xref: /openbmc/linux/arch/x86/include/asm/kvm_host.h (revision cce8ccca)
1 /* SPDX-License-Identifier: GPL-2.0-only */
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  *
5  * This header defines architecture specific interfaces, x86 version
6  */
7 
8 #ifndef _ASM_X86_KVM_HOST_H
9 #define _ASM_X86_KVM_HOST_H
10 
11 #include <linux/types.h>
12 #include <linux/mm.h>
13 #include <linux/mmu_notifier.h>
14 #include <linux/tracepoint.h>
15 #include <linux/cpumask.h>
16 #include <linux/irq_work.h>
17 #include <linux/irq.h>
18 
19 #include <linux/kvm.h>
20 #include <linux/kvm_para.h>
21 #include <linux/kvm_types.h>
22 #include <linux/perf_event.h>
23 #include <linux/pvclock_gtod.h>
24 #include <linux/clocksource.h>
25 #include <linux/irqbypass.h>
26 #include <linux/hyperv.h>
27 
28 #include <asm/apic.h>
29 #include <asm/pvclock-abi.h>
30 #include <asm/desc.h>
31 #include <asm/mtrr.h>
32 #include <asm/msr-index.h>
33 #include <asm/asm.h>
34 #include <asm/kvm_page_track.h>
35 #include <asm/kvm_vcpu_regs.h>
36 #include <asm/hyperv-tlfs.h>
37 
38 #define __KVM_HAVE_ARCH_VCPU_DEBUGFS
39 
40 #define KVM_MAX_VCPUS 288
41 #define KVM_SOFT_MAX_VCPUS 240
42 #define KVM_MAX_VCPU_ID 1023
43 #define KVM_USER_MEM_SLOTS 509
44 /* memory slots that are not exposed to userspace */
45 #define KVM_PRIVATE_MEM_SLOTS 3
46 #define KVM_MEM_SLOTS_NUM (KVM_USER_MEM_SLOTS + KVM_PRIVATE_MEM_SLOTS)
47 
48 #define KVM_HALT_POLL_NS_DEFAULT 200000
49 
50 #define KVM_IRQCHIP_NUM_PINS  KVM_IOAPIC_NUM_PINS
51 
52 /* x86-specific vcpu->requests bit members */
53 #define KVM_REQ_MIGRATE_TIMER		KVM_ARCH_REQ(0)
54 #define KVM_REQ_REPORT_TPR_ACCESS	KVM_ARCH_REQ(1)
55 #define KVM_REQ_TRIPLE_FAULT		KVM_ARCH_REQ(2)
56 #define KVM_REQ_MMU_SYNC		KVM_ARCH_REQ(3)
57 #define KVM_REQ_CLOCK_UPDATE		KVM_ARCH_REQ(4)
58 #define KVM_REQ_LOAD_CR3		KVM_ARCH_REQ(5)
59 #define KVM_REQ_EVENT			KVM_ARCH_REQ(6)
60 #define KVM_REQ_APF_HALT		KVM_ARCH_REQ(7)
61 #define KVM_REQ_STEAL_UPDATE		KVM_ARCH_REQ(8)
62 #define KVM_REQ_NMI			KVM_ARCH_REQ(9)
63 #define KVM_REQ_PMU			KVM_ARCH_REQ(10)
64 #define KVM_REQ_PMI			KVM_ARCH_REQ(11)
65 #define KVM_REQ_SMI			KVM_ARCH_REQ(12)
66 #define KVM_REQ_MASTERCLOCK_UPDATE	KVM_ARCH_REQ(13)
67 #define KVM_REQ_MCLOCK_INPROGRESS \
68 	KVM_ARCH_REQ_FLAGS(14, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
69 #define KVM_REQ_SCAN_IOAPIC \
70 	KVM_ARCH_REQ_FLAGS(15, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
71 #define KVM_REQ_GLOBAL_CLOCK_UPDATE	KVM_ARCH_REQ(16)
72 #define KVM_REQ_APIC_PAGE_RELOAD \
73 	KVM_ARCH_REQ_FLAGS(17, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
74 #define KVM_REQ_HV_CRASH		KVM_ARCH_REQ(18)
75 #define KVM_REQ_IOAPIC_EOI_EXIT		KVM_ARCH_REQ(19)
76 #define KVM_REQ_HV_RESET		KVM_ARCH_REQ(20)
77 #define KVM_REQ_HV_EXIT			KVM_ARCH_REQ(21)
78 #define KVM_REQ_HV_STIMER		KVM_ARCH_REQ(22)
79 #define KVM_REQ_LOAD_EOI_EXITMAP	KVM_ARCH_REQ(23)
80 #define KVM_REQ_GET_VMCS12_PAGES	KVM_ARCH_REQ(24)
81 
82 #define CR0_RESERVED_BITS                                               \
83 	(~(unsigned long)(X86_CR0_PE | X86_CR0_MP | X86_CR0_EM | X86_CR0_TS \
84 			  | X86_CR0_ET | X86_CR0_NE | X86_CR0_WP | X86_CR0_AM \
85 			  | X86_CR0_NW | X86_CR0_CD | X86_CR0_PG))
86 
87 #define CR4_RESERVED_BITS                                               \
88 	(~(unsigned long)(X86_CR4_VME | X86_CR4_PVI | X86_CR4_TSD | X86_CR4_DE\
89 			  | X86_CR4_PSE | X86_CR4_PAE | X86_CR4_MCE     \
90 			  | X86_CR4_PGE | X86_CR4_PCE | X86_CR4_OSFXSR | X86_CR4_PCIDE \
91 			  | X86_CR4_OSXSAVE | X86_CR4_SMEP | X86_CR4_FSGSBASE \
92 			  | X86_CR4_OSXMMEXCPT | X86_CR4_LA57 | X86_CR4_VMXE \
93 			  | X86_CR4_SMAP | X86_CR4_PKE | X86_CR4_UMIP))
94 
95 #define CR8_RESERVED_BITS (~(unsigned long)X86_CR8_TPR)
96 
97 
98 
99 #define INVALID_PAGE (~(hpa_t)0)
100 #define VALID_PAGE(x) ((x) != INVALID_PAGE)
101 
102 #define UNMAPPED_GVA (~(gpa_t)0)
103 
104 /* KVM Hugepage definitions for x86 */
105 enum {
106 	PT_PAGE_TABLE_LEVEL   = 1,
107 	PT_DIRECTORY_LEVEL    = 2,
108 	PT_PDPE_LEVEL         = 3,
109 	/* set max level to the biggest one */
110 	PT_MAX_HUGEPAGE_LEVEL = PT_PDPE_LEVEL,
111 };
112 #define KVM_NR_PAGE_SIZES	(PT_MAX_HUGEPAGE_LEVEL - \
113 				 PT_PAGE_TABLE_LEVEL + 1)
114 #define KVM_HPAGE_GFN_SHIFT(x)	(((x) - 1) * 9)
115 #define KVM_HPAGE_SHIFT(x)	(PAGE_SHIFT + KVM_HPAGE_GFN_SHIFT(x))
116 #define KVM_HPAGE_SIZE(x)	(1UL << KVM_HPAGE_SHIFT(x))
117 #define KVM_HPAGE_MASK(x)	(~(KVM_HPAGE_SIZE(x) - 1))
118 #define KVM_PAGES_PER_HPAGE(x)	(KVM_HPAGE_SIZE(x) / PAGE_SIZE)
119 
120 static inline gfn_t gfn_to_index(gfn_t gfn, gfn_t base_gfn, int level)
121 {
122 	/* KVM_HPAGE_GFN_SHIFT(PT_PAGE_TABLE_LEVEL) must be 0. */
123 	return (gfn >> KVM_HPAGE_GFN_SHIFT(level)) -
124 		(base_gfn >> KVM_HPAGE_GFN_SHIFT(level));
125 }
126 
127 #define KVM_PERMILLE_MMU_PAGES 20
128 #define KVM_MIN_ALLOC_MMU_PAGES 64UL
129 #define KVM_MMU_HASH_SHIFT 12
130 #define KVM_NUM_MMU_PAGES (1 << KVM_MMU_HASH_SHIFT)
131 #define KVM_MIN_FREE_MMU_PAGES 5
132 #define KVM_REFILL_PAGES 25
133 #define KVM_MAX_CPUID_ENTRIES 80
134 #define KVM_NR_FIXED_MTRR_REGION 88
135 #define KVM_NR_VAR_MTRR 8
136 
137 #define ASYNC_PF_PER_VCPU 64
138 
139 enum kvm_reg {
140 	VCPU_REGS_RAX = __VCPU_REGS_RAX,
141 	VCPU_REGS_RCX = __VCPU_REGS_RCX,
142 	VCPU_REGS_RDX = __VCPU_REGS_RDX,
143 	VCPU_REGS_RBX = __VCPU_REGS_RBX,
144 	VCPU_REGS_RSP = __VCPU_REGS_RSP,
145 	VCPU_REGS_RBP = __VCPU_REGS_RBP,
146 	VCPU_REGS_RSI = __VCPU_REGS_RSI,
147 	VCPU_REGS_RDI = __VCPU_REGS_RDI,
148 #ifdef CONFIG_X86_64
149 	VCPU_REGS_R8  = __VCPU_REGS_R8,
150 	VCPU_REGS_R9  = __VCPU_REGS_R9,
151 	VCPU_REGS_R10 = __VCPU_REGS_R10,
152 	VCPU_REGS_R11 = __VCPU_REGS_R11,
153 	VCPU_REGS_R12 = __VCPU_REGS_R12,
154 	VCPU_REGS_R13 = __VCPU_REGS_R13,
155 	VCPU_REGS_R14 = __VCPU_REGS_R14,
156 	VCPU_REGS_R15 = __VCPU_REGS_R15,
157 #endif
158 	VCPU_REGS_RIP,
159 	NR_VCPU_REGS
160 };
161 
162 enum kvm_reg_ex {
163 	VCPU_EXREG_PDPTR = NR_VCPU_REGS,
164 	VCPU_EXREG_CR3,
165 	VCPU_EXREG_RFLAGS,
166 	VCPU_EXREG_SEGMENTS,
167 };
168 
169 enum {
170 	VCPU_SREG_ES,
171 	VCPU_SREG_CS,
172 	VCPU_SREG_SS,
173 	VCPU_SREG_DS,
174 	VCPU_SREG_FS,
175 	VCPU_SREG_GS,
176 	VCPU_SREG_TR,
177 	VCPU_SREG_LDTR,
178 };
179 
180 #include <asm/kvm_emulate.h>
181 
182 #define KVM_NR_MEM_OBJS 40
183 
184 #define KVM_NR_DB_REGS	4
185 
186 #define DR6_BD		(1 << 13)
187 #define DR6_BS		(1 << 14)
188 #define DR6_BT		(1 << 15)
189 #define DR6_RTM		(1 << 16)
190 #define DR6_FIXED_1	0xfffe0ff0
191 #define DR6_INIT	0xffff0ff0
192 #define DR6_VOLATILE	0x0001e00f
193 
194 #define DR7_BP_EN_MASK	0x000000ff
195 #define DR7_GE		(1 << 9)
196 #define DR7_GD		(1 << 13)
197 #define DR7_FIXED_1	0x00000400
198 #define DR7_VOLATILE	0xffff2bff
199 
200 #define PFERR_PRESENT_BIT 0
201 #define PFERR_WRITE_BIT 1
202 #define PFERR_USER_BIT 2
203 #define PFERR_RSVD_BIT 3
204 #define PFERR_FETCH_BIT 4
205 #define PFERR_PK_BIT 5
206 #define PFERR_GUEST_FINAL_BIT 32
207 #define PFERR_GUEST_PAGE_BIT 33
208 
209 #define PFERR_PRESENT_MASK (1U << PFERR_PRESENT_BIT)
210 #define PFERR_WRITE_MASK (1U << PFERR_WRITE_BIT)
211 #define PFERR_USER_MASK (1U << PFERR_USER_BIT)
212 #define PFERR_RSVD_MASK (1U << PFERR_RSVD_BIT)
213 #define PFERR_FETCH_MASK (1U << PFERR_FETCH_BIT)
214 #define PFERR_PK_MASK (1U << PFERR_PK_BIT)
215 #define PFERR_GUEST_FINAL_MASK (1ULL << PFERR_GUEST_FINAL_BIT)
216 #define PFERR_GUEST_PAGE_MASK (1ULL << PFERR_GUEST_PAGE_BIT)
217 
218 #define PFERR_NESTED_GUEST_PAGE (PFERR_GUEST_PAGE_MASK |	\
219 				 PFERR_WRITE_MASK |		\
220 				 PFERR_PRESENT_MASK)
221 
222 /*
223  * The mask used to denote special SPTEs, which can be either MMIO SPTEs or
224  * Access Tracking SPTEs. We use bit 62 instead of bit 63 to avoid conflicting
225  * with the SVE bit in EPT PTEs.
226  */
227 #define SPTE_SPECIAL_MASK (1ULL << 62)
228 
229 /* apic attention bits */
230 #define KVM_APIC_CHECK_VAPIC	0
231 /*
232  * The following bit is set with PV-EOI, unset on EOI.
233  * We detect PV-EOI changes by guest by comparing
234  * this bit with PV-EOI in guest memory.
235  * See the implementation in apic_update_pv_eoi.
236  */
237 #define KVM_APIC_PV_EOI_PENDING	1
238 
239 struct kvm_kernel_irq_routing_entry;
240 
241 /*
242  * We don't want allocation failures within the mmu code, so we preallocate
243  * enough memory for a single page fault in a cache.
244  */
245 struct kvm_mmu_memory_cache {
246 	int nobjs;
247 	void *objects[KVM_NR_MEM_OBJS];
248 };
249 
250 /*
251  * the pages used as guest page table on soft mmu are tracked by
252  * kvm_memory_slot.arch.gfn_track which is 16 bits, so the role bits used
253  * by indirect shadow page can not be more than 15 bits.
254  *
255  * Currently, we used 14 bits that are @level, @gpte_is_8_bytes, @quadrant, @access,
256  * @nxe, @cr0_wp, @smep_andnot_wp and @smap_andnot_wp.
257  */
258 union kvm_mmu_page_role {
259 	u32 word;
260 	struct {
261 		unsigned level:4;
262 		unsigned gpte_is_8_bytes:1;
263 		unsigned quadrant:2;
264 		unsigned direct:1;
265 		unsigned access:3;
266 		unsigned invalid:1;
267 		unsigned nxe:1;
268 		unsigned cr0_wp:1;
269 		unsigned smep_andnot_wp:1;
270 		unsigned smap_andnot_wp:1;
271 		unsigned ad_disabled:1;
272 		unsigned guest_mode:1;
273 		unsigned :6;
274 
275 		/*
276 		 * This is left at the top of the word so that
277 		 * kvm_memslots_for_spte_role can extract it with a
278 		 * simple shift.  While there is room, give it a whole
279 		 * byte so it is also faster to load it from memory.
280 		 */
281 		unsigned smm:8;
282 	};
283 };
284 
285 union kvm_mmu_extended_role {
286 /*
287  * This structure complements kvm_mmu_page_role caching everything needed for
288  * MMU configuration. If nothing in both these structures changed, MMU
289  * re-configuration can be skipped. @valid bit is set on first usage so we don't
290  * treat all-zero structure as valid data.
291  */
292 	u32 word;
293 	struct {
294 		unsigned int valid:1;
295 		unsigned int execonly:1;
296 		unsigned int cr0_pg:1;
297 		unsigned int cr4_pae:1;
298 		unsigned int cr4_pse:1;
299 		unsigned int cr4_pke:1;
300 		unsigned int cr4_smap:1;
301 		unsigned int cr4_smep:1;
302 		unsigned int cr4_la57:1;
303 		unsigned int maxphyaddr:6;
304 	};
305 };
306 
307 union kvm_mmu_role {
308 	u64 as_u64;
309 	struct {
310 		union kvm_mmu_page_role base;
311 		union kvm_mmu_extended_role ext;
312 	};
313 };
314 
315 struct kvm_rmap_head {
316 	unsigned long val;
317 };
318 
319 struct kvm_mmu_page {
320 	struct list_head link;
321 	struct hlist_node hash_link;
322 	bool unsync;
323 	bool mmio_cached;
324 
325 	/*
326 	 * The following two entries are used to key the shadow page in the
327 	 * hash table.
328 	 */
329 	union kvm_mmu_page_role role;
330 	gfn_t gfn;
331 
332 	u64 *spt;
333 	/* hold the gfn of each spte inside spt */
334 	gfn_t *gfns;
335 	int root_count;          /* Currently serving as active root */
336 	unsigned int unsync_children;
337 	struct kvm_rmap_head parent_ptes; /* rmap pointers to parent sptes */
338 	DECLARE_BITMAP(unsync_child_bitmap, 512);
339 
340 #ifdef CONFIG_X86_32
341 	/*
342 	 * Used out of the mmu-lock to avoid reading spte values while an
343 	 * update is in progress; see the comments in __get_spte_lockless().
344 	 */
345 	int clear_spte_count;
346 #endif
347 
348 	/* Number of writes since the last time traversal visited this page.  */
349 	atomic_t write_flooding_count;
350 };
351 
352 struct kvm_pio_request {
353 	unsigned long linear_rip;
354 	unsigned long count;
355 	int in;
356 	int port;
357 	int size;
358 };
359 
360 #define PT64_ROOT_MAX_LEVEL 5
361 
362 struct rsvd_bits_validate {
363 	u64 rsvd_bits_mask[2][PT64_ROOT_MAX_LEVEL];
364 	u64 bad_mt_xwr;
365 };
366 
367 struct kvm_mmu_root_info {
368 	gpa_t cr3;
369 	hpa_t hpa;
370 };
371 
372 #define KVM_MMU_ROOT_INFO_INVALID \
373 	((struct kvm_mmu_root_info) { .cr3 = INVALID_PAGE, .hpa = INVALID_PAGE })
374 
375 #define KVM_MMU_NUM_PREV_ROOTS 3
376 
377 /*
378  * x86 supports 4 paging modes (5-level 64-bit, 4-level 64-bit, 3-level 32-bit,
379  * and 2-level 32-bit).  The kvm_mmu structure abstracts the details of the
380  * current mmu mode.
381  */
382 struct kvm_mmu {
383 	void (*set_cr3)(struct kvm_vcpu *vcpu, unsigned long root);
384 	unsigned long (*get_cr3)(struct kvm_vcpu *vcpu);
385 	u64 (*get_pdptr)(struct kvm_vcpu *vcpu, int index);
386 	int (*page_fault)(struct kvm_vcpu *vcpu, gva_t gva, u32 err,
387 			  bool prefault);
388 	void (*inject_page_fault)(struct kvm_vcpu *vcpu,
389 				  struct x86_exception *fault);
390 	gpa_t (*gva_to_gpa)(struct kvm_vcpu *vcpu, gva_t gva, u32 access,
391 			    struct x86_exception *exception);
392 	gpa_t (*translate_gpa)(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access,
393 			       struct x86_exception *exception);
394 	int (*sync_page)(struct kvm_vcpu *vcpu,
395 			 struct kvm_mmu_page *sp);
396 	void (*invlpg)(struct kvm_vcpu *vcpu, gva_t gva, hpa_t root_hpa);
397 	void (*update_pte)(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
398 			   u64 *spte, const void *pte);
399 	hpa_t root_hpa;
400 	gpa_t root_cr3;
401 	union kvm_mmu_role mmu_role;
402 	u8 root_level;
403 	u8 shadow_root_level;
404 	u8 ept_ad;
405 	bool direct_map;
406 	struct kvm_mmu_root_info prev_roots[KVM_MMU_NUM_PREV_ROOTS];
407 
408 	/*
409 	 * Bitmap; bit set = permission fault
410 	 * Byte index: page fault error code [4:1]
411 	 * Bit index: pte permissions in ACC_* format
412 	 */
413 	u8 permissions[16];
414 
415 	/*
416 	* The pkru_mask indicates if protection key checks are needed.  It
417 	* consists of 16 domains indexed by page fault error code bits [4:1],
418 	* with PFEC.RSVD replaced by ACC_USER_MASK from the page tables.
419 	* Each domain has 2 bits which are ANDed with AD and WD from PKRU.
420 	*/
421 	u32 pkru_mask;
422 
423 	u64 *pae_root;
424 	u64 *lm_root;
425 
426 	/*
427 	 * check zero bits on shadow page table entries, these
428 	 * bits include not only hardware reserved bits but also
429 	 * the bits spte never used.
430 	 */
431 	struct rsvd_bits_validate shadow_zero_check;
432 
433 	struct rsvd_bits_validate guest_rsvd_check;
434 
435 	/* Can have large pages at levels 2..last_nonleaf_level-1. */
436 	u8 last_nonleaf_level;
437 
438 	bool nx;
439 
440 	u64 pdptrs[4]; /* pae */
441 };
442 
443 struct kvm_tlb_range {
444 	u64 start_gfn;
445 	u64 pages;
446 };
447 
448 enum pmc_type {
449 	KVM_PMC_GP = 0,
450 	KVM_PMC_FIXED,
451 };
452 
453 struct kvm_pmc {
454 	enum pmc_type type;
455 	u8 idx;
456 	u64 counter;
457 	u64 eventsel;
458 	struct perf_event *perf_event;
459 	struct kvm_vcpu *vcpu;
460 };
461 
462 struct kvm_pmu {
463 	unsigned nr_arch_gp_counters;
464 	unsigned nr_arch_fixed_counters;
465 	unsigned available_event_types;
466 	u64 fixed_ctr_ctrl;
467 	u64 global_ctrl;
468 	u64 global_status;
469 	u64 global_ovf_ctrl;
470 	u64 counter_bitmask[2];
471 	u64 global_ctrl_mask;
472 	u64 global_ovf_ctrl_mask;
473 	u64 reserved_bits;
474 	u8 version;
475 	struct kvm_pmc gp_counters[INTEL_PMC_MAX_GENERIC];
476 	struct kvm_pmc fixed_counters[INTEL_PMC_MAX_FIXED];
477 	struct irq_work irq_work;
478 	u64 reprogram_pmi;
479 };
480 
481 struct kvm_pmu_ops;
482 
483 enum {
484 	KVM_DEBUGREG_BP_ENABLED = 1,
485 	KVM_DEBUGREG_WONT_EXIT = 2,
486 	KVM_DEBUGREG_RELOAD = 4,
487 };
488 
489 struct kvm_mtrr_range {
490 	u64 base;
491 	u64 mask;
492 	struct list_head node;
493 };
494 
495 struct kvm_mtrr {
496 	struct kvm_mtrr_range var_ranges[KVM_NR_VAR_MTRR];
497 	mtrr_type fixed_ranges[KVM_NR_FIXED_MTRR_REGION];
498 	u64 deftype;
499 
500 	struct list_head head;
501 };
502 
503 /* Hyper-V SynIC timer */
504 struct kvm_vcpu_hv_stimer {
505 	struct hrtimer timer;
506 	int index;
507 	union hv_stimer_config config;
508 	u64 count;
509 	u64 exp_time;
510 	struct hv_message msg;
511 	bool msg_pending;
512 };
513 
514 /* Hyper-V synthetic interrupt controller (SynIC)*/
515 struct kvm_vcpu_hv_synic {
516 	u64 version;
517 	u64 control;
518 	u64 msg_page;
519 	u64 evt_page;
520 	atomic64_t sint[HV_SYNIC_SINT_COUNT];
521 	atomic_t sint_to_gsi[HV_SYNIC_SINT_COUNT];
522 	DECLARE_BITMAP(auto_eoi_bitmap, 256);
523 	DECLARE_BITMAP(vec_bitmap, 256);
524 	bool active;
525 	bool dont_zero_synic_pages;
526 };
527 
528 /* Hyper-V per vcpu emulation context */
529 struct kvm_vcpu_hv {
530 	u32 vp_index;
531 	u64 hv_vapic;
532 	s64 runtime_offset;
533 	struct kvm_vcpu_hv_synic synic;
534 	struct kvm_hyperv_exit exit;
535 	struct kvm_vcpu_hv_stimer stimer[HV_SYNIC_STIMER_COUNT];
536 	DECLARE_BITMAP(stimer_pending_bitmap, HV_SYNIC_STIMER_COUNT);
537 	cpumask_t tlb_flush;
538 };
539 
540 struct kvm_vcpu_arch {
541 	/*
542 	 * rip and regs accesses must go through
543 	 * kvm_{register,rip}_{read,write} functions.
544 	 */
545 	unsigned long regs[NR_VCPU_REGS];
546 	u32 regs_avail;
547 	u32 regs_dirty;
548 
549 	unsigned long cr0;
550 	unsigned long cr0_guest_owned_bits;
551 	unsigned long cr2;
552 	unsigned long cr3;
553 	unsigned long cr4;
554 	unsigned long cr4_guest_owned_bits;
555 	unsigned long cr8;
556 	u32 pkru;
557 	u32 hflags;
558 	u64 efer;
559 	u64 apic_base;
560 	struct kvm_lapic *apic;    /* kernel irqchip context */
561 	bool apicv_active;
562 	bool load_eoi_exitmap_pending;
563 	DECLARE_BITMAP(ioapic_handled_vectors, 256);
564 	unsigned long apic_attention;
565 	int32_t apic_arb_prio;
566 	int mp_state;
567 	u64 ia32_misc_enable_msr;
568 	u64 smbase;
569 	u64 smi_count;
570 	bool tpr_access_reporting;
571 	u64 ia32_xss;
572 	u64 microcode_version;
573 	u64 arch_capabilities;
574 
575 	/*
576 	 * Paging state of the vcpu
577 	 *
578 	 * If the vcpu runs in guest mode with two level paging this still saves
579 	 * the paging mode of the l1 guest. This context is always used to
580 	 * handle faults.
581 	 */
582 	struct kvm_mmu *mmu;
583 
584 	/* Non-nested MMU for L1 */
585 	struct kvm_mmu root_mmu;
586 
587 	/* L1 MMU when running nested */
588 	struct kvm_mmu guest_mmu;
589 
590 	/*
591 	 * Paging state of an L2 guest (used for nested npt)
592 	 *
593 	 * This context will save all necessary information to walk page tables
594 	 * of the an L2 guest. This context is only initialized for page table
595 	 * walking and not for faulting since we never handle l2 page faults on
596 	 * the host.
597 	 */
598 	struct kvm_mmu nested_mmu;
599 
600 	/*
601 	 * Pointer to the mmu context currently used for
602 	 * gva_to_gpa translations.
603 	 */
604 	struct kvm_mmu *walk_mmu;
605 
606 	struct kvm_mmu_memory_cache mmu_pte_list_desc_cache;
607 	struct kvm_mmu_memory_cache mmu_page_cache;
608 	struct kvm_mmu_memory_cache mmu_page_header_cache;
609 
610 	/*
611 	 * QEMU userspace and the guest each have their own FPU state.
612 	 * In vcpu_run, we switch between the user and guest FPU contexts.
613 	 * While running a VCPU, the VCPU thread will have the guest FPU
614 	 * context.
615 	 *
616 	 * Note that while the PKRU state lives inside the fpu registers,
617 	 * it is switched out separately at VMENTER and VMEXIT time. The
618 	 * "guest_fpu" state here contains the guest FPU context, with the
619 	 * host PRKU bits.
620 	 */
621 	struct fpu *user_fpu;
622 	struct fpu *guest_fpu;
623 
624 	u64 xcr0;
625 	u64 guest_supported_xcr0;
626 	u32 guest_xstate_size;
627 
628 	struct kvm_pio_request pio;
629 	void *pio_data;
630 
631 	u8 event_exit_inst_len;
632 
633 	struct kvm_queued_exception {
634 		bool pending;
635 		bool injected;
636 		bool has_error_code;
637 		u8 nr;
638 		u32 error_code;
639 		unsigned long payload;
640 		bool has_payload;
641 		u8 nested_apf;
642 	} exception;
643 
644 	struct kvm_queued_interrupt {
645 		bool injected;
646 		bool soft;
647 		u8 nr;
648 	} interrupt;
649 
650 	int halt_request; /* real mode on Intel only */
651 
652 	int cpuid_nent;
653 	struct kvm_cpuid_entry2 cpuid_entries[KVM_MAX_CPUID_ENTRIES];
654 
655 	int maxphyaddr;
656 
657 	/* emulate context */
658 
659 	struct x86_emulate_ctxt emulate_ctxt;
660 	bool emulate_regs_need_sync_to_vcpu;
661 	bool emulate_regs_need_sync_from_vcpu;
662 	int (*complete_userspace_io)(struct kvm_vcpu *vcpu);
663 
664 	gpa_t time;
665 	struct pvclock_vcpu_time_info hv_clock;
666 	unsigned int hw_tsc_khz;
667 	struct gfn_to_hva_cache pv_time;
668 	bool pv_time_enabled;
669 	/* set guest stopped flag in pvclock flags field */
670 	bool pvclock_set_guest_stopped_request;
671 
672 	struct {
673 		u64 msr_val;
674 		u64 last_steal;
675 		struct gfn_to_hva_cache stime;
676 		struct kvm_steal_time steal;
677 	} st;
678 
679 	u64 tsc_offset;
680 	u64 last_guest_tsc;
681 	u64 last_host_tsc;
682 	u64 tsc_offset_adjustment;
683 	u64 this_tsc_nsec;
684 	u64 this_tsc_write;
685 	u64 this_tsc_generation;
686 	bool tsc_catchup;
687 	bool tsc_always_catchup;
688 	s8 virtual_tsc_shift;
689 	u32 virtual_tsc_mult;
690 	u32 virtual_tsc_khz;
691 	s64 ia32_tsc_adjust_msr;
692 	u64 msr_ia32_power_ctl;
693 	u64 tsc_scaling_ratio;
694 
695 	atomic_t nmi_queued;  /* unprocessed asynchronous NMIs */
696 	unsigned nmi_pending; /* NMI queued after currently running handler */
697 	bool nmi_injected;    /* Trying to inject an NMI this entry */
698 	bool smi_pending;    /* SMI queued after currently running handler */
699 
700 	struct kvm_mtrr mtrr_state;
701 	u64 pat;
702 
703 	unsigned switch_db_regs;
704 	unsigned long db[KVM_NR_DB_REGS];
705 	unsigned long dr6;
706 	unsigned long dr7;
707 	unsigned long eff_db[KVM_NR_DB_REGS];
708 	unsigned long guest_debug_dr7;
709 	u64 msr_platform_info;
710 	u64 msr_misc_features_enables;
711 
712 	u64 mcg_cap;
713 	u64 mcg_status;
714 	u64 mcg_ctl;
715 	u64 mcg_ext_ctl;
716 	u64 *mce_banks;
717 
718 	/* Cache MMIO info */
719 	u64 mmio_gva;
720 	unsigned access;
721 	gfn_t mmio_gfn;
722 	u64 mmio_gen;
723 
724 	struct kvm_pmu pmu;
725 
726 	/* used for guest single stepping over the given code position */
727 	unsigned long singlestep_rip;
728 
729 	struct kvm_vcpu_hv hyperv;
730 
731 	cpumask_var_t wbinvd_dirty_mask;
732 
733 	unsigned long last_retry_eip;
734 	unsigned long last_retry_addr;
735 
736 	struct {
737 		bool halted;
738 		gfn_t gfns[roundup_pow_of_two(ASYNC_PF_PER_VCPU)];
739 		struct gfn_to_hva_cache data;
740 		u64 msr_val;
741 		u32 id;
742 		bool send_user_only;
743 		u32 host_apf_reason;
744 		unsigned long nested_apf_token;
745 		bool delivery_as_pf_vmexit;
746 	} apf;
747 
748 	/* OSVW MSRs (AMD only) */
749 	struct {
750 		u64 length;
751 		u64 status;
752 	} osvw;
753 
754 	struct {
755 		u64 msr_val;
756 		struct gfn_to_hva_cache data;
757 	} pv_eoi;
758 
759 	u64 msr_kvm_poll_control;
760 
761 	/*
762 	 * Indicate whether the access faults on its page table in guest
763 	 * which is set when fix page fault and used to detect unhandeable
764 	 * instruction.
765 	 */
766 	bool write_fault_to_shadow_pgtable;
767 
768 	/* set at EPT violation at this point */
769 	unsigned long exit_qualification;
770 
771 	/* pv related host specific info */
772 	struct {
773 		bool pv_unhalted;
774 	} pv;
775 
776 	int pending_ioapic_eoi;
777 	int pending_external_vector;
778 
779 	/* GPA available */
780 	bool gpa_available;
781 	gpa_t gpa_val;
782 
783 	/* be preempted when it's in kernel-mode(cpl=0) */
784 	bool preempted_in_kernel;
785 
786 	/* Flush the L1 Data cache for L1TF mitigation on VMENTER */
787 	bool l1tf_flush_l1d;
788 
789 	/* AMD MSRC001_0015 Hardware Configuration */
790 	u64 msr_hwcr;
791 };
792 
793 struct kvm_lpage_info {
794 	int disallow_lpage;
795 };
796 
797 struct kvm_arch_memory_slot {
798 	struct kvm_rmap_head *rmap[KVM_NR_PAGE_SIZES];
799 	struct kvm_lpage_info *lpage_info[KVM_NR_PAGE_SIZES - 1];
800 	unsigned short *gfn_track[KVM_PAGE_TRACK_MAX];
801 };
802 
803 /*
804  * We use as the mode the number of bits allocated in the LDR for the
805  * logical processor ID.  It happens that these are all powers of two.
806  * This makes it is very easy to detect cases where the APICs are
807  * configured for multiple modes; in that case, we cannot use the map and
808  * hence cannot use kvm_irq_delivery_to_apic_fast either.
809  */
810 #define KVM_APIC_MODE_XAPIC_CLUSTER          4
811 #define KVM_APIC_MODE_XAPIC_FLAT             8
812 #define KVM_APIC_MODE_X2APIC                16
813 
814 struct kvm_apic_map {
815 	struct rcu_head rcu;
816 	u8 mode;
817 	u32 max_apic_id;
818 	union {
819 		struct kvm_lapic *xapic_flat_map[8];
820 		struct kvm_lapic *xapic_cluster_map[16][4];
821 	};
822 	struct kvm_lapic *phys_map[];
823 };
824 
825 /* Hyper-V emulation context */
826 struct kvm_hv {
827 	struct mutex hv_lock;
828 	u64 hv_guest_os_id;
829 	u64 hv_hypercall;
830 	u64 hv_tsc_page;
831 
832 	/* Hyper-v based guest crash (NT kernel bugcheck) parameters */
833 	u64 hv_crash_param[HV_X64_MSR_CRASH_PARAMS];
834 	u64 hv_crash_ctl;
835 
836 	HV_REFERENCE_TSC_PAGE tsc_ref;
837 
838 	struct idr conn_to_evt;
839 
840 	u64 hv_reenlightenment_control;
841 	u64 hv_tsc_emulation_control;
842 	u64 hv_tsc_emulation_status;
843 
844 	/* How many vCPUs have VP index != vCPU index */
845 	atomic_t num_mismatched_vp_indexes;
846 };
847 
848 enum kvm_irqchip_mode {
849 	KVM_IRQCHIP_NONE,
850 	KVM_IRQCHIP_KERNEL,       /* created with KVM_CREATE_IRQCHIP */
851 	KVM_IRQCHIP_SPLIT,        /* created with KVM_CAP_SPLIT_IRQCHIP */
852 };
853 
854 struct kvm_arch {
855 	unsigned long n_used_mmu_pages;
856 	unsigned long n_requested_mmu_pages;
857 	unsigned long n_max_mmu_pages;
858 	unsigned int indirect_shadow_pages;
859 	struct hlist_head mmu_page_hash[KVM_NUM_MMU_PAGES];
860 	/*
861 	 * Hash table of struct kvm_mmu_page.
862 	 */
863 	struct list_head active_mmu_pages;
864 	struct kvm_page_track_notifier_node mmu_sp_tracker;
865 	struct kvm_page_track_notifier_head track_notifier_head;
866 
867 	struct list_head assigned_dev_head;
868 	struct iommu_domain *iommu_domain;
869 	bool iommu_noncoherent;
870 #define __KVM_HAVE_ARCH_NONCOHERENT_DMA
871 	atomic_t noncoherent_dma_count;
872 #define __KVM_HAVE_ARCH_ASSIGNED_DEVICE
873 	atomic_t assigned_device_count;
874 	struct kvm_pic *vpic;
875 	struct kvm_ioapic *vioapic;
876 	struct kvm_pit *vpit;
877 	atomic_t vapics_in_nmi_mode;
878 	struct mutex apic_map_lock;
879 	struct kvm_apic_map *apic_map;
880 
881 	bool apic_access_page_done;
882 
883 	gpa_t wall_clock;
884 
885 	bool mwait_in_guest;
886 	bool hlt_in_guest;
887 	bool pause_in_guest;
888 	bool cstate_in_guest;
889 
890 	unsigned long irq_sources_bitmap;
891 	s64 kvmclock_offset;
892 	raw_spinlock_t tsc_write_lock;
893 	u64 last_tsc_nsec;
894 	u64 last_tsc_write;
895 	u32 last_tsc_khz;
896 	u64 cur_tsc_nsec;
897 	u64 cur_tsc_write;
898 	u64 cur_tsc_offset;
899 	u64 cur_tsc_generation;
900 	int nr_vcpus_matched_tsc;
901 
902 	spinlock_t pvclock_gtod_sync_lock;
903 	bool use_master_clock;
904 	u64 master_kernel_ns;
905 	u64 master_cycle_now;
906 	struct delayed_work kvmclock_update_work;
907 	struct delayed_work kvmclock_sync_work;
908 
909 	struct kvm_xen_hvm_config xen_hvm_config;
910 
911 	/* reads protected by irq_srcu, writes by irq_lock */
912 	struct hlist_head mask_notifier_list;
913 
914 	struct kvm_hv hyperv;
915 
916 	#ifdef CONFIG_KVM_MMU_AUDIT
917 	int audit_point;
918 	#endif
919 
920 	bool backwards_tsc_observed;
921 	bool boot_vcpu_runs_old_kvmclock;
922 	u32 bsp_vcpu_id;
923 
924 	u64 disabled_quirks;
925 
926 	enum kvm_irqchip_mode irqchip_mode;
927 	u8 nr_reserved_ioapic_pins;
928 
929 	bool disabled_lapic_found;
930 
931 	bool x2apic_format;
932 	bool x2apic_broadcast_quirk_disabled;
933 
934 	bool guest_can_read_msr_platform_info;
935 	bool exception_payload_enabled;
936 
937 	struct kvm_pmu_event_filter *pmu_event_filter;
938 };
939 
940 struct kvm_vm_stat {
941 	ulong mmu_shadow_zapped;
942 	ulong mmu_pte_write;
943 	ulong mmu_pte_updated;
944 	ulong mmu_pde_zapped;
945 	ulong mmu_flooded;
946 	ulong mmu_recycled;
947 	ulong mmu_cache_miss;
948 	ulong mmu_unsync;
949 	ulong remote_tlb_flush;
950 	ulong lpages;
951 	ulong max_mmu_page_hash_collisions;
952 };
953 
954 struct kvm_vcpu_stat {
955 	u64 pf_fixed;
956 	u64 pf_guest;
957 	u64 tlb_flush;
958 	u64 invlpg;
959 
960 	u64 exits;
961 	u64 io_exits;
962 	u64 mmio_exits;
963 	u64 signal_exits;
964 	u64 irq_window_exits;
965 	u64 nmi_window_exits;
966 	u64 l1d_flush;
967 	u64 halt_exits;
968 	u64 halt_successful_poll;
969 	u64 halt_attempted_poll;
970 	u64 halt_poll_invalid;
971 	u64 halt_wakeup;
972 	u64 request_irq_exits;
973 	u64 irq_exits;
974 	u64 host_state_reload;
975 	u64 fpu_reload;
976 	u64 insn_emulation;
977 	u64 insn_emulation_fail;
978 	u64 hypercalls;
979 	u64 irq_injections;
980 	u64 nmi_injections;
981 	u64 req_event;
982 };
983 
984 struct x86_instruction_info;
985 
986 struct msr_data {
987 	bool host_initiated;
988 	u32 index;
989 	u64 data;
990 };
991 
992 struct kvm_lapic_irq {
993 	u32 vector;
994 	u16 delivery_mode;
995 	u16 dest_mode;
996 	bool level;
997 	u16 trig_mode;
998 	u32 shorthand;
999 	u32 dest_id;
1000 	bool msi_redir_hint;
1001 };
1002 
1003 struct kvm_x86_ops {
1004 	int (*cpu_has_kvm_support)(void);          /* __init */
1005 	int (*disabled_by_bios)(void);             /* __init */
1006 	int (*hardware_enable)(void);
1007 	void (*hardware_disable)(void);
1008 	int (*check_processor_compatibility)(void);/* __init */
1009 	int (*hardware_setup)(void);               /* __init */
1010 	void (*hardware_unsetup)(void);            /* __exit */
1011 	bool (*cpu_has_accelerated_tpr)(void);
1012 	bool (*has_emulated_msr)(int index);
1013 	void (*cpuid_update)(struct kvm_vcpu *vcpu);
1014 
1015 	struct kvm *(*vm_alloc)(void);
1016 	void (*vm_free)(struct kvm *);
1017 	int (*vm_init)(struct kvm *kvm);
1018 	void (*vm_destroy)(struct kvm *kvm);
1019 
1020 	/* Create, but do not attach this VCPU */
1021 	struct kvm_vcpu *(*vcpu_create)(struct kvm *kvm, unsigned id);
1022 	void (*vcpu_free)(struct kvm_vcpu *vcpu);
1023 	void (*vcpu_reset)(struct kvm_vcpu *vcpu, bool init_event);
1024 
1025 	void (*prepare_guest_switch)(struct kvm_vcpu *vcpu);
1026 	void (*vcpu_load)(struct kvm_vcpu *vcpu, int cpu);
1027 	void (*vcpu_put)(struct kvm_vcpu *vcpu);
1028 
1029 	void (*update_bp_intercept)(struct kvm_vcpu *vcpu);
1030 	int (*get_msr)(struct kvm_vcpu *vcpu, struct msr_data *msr);
1031 	int (*set_msr)(struct kvm_vcpu *vcpu, struct msr_data *msr);
1032 	u64 (*get_segment_base)(struct kvm_vcpu *vcpu, int seg);
1033 	void (*get_segment)(struct kvm_vcpu *vcpu,
1034 			    struct kvm_segment *var, int seg);
1035 	int (*get_cpl)(struct kvm_vcpu *vcpu);
1036 	void (*set_segment)(struct kvm_vcpu *vcpu,
1037 			    struct kvm_segment *var, int seg);
1038 	void (*get_cs_db_l_bits)(struct kvm_vcpu *vcpu, int *db, int *l);
1039 	void (*decache_cr0_guest_bits)(struct kvm_vcpu *vcpu);
1040 	void (*decache_cr3)(struct kvm_vcpu *vcpu);
1041 	void (*decache_cr4_guest_bits)(struct kvm_vcpu *vcpu);
1042 	void (*set_cr0)(struct kvm_vcpu *vcpu, unsigned long cr0);
1043 	void (*set_cr3)(struct kvm_vcpu *vcpu, unsigned long cr3);
1044 	int (*set_cr4)(struct kvm_vcpu *vcpu, unsigned long cr4);
1045 	void (*set_efer)(struct kvm_vcpu *vcpu, u64 efer);
1046 	void (*get_idt)(struct kvm_vcpu *vcpu, struct desc_ptr *dt);
1047 	void (*set_idt)(struct kvm_vcpu *vcpu, struct desc_ptr *dt);
1048 	void (*get_gdt)(struct kvm_vcpu *vcpu, struct desc_ptr *dt);
1049 	void (*set_gdt)(struct kvm_vcpu *vcpu, struct desc_ptr *dt);
1050 	u64 (*get_dr6)(struct kvm_vcpu *vcpu);
1051 	void (*set_dr6)(struct kvm_vcpu *vcpu, unsigned long value);
1052 	void (*sync_dirty_debug_regs)(struct kvm_vcpu *vcpu);
1053 	void (*set_dr7)(struct kvm_vcpu *vcpu, unsigned long value);
1054 	void (*cache_reg)(struct kvm_vcpu *vcpu, enum kvm_reg reg);
1055 	unsigned long (*get_rflags)(struct kvm_vcpu *vcpu);
1056 	void (*set_rflags)(struct kvm_vcpu *vcpu, unsigned long rflags);
1057 
1058 	void (*tlb_flush)(struct kvm_vcpu *vcpu, bool invalidate_gpa);
1059 	int  (*tlb_remote_flush)(struct kvm *kvm);
1060 	int  (*tlb_remote_flush_with_range)(struct kvm *kvm,
1061 			struct kvm_tlb_range *range);
1062 
1063 	/*
1064 	 * Flush any TLB entries associated with the given GVA.
1065 	 * Does not need to flush GPA->HPA mappings.
1066 	 * Can potentially get non-canonical addresses through INVLPGs, which
1067 	 * the implementation may choose to ignore if appropriate.
1068 	 */
1069 	void (*tlb_flush_gva)(struct kvm_vcpu *vcpu, gva_t addr);
1070 
1071 	void (*run)(struct kvm_vcpu *vcpu);
1072 	int (*handle_exit)(struct kvm_vcpu *vcpu);
1073 	void (*skip_emulated_instruction)(struct kvm_vcpu *vcpu);
1074 	void (*set_interrupt_shadow)(struct kvm_vcpu *vcpu, int mask);
1075 	u32 (*get_interrupt_shadow)(struct kvm_vcpu *vcpu);
1076 	void (*patch_hypercall)(struct kvm_vcpu *vcpu,
1077 				unsigned char *hypercall_addr);
1078 	void (*set_irq)(struct kvm_vcpu *vcpu);
1079 	void (*set_nmi)(struct kvm_vcpu *vcpu);
1080 	void (*queue_exception)(struct kvm_vcpu *vcpu);
1081 	void (*cancel_injection)(struct kvm_vcpu *vcpu);
1082 	int (*interrupt_allowed)(struct kvm_vcpu *vcpu);
1083 	int (*nmi_allowed)(struct kvm_vcpu *vcpu);
1084 	bool (*get_nmi_mask)(struct kvm_vcpu *vcpu);
1085 	void (*set_nmi_mask)(struct kvm_vcpu *vcpu, bool masked);
1086 	void (*enable_nmi_window)(struct kvm_vcpu *vcpu);
1087 	void (*enable_irq_window)(struct kvm_vcpu *vcpu);
1088 	void (*update_cr8_intercept)(struct kvm_vcpu *vcpu, int tpr, int irr);
1089 	bool (*get_enable_apicv)(struct kvm_vcpu *vcpu);
1090 	void (*refresh_apicv_exec_ctrl)(struct kvm_vcpu *vcpu);
1091 	void (*hwapic_irr_update)(struct kvm_vcpu *vcpu, int max_irr);
1092 	void (*hwapic_isr_update)(struct kvm_vcpu *vcpu, int isr);
1093 	bool (*guest_apic_has_interrupt)(struct kvm_vcpu *vcpu);
1094 	void (*load_eoi_exitmap)(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap);
1095 	void (*set_virtual_apic_mode)(struct kvm_vcpu *vcpu);
1096 	void (*set_apic_access_page_addr)(struct kvm_vcpu *vcpu, hpa_t hpa);
1097 	void (*deliver_posted_interrupt)(struct kvm_vcpu *vcpu, int vector);
1098 	int (*sync_pir_to_irr)(struct kvm_vcpu *vcpu);
1099 	int (*set_tss_addr)(struct kvm *kvm, unsigned int addr);
1100 	int (*set_identity_map_addr)(struct kvm *kvm, u64 ident_addr);
1101 	int (*get_tdp_level)(struct kvm_vcpu *vcpu);
1102 	u64 (*get_mt_mask)(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio);
1103 	int (*get_lpage_level)(void);
1104 	bool (*rdtscp_supported)(void);
1105 	bool (*invpcid_supported)(void);
1106 
1107 	void (*set_tdp_cr3)(struct kvm_vcpu *vcpu, unsigned long cr3);
1108 
1109 	void (*set_supported_cpuid)(u32 func, struct kvm_cpuid_entry2 *entry);
1110 
1111 	bool (*has_wbinvd_exit)(void);
1112 
1113 	u64 (*read_l1_tsc_offset)(struct kvm_vcpu *vcpu);
1114 	/* Returns actual tsc_offset set in active VMCS */
1115 	u64 (*write_l1_tsc_offset)(struct kvm_vcpu *vcpu, u64 offset);
1116 
1117 	void (*get_exit_info)(struct kvm_vcpu *vcpu, u64 *info1, u64 *info2);
1118 
1119 	int (*check_intercept)(struct kvm_vcpu *vcpu,
1120 			       struct x86_instruction_info *info,
1121 			       enum x86_intercept_stage stage);
1122 	void (*handle_exit_irqoff)(struct kvm_vcpu *vcpu);
1123 	bool (*mpx_supported)(void);
1124 	bool (*xsaves_supported)(void);
1125 	bool (*umip_emulated)(void);
1126 	bool (*pt_supported)(void);
1127 
1128 	int (*check_nested_events)(struct kvm_vcpu *vcpu, bool external_intr);
1129 	void (*request_immediate_exit)(struct kvm_vcpu *vcpu);
1130 
1131 	void (*sched_in)(struct kvm_vcpu *kvm, int cpu);
1132 
1133 	/*
1134 	 * Arch-specific dirty logging hooks. These hooks are only supposed to
1135 	 * be valid if the specific arch has hardware-accelerated dirty logging
1136 	 * mechanism. Currently only for PML on VMX.
1137 	 *
1138 	 *  - slot_enable_log_dirty:
1139 	 *	called when enabling log dirty mode for the slot.
1140 	 *  - slot_disable_log_dirty:
1141 	 *	called when disabling log dirty mode for the slot.
1142 	 *	also called when slot is created with log dirty disabled.
1143 	 *  - flush_log_dirty:
1144 	 *	called before reporting dirty_bitmap to userspace.
1145 	 *  - enable_log_dirty_pt_masked:
1146 	 *	called when reenabling log dirty for the GFNs in the mask after
1147 	 *	corresponding bits are cleared in slot->dirty_bitmap.
1148 	 */
1149 	void (*slot_enable_log_dirty)(struct kvm *kvm,
1150 				      struct kvm_memory_slot *slot);
1151 	void (*slot_disable_log_dirty)(struct kvm *kvm,
1152 				       struct kvm_memory_slot *slot);
1153 	void (*flush_log_dirty)(struct kvm *kvm);
1154 	void (*enable_log_dirty_pt_masked)(struct kvm *kvm,
1155 					   struct kvm_memory_slot *slot,
1156 					   gfn_t offset, unsigned long mask);
1157 	int (*write_log_dirty)(struct kvm_vcpu *vcpu);
1158 
1159 	/* pmu operations of sub-arch */
1160 	const struct kvm_pmu_ops *pmu_ops;
1161 
1162 	/*
1163 	 * Architecture specific hooks for vCPU blocking due to
1164 	 * HLT instruction.
1165 	 * Returns for .pre_block():
1166 	 *    - 0 means continue to block the vCPU.
1167 	 *    - 1 means we cannot block the vCPU since some event
1168 	 *        happens during this period, such as, 'ON' bit in
1169 	 *        posted-interrupts descriptor is set.
1170 	 */
1171 	int (*pre_block)(struct kvm_vcpu *vcpu);
1172 	void (*post_block)(struct kvm_vcpu *vcpu);
1173 
1174 	void (*vcpu_blocking)(struct kvm_vcpu *vcpu);
1175 	void (*vcpu_unblocking)(struct kvm_vcpu *vcpu);
1176 
1177 	int (*update_pi_irte)(struct kvm *kvm, unsigned int host_irq,
1178 			      uint32_t guest_irq, bool set);
1179 	void (*apicv_post_state_restore)(struct kvm_vcpu *vcpu);
1180 	bool (*dy_apicv_has_pending_interrupt)(struct kvm_vcpu *vcpu);
1181 
1182 	int (*set_hv_timer)(struct kvm_vcpu *vcpu, u64 guest_deadline_tsc,
1183 			    bool *expired);
1184 	void (*cancel_hv_timer)(struct kvm_vcpu *vcpu);
1185 
1186 	void (*setup_mce)(struct kvm_vcpu *vcpu);
1187 
1188 	int (*get_nested_state)(struct kvm_vcpu *vcpu,
1189 				struct kvm_nested_state __user *user_kvm_nested_state,
1190 				unsigned user_data_size);
1191 	int (*set_nested_state)(struct kvm_vcpu *vcpu,
1192 				struct kvm_nested_state __user *user_kvm_nested_state,
1193 				struct kvm_nested_state *kvm_state);
1194 	void (*get_vmcs12_pages)(struct kvm_vcpu *vcpu);
1195 
1196 	int (*smi_allowed)(struct kvm_vcpu *vcpu);
1197 	int (*pre_enter_smm)(struct kvm_vcpu *vcpu, char *smstate);
1198 	int (*pre_leave_smm)(struct kvm_vcpu *vcpu, const char *smstate);
1199 	int (*enable_smi_window)(struct kvm_vcpu *vcpu);
1200 
1201 	int (*mem_enc_op)(struct kvm *kvm, void __user *argp);
1202 	int (*mem_enc_reg_region)(struct kvm *kvm, struct kvm_enc_region *argp);
1203 	int (*mem_enc_unreg_region)(struct kvm *kvm, struct kvm_enc_region *argp);
1204 
1205 	int (*get_msr_feature)(struct kvm_msr_entry *entry);
1206 
1207 	int (*nested_enable_evmcs)(struct kvm_vcpu *vcpu,
1208 				   uint16_t *vmcs_version);
1209 	uint16_t (*nested_get_evmcs_version)(struct kvm_vcpu *vcpu);
1210 
1211 	bool (*need_emulation_on_page_fault)(struct kvm_vcpu *vcpu);
1212 };
1213 
1214 struct kvm_arch_async_pf {
1215 	u32 token;
1216 	gfn_t gfn;
1217 	unsigned long cr3;
1218 	bool direct_map;
1219 };
1220 
1221 extern struct kvm_x86_ops *kvm_x86_ops;
1222 extern struct kmem_cache *x86_fpu_cache;
1223 
1224 #define __KVM_HAVE_ARCH_VM_ALLOC
1225 static inline struct kvm *kvm_arch_alloc_vm(void)
1226 {
1227 	return kvm_x86_ops->vm_alloc();
1228 }
1229 
1230 static inline void kvm_arch_free_vm(struct kvm *kvm)
1231 {
1232 	return kvm_x86_ops->vm_free(kvm);
1233 }
1234 
1235 #define __KVM_HAVE_ARCH_FLUSH_REMOTE_TLB
1236 static inline int kvm_arch_flush_remote_tlb(struct kvm *kvm)
1237 {
1238 	if (kvm_x86_ops->tlb_remote_flush &&
1239 	    !kvm_x86_ops->tlb_remote_flush(kvm))
1240 		return 0;
1241 	else
1242 		return -ENOTSUPP;
1243 }
1244 
1245 int kvm_mmu_module_init(void);
1246 void kvm_mmu_module_exit(void);
1247 
1248 void kvm_mmu_destroy(struct kvm_vcpu *vcpu);
1249 int kvm_mmu_create(struct kvm_vcpu *vcpu);
1250 void kvm_mmu_init_vm(struct kvm *kvm);
1251 void kvm_mmu_uninit_vm(struct kvm *kvm);
1252 void kvm_mmu_set_mask_ptes(u64 user_mask, u64 accessed_mask,
1253 		u64 dirty_mask, u64 nx_mask, u64 x_mask, u64 p_mask,
1254 		u64 acc_track_mask, u64 me_mask);
1255 
1256 void kvm_mmu_reset_context(struct kvm_vcpu *vcpu);
1257 void kvm_mmu_slot_remove_write_access(struct kvm *kvm,
1258 				      struct kvm_memory_slot *memslot);
1259 void kvm_mmu_zap_collapsible_sptes(struct kvm *kvm,
1260 				   const struct kvm_memory_slot *memslot);
1261 void kvm_mmu_slot_leaf_clear_dirty(struct kvm *kvm,
1262 				   struct kvm_memory_slot *memslot);
1263 void kvm_mmu_slot_largepage_remove_write_access(struct kvm *kvm,
1264 					struct kvm_memory_slot *memslot);
1265 void kvm_mmu_slot_set_dirty(struct kvm *kvm,
1266 			    struct kvm_memory_slot *memslot);
1267 void kvm_mmu_clear_dirty_pt_masked(struct kvm *kvm,
1268 				   struct kvm_memory_slot *slot,
1269 				   gfn_t gfn_offset, unsigned long mask);
1270 void kvm_mmu_zap_all(struct kvm *kvm);
1271 void kvm_mmu_invalidate_mmio_sptes(struct kvm *kvm, u64 gen);
1272 unsigned long kvm_mmu_calculate_default_mmu_pages(struct kvm *kvm);
1273 void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned long kvm_nr_mmu_pages);
1274 
1275 int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3);
1276 bool pdptrs_changed(struct kvm_vcpu *vcpu);
1277 
1278 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
1279 			  const void *val, int bytes);
1280 
1281 struct kvm_irq_mask_notifier {
1282 	void (*func)(struct kvm_irq_mask_notifier *kimn, bool masked);
1283 	int irq;
1284 	struct hlist_node link;
1285 };
1286 
1287 void kvm_register_irq_mask_notifier(struct kvm *kvm, int irq,
1288 				    struct kvm_irq_mask_notifier *kimn);
1289 void kvm_unregister_irq_mask_notifier(struct kvm *kvm, int irq,
1290 				      struct kvm_irq_mask_notifier *kimn);
1291 void kvm_fire_mask_notifiers(struct kvm *kvm, unsigned irqchip, unsigned pin,
1292 			     bool mask);
1293 
1294 extern bool tdp_enabled;
1295 
1296 u64 vcpu_tsc_khz(struct kvm_vcpu *vcpu);
1297 
1298 /* control of guest tsc rate supported? */
1299 extern bool kvm_has_tsc_control;
1300 /* maximum supported tsc_khz for guests */
1301 extern u32  kvm_max_guest_tsc_khz;
1302 /* number of bits of the fractional part of the TSC scaling ratio */
1303 extern u8   kvm_tsc_scaling_ratio_frac_bits;
1304 /* maximum allowed value of TSC scaling ratio */
1305 extern u64  kvm_max_tsc_scaling_ratio;
1306 /* 1ull << kvm_tsc_scaling_ratio_frac_bits */
1307 extern u64  kvm_default_tsc_scaling_ratio;
1308 
1309 extern u64 kvm_mce_cap_supported;
1310 
1311 enum emulation_result {
1312 	EMULATE_DONE,         /* no further processing */
1313 	EMULATE_USER_EXIT,    /* kvm_run ready for userspace exit */
1314 	EMULATE_FAIL,         /* can't emulate this instruction */
1315 };
1316 
1317 #define EMULTYPE_NO_DECODE	    (1 << 0)
1318 #define EMULTYPE_TRAP_UD	    (1 << 1)
1319 #define EMULTYPE_SKIP		    (1 << 2)
1320 #define EMULTYPE_ALLOW_RETRY	    (1 << 3)
1321 #define EMULTYPE_NO_UD_ON_FAIL	    (1 << 4)
1322 #define EMULTYPE_VMWARE		    (1 << 5)
1323 int kvm_emulate_instruction(struct kvm_vcpu *vcpu, int emulation_type);
1324 int kvm_emulate_instruction_from_buffer(struct kvm_vcpu *vcpu,
1325 					void *insn, int insn_len);
1326 
1327 void kvm_enable_efer_bits(u64);
1328 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer);
1329 int kvm_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr);
1330 int kvm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr);
1331 
1332 struct x86_emulate_ctxt;
1333 
1334 int kvm_fast_pio(struct kvm_vcpu *vcpu, int size, unsigned short port, int in);
1335 int kvm_emulate_cpuid(struct kvm_vcpu *vcpu);
1336 int kvm_emulate_halt(struct kvm_vcpu *vcpu);
1337 int kvm_vcpu_halt(struct kvm_vcpu *vcpu);
1338 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu);
1339 
1340 void kvm_get_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg);
1341 int kvm_load_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector, int seg);
1342 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector);
1343 
1344 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
1345 		    int reason, bool has_error_code, u32 error_code);
1346 
1347 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0);
1348 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3);
1349 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4);
1350 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8);
1351 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val);
1352 int kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val);
1353 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu);
1354 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw);
1355 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l);
1356 int kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr);
1357 
1358 int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr);
1359 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr);
1360 
1361 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu);
1362 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags);
1363 bool kvm_rdpmc(struct kvm_vcpu *vcpu);
1364 
1365 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr);
1366 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code);
1367 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr);
1368 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code);
1369 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault);
1370 int kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
1371 			    gfn_t gfn, void *data, int offset, int len,
1372 			    u32 access);
1373 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl);
1374 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr);
1375 
1376 static inline int __kvm_irq_line_state(unsigned long *irq_state,
1377 				       int irq_source_id, int level)
1378 {
1379 	/* Logical OR for level trig interrupt */
1380 	if (level)
1381 		__set_bit(irq_source_id, irq_state);
1382 	else
1383 		__clear_bit(irq_source_id, irq_state);
1384 
1385 	return !!(*irq_state);
1386 }
1387 
1388 #define KVM_MMU_ROOT_CURRENT		BIT(0)
1389 #define KVM_MMU_ROOT_PREVIOUS(i)	BIT(1+i)
1390 #define KVM_MMU_ROOTS_ALL		(~0UL)
1391 
1392 int kvm_pic_set_irq(struct kvm_pic *pic, int irq, int irq_source_id, int level);
1393 void kvm_pic_clear_all(struct kvm_pic *pic, int irq_source_id);
1394 
1395 void kvm_inject_nmi(struct kvm_vcpu *vcpu);
1396 
1397 int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn);
1398 int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva);
1399 void __kvm_mmu_free_some_pages(struct kvm_vcpu *vcpu);
1400 int kvm_mmu_load(struct kvm_vcpu *vcpu);
1401 void kvm_mmu_unload(struct kvm_vcpu *vcpu);
1402 void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu);
1403 void kvm_mmu_free_roots(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
1404 			ulong roots_to_free);
1405 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access,
1406 			   struct x86_exception *exception);
1407 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
1408 			      struct x86_exception *exception);
1409 gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva,
1410 			       struct x86_exception *exception);
1411 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
1412 			       struct x86_exception *exception);
1413 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
1414 				struct x86_exception *exception);
1415 
1416 void kvm_vcpu_deactivate_apicv(struct kvm_vcpu *vcpu);
1417 
1418 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu);
1419 
1420 int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gva_t gva, u64 error_code,
1421 		       void *insn, int insn_len);
1422 void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva);
1423 void kvm_mmu_invpcid_gva(struct kvm_vcpu *vcpu, gva_t gva, unsigned long pcid);
1424 void kvm_mmu_new_cr3(struct kvm_vcpu *vcpu, gpa_t new_cr3, bool skip_tlb_flush);
1425 
1426 void kvm_enable_tdp(void);
1427 void kvm_disable_tdp(void);
1428 
1429 static inline gpa_t translate_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access,
1430 				  struct x86_exception *exception)
1431 {
1432 	return gpa;
1433 }
1434 
1435 static inline struct kvm_mmu_page *page_header(hpa_t shadow_page)
1436 {
1437 	struct page *page = pfn_to_page(shadow_page >> PAGE_SHIFT);
1438 
1439 	return (struct kvm_mmu_page *)page_private(page);
1440 }
1441 
1442 static inline u16 kvm_read_ldt(void)
1443 {
1444 	u16 ldt;
1445 	asm("sldt %0" : "=g"(ldt));
1446 	return ldt;
1447 }
1448 
1449 static inline void kvm_load_ldt(u16 sel)
1450 {
1451 	asm("lldt %0" : : "rm"(sel));
1452 }
1453 
1454 #ifdef CONFIG_X86_64
1455 static inline unsigned long read_msr(unsigned long msr)
1456 {
1457 	u64 value;
1458 
1459 	rdmsrl(msr, value);
1460 	return value;
1461 }
1462 #endif
1463 
1464 static inline u32 get_rdx_init_val(void)
1465 {
1466 	return 0x600; /* P6 family */
1467 }
1468 
1469 static inline void kvm_inject_gp(struct kvm_vcpu *vcpu, u32 error_code)
1470 {
1471 	kvm_queue_exception_e(vcpu, GP_VECTOR, error_code);
1472 }
1473 
1474 #define TSS_IOPB_BASE_OFFSET 0x66
1475 #define TSS_BASE_SIZE 0x68
1476 #define TSS_IOPB_SIZE (65536 / 8)
1477 #define TSS_REDIRECTION_SIZE (256 / 8)
1478 #define RMODE_TSS_SIZE							\
1479 	(TSS_BASE_SIZE + TSS_REDIRECTION_SIZE + TSS_IOPB_SIZE + 1)
1480 
1481 enum {
1482 	TASK_SWITCH_CALL = 0,
1483 	TASK_SWITCH_IRET = 1,
1484 	TASK_SWITCH_JMP = 2,
1485 	TASK_SWITCH_GATE = 3,
1486 };
1487 
1488 #define HF_GIF_MASK		(1 << 0)
1489 #define HF_HIF_MASK		(1 << 1)
1490 #define HF_VINTR_MASK		(1 << 2)
1491 #define HF_NMI_MASK		(1 << 3)
1492 #define HF_IRET_MASK		(1 << 4)
1493 #define HF_GUEST_MASK		(1 << 5) /* VCPU is in guest-mode */
1494 #define HF_SMM_MASK		(1 << 6)
1495 #define HF_SMM_INSIDE_NMI_MASK	(1 << 7)
1496 
1497 #define __KVM_VCPU_MULTIPLE_ADDRESS_SPACE
1498 #define KVM_ADDRESS_SPACE_NUM 2
1499 
1500 #define kvm_arch_vcpu_memslots_id(vcpu) ((vcpu)->arch.hflags & HF_SMM_MASK ? 1 : 0)
1501 #define kvm_memslots_for_spte_role(kvm, role) __kvm_memslots(kvm, (role).smm)
1502 
1503 asmlinkage void __noreturn kvm_spurious_fault(void);
1504 
1505 /*
1506  * Hardware virtualization extension instructions may fault if a
1507  * reboot turns off virtualization while processes are running.
1508  * Usually after catching the fault we just panic; during reboot
1509  * instead the instruction is ignored.
1510  */
1511 #define ____kvm_handle_fault_on_reboot(insn, cleanup_insn)		\
1512 	"666: \n\t"							\
1513 	insn "\n\t"							\
1514 	"jmp	668f \n\t"						\
1515 	"667: \n\t"							\
1516 	"call	kvm_spurious_fault \n\t"				\
1517 	"668: \n\t"							\
1518 	".pushsection .fixup, \"ax\" \n\t"				\
1519 	"700: \n\t"							\
1520 	cleanup_insn "\n\t"						\
1521 	"cmpb	$0, kvm_rebooting\n\t"					\
1522 	"je	667b \n\t"						\
1523 	"jmp	668b \n\t"						\
1524 	".popsection \n\t"						\
1525 	_ASM_EXTABLE(666b, 700b)
1526 
1527 #define __kvm_handle_fault_on_reboot(insn)		\
1528 	____kvm_handle_fault_on_reboot(insn, "")
1529 
1530 #define KVM_ARCH_WANT_MMU_NOTIFIER
1531 int kvm_unmap_hva_range(struct kvm *kvm, unsigned long start, unsigned long end);
1532 int kvm_age_hva(struct kvm *kvm, unsigned long start, unsigned long end);
1533 int kvm_test_age_hva(struct kvm *kvm, unsigned long hva);
1534 int kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte);
1535 int kvm_cpu_has_injectable_intr(struct kvm_vcpu *v);
1536 int kvm_cpu_has_interrupt(struct kvm_vcpu *vcpu);
1537 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu);
1538 int kvm_cpu_get_interrupt(struct kvm_vcpu *v);
1539 void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event);
1540 void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu);
1541 
1542 int kvm_pv_send_ipi(struct kvm *kvm, unsigned long ipi_bitmap_low,
1543 		    unsigned long ipi_bitmap_high, u32 min,
1544 		    unsigned long icr, int op_64_bit);
1545 
1546 void kvm_define_shared_msr(unsigned index, u32 msr);
1547 int kvm_set_shared_msr(unsigned index, u64 val, u64 mask);
1548 
1549 u64 kvm_scale_tsc(struct kvm_vcpu *vcpu, u64 tsc);
1550 u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc);
1551 
1552 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu);
1553 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip);
1554 
1555 void kvm_make_mclock_inprogress_request(struct kvm *kvm);
1556 void kvm_make_scan_ioapic_request(struct kvm *kvm);
1557 
1558 void kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
1559 				     struct kvm_async_pf *work);
1560 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
1561 				 struct kvm_async_pf *work);
1562 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu,
1563 			       struct kvm_async_pf *work);
1564 bool kvm_arch_can_inject_async_page_present(struct kvm_vcpu *vcpu);
1565 extern bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn);
1566 
1567 int kvm_skip_emulated_instruction(struct kvm_vcpu *vcpu);
1568 int kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err);
1569 void __kvm_request_immediate_exit(struct kvm_vcpu *vcpu);
1570 
1571 int kvm_is_in_guest(void);
1572 
1573 int __x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, u32 size);
1574 int x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, u32 size);
1575 bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu);
1576 bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu);
1577 
1578 bool kvm_intr_is_single_vcpu(struct kvm *kvm, struct kvm_lapic_irq *irq,
1579 			     struct kvm_vcpu **dest_vcpu);
1580 
1581 void kvm_set_msi_irq(struct kvm *kvm, struct kvm_kernel_irq_routing_entry *e,
1582 		     struct kvm_lapic_irq *irq);
1583 
1584 static inline void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu)
1585 {
1586 	if (kvm_x86_ops->vcpu_blocking)
1587 		kvm_x86_ops->vcpu_blocking(vcpu);
1588 }
1589 
1590 static inline void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu)
1591 {
1592 	if (kvm_x86_ops->vcpu_unblocking)
1593 		kvm_x86_ops->vcpu_unblocking(vcpu);
1594 }
1595 
1596 static inline void kvm_arch_vcpu_block_finish(struct kvm_vcpu *vcpu) {}
1597 
1598 static inline int kvm_cpu_get_apicid(int mps_cpu)
1599 {
1600 #ifdef CONFIG_X86_LOCAL_APIC
1601 	return default_cpu_present_to_apicid(mps_cpu);
1602 #else
1603 	WARN_ON_ONCE(1);
1604 	return BAD_APICID;
1605 #endif
1606 }
1607 
1608 #define put_smstate(type, buf, offset, val)                      \
1609 	*(type *)((buf) + (offset) - 0x7e00) = val
1610 
1611 #define GET_SMSTATE(type, buf, offset)		\
1612 	(*(type *)((buf) + (offset) - 0x7e00))
1613 
1614 #endif /* _ASM_X86_KVM_HOST_H */
1615