 int (*write_log_dirty)(struct kvm_vcpu *vcpu); 1158 1159 /* pmu operations of sub-arch */ 1160 const struct kvm_pmu_ops *pmu_ops; 1161 1162 /* 1163 * Architecture specific hooks for vCPU blocking due to 1164 * HLT instruction. 1165 * Returns for .pre_block(): 1166 * - 0 means continue to block the vCPU. 1167 * - 1 means we cannot block the vCPU since some event 1168 * happens during this period, such as, 'ON' bit in 1169 * posted-interrupts descriptor is set. 1170 */ 1171 int (*pre_block)(struct kvm_vcpu *vcpu); 1172 void (*post_block)(struct kvm_vcpu *vcpu); 1173 1174 void (*vcpu_blocking)(struct kvm_vcpu *vcpu); 1175 void (*vcpu_unblocking)(struct kvm_vcpu *vcpu); 1176 1177 int (*update_pi_irte)(struct kvm *kvm, unsigned int host_irq, 1178 uint32_t guest_irq, bool set); 1179 void (*apicv_post_state_restore)(struct kvm_vcpu *vcpu); 1180 bool (*dy_apicv_has_pending_interrupt)(struct kvm_vcpu *vcpu); 1181 1182 int (*set_hv_timer)(struct kvm_vcpu *vcpu, u64 guest_deadline_tsc, 1183 bool *expired); 1184 void (*cancel_hv_timer)(struct kvm_vcpu *vcpu); 1185 1186 void (*setup_mce)(struct kvm_vcpu *vcpu); 1187 1188 int (*get_nested_state)(struct kvm_vcpu *vcpu, 1189 struct kvm_nested_state __user *user_kvm_nested_state, 1190 unsigned user_data_size); 1191 int (*set_nested_state)(struct kvm_vcpu *vcpu, 1192 struct kvm_nested_state __user *user_kvm_nested_state, 1193 struct kvm_nested_state *kvm_state); 1194 void (*get_vmcs12_pages)(struct kvm_vcpu *vcpu); 1195 1196 int (*smi_allowed)(struct kvm_vcpu *vcpu); 1197 int (*pre_enter_smm)(struct kvm_vcpu *vcpu, char *smstate); 1198 int (*pre_leave_smm)(struct kvm_vcpu *vcpu, const char *smstate); 1199 int (*enable_smi_window)(struct kvm_vcpu *vcpu); 1200 1201 int (*mem_enc_op)(struct kvm *kvm, void __user *argp); 1202 int (*mem_enc_reg_region)(struct kvm *kvm, struct kvm_enc_region *argp); 1203 int (*mem_enc_unreg_region)(struct kvm *kvm, struct kvm_enc_region *argp); 1204 1205 int (*get_msr_feature)(struct kvm_msr_entry *entry); 1206 1207 int (*nested_enable_evmcs)(struct kvm_vcpu *vcpu, 1208 uint16_t *vmcs_version); 1209 uint16_t (*nested_get_evmcs_version)(struct kvm_vcpu *vcpu); 1210 1211 bool (*need_emulation_on_page_fault)(struct kvm_vcpu *vcpu); 1212 }; 1213 1214 struct kvm_arch_async_pf { 1215 u32 token; 1216 gfn_t gfn; 1217 unsigned long cr3; 1218 bool direct_map; 1219 }; 1220 1221 extern struct kvm_x86_ops *kvm_x86_ops; 1222 extern struct kmem_cache *x86_fpu_cache; 1223 1224 #define __KVM_HAVE_ARCH_VM_ALLOC 1225 static inline struct kvm *kvm_arch_alloc_vm(void) 1226 { 1227 return kvm_x86_ops->vm_alloc(); 1228 } 1229 1230 static inline void kvm_arch_free_vm(struct kvm *kvm) 1231 { 1232 return kvm_x86_ops->vm_free(kvm); 1233 } 1234 1235 #define __KVM_HAVE_ARCH_FLUSH_REMOTE_TLB 1236 static inline int kvm_arch_flush_remote_tlb(struct kvm *kvm) 1237 { 1238 if (kvm_x86_ops->tlb_remote_flush && 1239 !kvm_x86_ops->tlb_remote_flush(kvm)) 1240 return 0; 1241 else 1242 return -ENOTSUPP; 1243 } 1244 1245 int kvm_mmu_module_init(void); 1246 void kvm_mmu_module_exit(void); 1247 1248 void kvm_mmu_destroy(struct kvm_vcpu *vcpu); 1249 int kvm_mmu_create(struct kvm_vcpu *vcpu); 1250 void kvm_mmu_init_vm(struct kvm *kvm); 1251 void kvm_mmu_uninit_vm(struct kvm *kvm); 1252 void kvm_mmu_set_mask_ptes(u64 user_mask, u64 accessed_mask, 1253 u64 dirty_mask, u64 nx_mask, u64 x_mask, u64 p_mask, 1254 u64 acc_track_mask, u64 me_mask); 1255 1256 void kvm_mmu_reset_context(struct kvm_vcpu *vcpu); 1257 void kvm_mmu_slot_remove_write_access(struct kvm *kvm, 1258 struct kvm_memory_slot *memslot); 1259 void kvm_mmu_zap_collapsible_sptes(struct kvm *kvm, 1260 const struct kvm_memory_slot *memslot); 1261 void kvm_mmu_slot_leaf_clear_dirty(struct kvm *kvm, 1262 struct kvm_memory_slot *memslot); 1263 void kvm_mmu_slot_largepage_remove_write_access(struct kvm *kvm, 1264 struct kvm_memory_slot *memslot); 1265 void kvm_mmu_slot_set_dirty(struct kvm *kvm, 1266 struct kvm_memory_slot *memslot); 1267 void kvm_mmu_clear_dirty_pt_masked(struct kvm *kvm, 1268 struct kvm_memory_slot *slot, 1269 gfn_t gfn_offset, unsigned long mask); 1270 void kvm_mmu_zap_all(struct kvm *kvm); 1271 void kvm_mmu_invalidate_mmio_sptes(struct kvm *kvm, u64 gen); 1272 unsigned long kvm_mmu_calculate_default_mmu_pages(struct kvm *kvm); 1273 void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned long kvm_nr_mmu_pages); 1274 1275 int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3); 1276 bool pdptrs_changed(struct kvm_vcpu *vcpu); 1277 1278 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa, 1279 const void *val, int bytes); 1280 1281 struct kvm_irq_mask_notifier { 1282 void (*func)(struct kvm_irq_mask_notifier *kimn, bool masked); 1283 int irq; 1284 struct hlist_node link; 1285 }; 1286 1287 void kvm_register_irq_mask_notifier(struct kvm *kvm, int irq, 1288 struct kvm_irq_mask_notifier *kimn); 1289 void kvm_unregister_irq_mask_notifier(struct kvm *kvm, int irq, 1290 struct kvm_irq_mask_notifier *kimn); 1291 void kvm_fire_mask_notifiers(struct kvm *kvm, unsigned irqchip, unsigned pin, 1292 bool mask); 1293 1294 extern bool tdp_enabled; 1295 1296 u64 vcpu_tsc_khz(struct kvm_vcpu *vcpu); 1297 1298 /* control of guest tsc rate supported? */ 1299 extern bool kvm_has_tsc_control; 1300 /* maximum supported tsc_khz for guests */ 1301 extern u32 kvm_max_guest_tsc_khz; 1302 /* number of bits of the fractional part of the TSC scaling ratio */ 1303 extern u8 kvm_tsc_scaling_ratio_frac_bits; 1304 /* maximum allowed value of TSC scaling ratio */ 1305 extern u64 kvm_max_tsc_scaling_ratio; 1306 /* 1ull << kvm_tsc_scaling_ratio_frac_bits */ 1307 extern u64 kvm_default_tsc_scaling_ratio; 1308 1309 extern u64 kvm_mce_cap_supported; 1310 1311 enum emulation_result { 1312 EMULATE_DONE, /* no further processing */ 1313 EMULATE_USER_EXIT, /* kvm_run ready for userspace exit */ 1314 EMULATE_FAIL, /* can't emulate this instruction */ 1315 }; 1316 1317 #define EMULTYPE_NO_DECODE (1 << 0) 1318 #define EMULTYPE_TRAP_UD (1 << 1) 1319 #define EMULTYPE_SKIP (1 << 2) 1320 #define EMULTYPE_ALLOW_RETRY (1 << 3) 1321 #define EMULTYPE_NO_UD_ON_FAIL (1 << 4) 1322 #define EMULTYPE_VMWARE (1 << 5) 1323 int kvm_emulate_instruction(struct kvm_vcpu *vcpu, int emulation_type); 1324 int kvm_emulate_instruction_from_buffer(struct kvm_vcpu *vcpu, 1325 void *insn, int insn_len); 1326 1327 void kvm_enable_efer_bits(u64); 1328 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer); 1329 int kvm_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr); 1330 int kvm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr); 1331 1332 struct x86_emulate_ctxt; 1333 1334 int kvm_fast_pio(struct kvm_vcpu *vcpu, int size, unsigned short port, int in); 1335 int kvm_emulate_cpuid(struct kvm_vcpu *vcpu); 1336 int kvm_emulate_halt(struct kvm_vcpu *vcpu); 1337 int kvm_vcpu_halt(struct kvm_vcpu *vcpu); 1338 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu); 1339 1340 void kvm_get_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg); 1341 int kvm_load_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector, int seg); 1342 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector); 1343 1344 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index, 1345 int reason, bool has_error_code, u32 error_code); 1346 1347 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0); 1348 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3); 1349 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4); 1350 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8); 1351 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val); 1352 int kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val); 1353 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu); 1354 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw); 1355 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l); 1356 int kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr); 1357 1358 int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr); 1359 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr); 1360 1361 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu); 1362 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags); 1363 bool kvm_rdpmc(struct kvm_vcpu *vcpu); 1364 1365 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr); 1366 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code); 1367 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr); 1368 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code); 1369 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault); 1370 int kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, 1371 gfn_t gfn, void *data, int offset, int len, 1372 u32 access); 1373 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl); 1374 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr); 1375 1376 static inline int __kvm_irq_line_state(unsigned long *irq_state, 1377 int irq_source_id, int level) 1378 { 1379 /* Logical OR for level trig interrupt */ 1380 if (level) 1381 __set_bit(irq_source_id, irq_state); 1382 else 1383 __clear_bit(irq_source_id, irq_state); 1384 1385 return !!(*irq_state); 1386 } 1387 1388 #define KVM_MMU_ROOT_CURRENT BIT(0) 1389 #define KVM_MMU_ROOT_PREVIOUS(i) BIT(1+i) 1390 #define KVM_MMU_ROOTS_ALL (~0UL) 1391 1392 int kvm_pic_set_irq(struct kvm_pic *pic, int irq, int irq_source_id, int level); 1393 void kvm_pic_clear_all(struct kvm_pic *pic, int irq_source_id); 1394 1395 void kvm_inject_nmi(struct kvm_vcpu *vcpu); 1396 1397 int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn); 1398 int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva); 1399 void __kvm_mmu_free_some_pages(struct kvm_vcpu *vcpu); 1400 int kvm_mmu_load(struct kvm_vcpu *vcpu); 1401 void kvm_mmu_unload(struct kvm_vcpu *vcpu); 1402 void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu); 1403 void kvm_mmu_free_roots(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, 1404 ulong roots_to_free); 1405 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access, 1406 struct x86_exception *exception); 1407 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva, 1408 struct x86_exception *exception); 1409 gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva, 1410 struct x86_exception *exception); 1411 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva, 1412 struct x86_exception *exception); 1413 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva, 1414 struct x86_exception *exception); 1415 1416 void kvm_vcpu_deactivate_apicv(struct kvm_vcpu *vcpu); 1417 1418 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu); 1419 1420 int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gva_t gva, u64 error_code, 1421 void *insn, int insn_len); 1422 void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva); 1423 void kvm_mmu_invpcid_gva(struct kvm_vcpu *vcpu, gva_t gva, unsigned long pcid); 1424 void kvm_mmu_new_cr3(struct kvm_vcpu *vcpu, gpa_t new_cr3, bool skip_tlb_flush); 1425 1426 void kvm_enable_tdp(void); 1427 void kvm_disable_tdp(void); 1428 1429 static inline gpa_t translate_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access, 1430 struct x86_exception *exception) 1431 { 1432 return gpa; 1433 } 1434 1435 static inline struct kvm_mmu_page *page_header(hpa_t shadow_page) 1436 { 1437 struct page *page = pfn_to_page(shadow_page >> PAGE_SHIFT); 1438 1439 return (struct kvm_mmu_page *)page_private(page); 1440 } 1441 1442 static inline u16 kvm_read_ldt(void) 1443 { 1444 u16 ldt; 1445 asm("sldt %0" : "=g"(ldt)); 1446 return ldt; 1447 } 1448 1449 static inline void kvm_load_ldt(u16 sel) 1450 { 1451 asm("lldt %0" : : "rm"(sel)); 1452 } 1453 1454 #ifdef CONFIG_X86_64 1455 static inline unsigned long read_msr(unsigned long msr) 1456 { 1457 u64 value; 1458 1459 rdmsrl(msr, value); 1460 return value; 1461 } 1462 #endif 1463 1464 static inline u32 get_rdx_init_val(void) 1465 { 1466 return 0x600; /* P6 family */ 1467 } 1468 1469 static inline void kvm_inject_gp(struct kvm_vcpu *vcpu, u32 error_code) 1470 { 1471 kvm_queue_exception_e(vcpu, GP_VECTOR, error_code); 1472 } 1473 1474 #define TSS_IOPB_BASE_OFFSET 0x66 1475 #define TSS_BASE_SIZE 0x68 1476 #define TSS_IOPB_SIZE (65536 / 8) 1477 #define TSS_REDIRECTION_SIZE (256 / 8) 1478 #define RMODE_TSS_SIZE \ 1479 (TSS_BASE_SIZE + TSS_REDIRECTION_SIZE + TSS_IOPB_SIZE + 1) 1480 1481 enum { 1482 TASK_SWITCH_CALL = 0, 1483 TASK_SWITCH_IRET = 1, 1484 TASK_SWITCH_JMP = 2, 1485 TASK_SWITCH_GATE = 3, 1486 }; 1487 1488 #define HF_GIF_MASK (1 << 0) 1489 #define HF_HIF_MASK (1 << 1) 1490 #define HF_VINTR_MASK (1 << 2) 1491 #define HF_NMI_MASK (1 << 3) 1492 #define HF_IRET_MASK (1 << 4) 1493 #define HF_GUEST_MASK (1 << 5) /* VCPU is in guest-mode */ 1494 #define HF_SMM_MASK (1 << 6) 1495 #define HF_SMM_INSIDE_NMI_MASK (1 << 7) 1496 1497 #define __KVM_VCPU_MULTIPLE_ADDRESS_SPACE 1498 #define KVM_ADDRESS_SPACE_NUM 2 1499 1500 #define kvm_arch_vcpu_memslots_id(vcpu) ((vcpu)->arch.hflags & HF_SMM_MASK ? 1 : 0) 1501 #define kvm_memslots_for_spte_role(kvm, role) __kvm_memslots(kvm, (role).smm) 1502 1503 asmlinkage void __noreturn kvm_spurious_fault(void); 1504 1505 /* 1506 * Hardware virtualization extension instructions may fault if a 1507 * reboot turns off virtualization while processes are running. 1508 * Usually after catching the fault we just panic; during reboot 1509 * instead the instruction is ignored. 1510 */ 1511 #define ____kvm_handle_fault_on_reboot(insn, cleanup_insn) \ 1512 "666: \n\t" \ 1513 insn "\n\t" \ 1514 "jmp 668f \n\t" \ 1515 "667: \n\t" \ 1516 "call kvm_spurious_fault \n\t" \ 1517 "668: \n\t" \ 1518 ".pushsection .fixup, \"ax\" \n\t" \ 1519 "700: \n\t" \ 1520 cleanup_insn "\n\t" \ 1521 "cmpb $0, kvm_rebooting\n\t" \ 1522 "je 667b \n\t" \ 1523 "jmp 668b \n\t" \ 1524 ".popsection \n\t" \ 1525 _ASM_EXTABLE(666b, 700b) 1526 1527 #define __kvm_handle_fault_on_reboot(insn) \ 1528 ____kvm_handle_fault_on_reboot(insn, "") 1529 1530 #define KVM_ARCH_WANT_MMU_NOTIFIER 1531 int kvm_unmap_hva_range(struct kvm *kvm, unsigned long start, unsigned long end); 1532 int kvm_age_hva(struct kvm *kvm, unsigned long start, unsigned long end); 1533 int kvm_test_age_hva(struct kvm *kvm, unsigned long hva); 1534 int kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte); 1535 int kvm_cpu_has_injectable_intr(struct kvm_vcpu *v); 1536 int kvm_cpu_has_interrupt(struct kvm_vcpu *vcpu); 1537 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu); 1538 int kvm_cpu_get_interrupt(struct kvm_vcpu *v); 1539 void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event); 1540 void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu); 1541 1542 int kvm_pv_send_ipi(struct kvm *kvm, unsigned long ipi_bitmap_low, 1543 unsigned long ipi_bitmap_high, u32 min, 1544 unsigned long icr, int op_64_bit); 1545 1546 void kvm_define_shared_msr(unsigned index, u32 msr); 1547 int kvm_set_shared_msr(unsigned index, u64 val, u64 mask); 1548 1549 u64 kvm_scale_tsc(struct kvm_vcpu *vcpu, u64 tsc); 1550 u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc); 1551 1552 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu); 1553 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip); 1554 1555 void kvm_make_mclock_inprogress_request(struct kvm *kvm); 1556 void kvm_make_scan_ioapic_request(struct kvm *kvm); 1557 1558 void kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu, 1559 struct kvm_async_pf *work); 1560 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu, 1561 struct kvm_async_pf *work); 1562 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, 1563 struct kvm_async_pf *work); 1564 bool kvm_arch_can_inject_async_page_present(struct kvm_vcpu *vcpu); 1565 extern bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn); 1566 1567 int kvm_skip_emulated_instruction(struct kvm_vcpu *vcpu); 1568 int kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err); 1569 void __kvm_request_immediate_exit(struct kvm_vcpu *vcpu); 1570 1571 int kvm_is_in_guest(void); 1572 1573 int __x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, u32 size); 1574 int x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, u32 size); 1575 bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu); 1576 bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu); 1577 1578 bool kvm_intr_is_single_vcpu(struct kvm *kvm, struct kvm_lapic_irq *irq, 1579 struct kvm_vcpu **dest_vcpu); 1580 1581 void kvm_set_msi_irq(struct kvm *kvm, struct kvm_kernel_irq_routing_entry *e, 1582 struct kvm_lapic_irq *irq); 1583 1584 static inline void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu) 1585 { 1586 if (kvm_x86_ops->vcpu_blocking) 1587 kvm_x86_ops->vcpu_blocking(vcpu); 1588 } 1589 1590 static inline void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu) 1591 { 1592 if (kvm_x86_ops->vcpu_unblocking) 1593 kvm_x86_ops->vcpu_unblocking(vcpu); 1594 } 1595 1596 static inline void kvm_arch_vcpu_block_finish(struct kvm_vcpu *vcpu) {} 1597 1598 static inline int kvm_cpu_get_apicid(int mps_cpu) 1599 { 1600 #ifdef CONFIG_X86_LOCAL_APIC 1601 return default_cpu_present_to_apicid(mps_cpu); 1602 #else 1603 WARN_ON_ONCE(1); 1604 return BAD_APICID; 1605 #endif 1606 } 1607 1608 #define put_smstate(type, buf, offset, val) \ 1609 *(type *)((buf) + (offset) - 0x7e00) = val 1610 1611 #define GET_SMSTATE(type, buf, offset) \ 1612 (*(type *)((buf) + (offset) - 0x7e00)) 1613 1614 #endif /* _ASM_X86_KVM_HOST_H */ 1615