xref: /openbmc/linux/arch/x86/include/asm/kvm_host.h (revision acf50233)
1 /* SPDX-License-Identifier: GPL-2.0-only */
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  *
5  * This header defines architecture specific interfaces, x86 version
6  */
7 
8 #ifndef _ASM_X86_KVM_HOST_H
9 #define _ASM_X86_KVM_HOST_H
10 
11 #include <linux/types.h>
12 #include <linux/mm.h>
13 #include <linux/mmu_notifier.h>
14 #include <linux/tracepoint.h>
15 #include <linux/cpumask.h>
16 #include <linux/irq_work.h>
17 #include <linux/irq.h>
18 #include <linux/workqueue.h>
19 
20 #include <linux/kvm.h>
21 #include <linux/kvm_para.h>
22 #include <linux/kvm_types.h>
23 #include <linux/perf_event.h>
24 #include <linux/pvclock_gtod.h>
25 #include <linux/clocksource.h>
26 #include <linux/irqbypass.h>
27 #include <linux/hyperv.h>
28 
29 #include <asm/apic.h>
30 #include <asm/pvclock-abi.h>
31 #include <asm/desc.h>
32 #include <asm/mtrr.h>
33 #include <asm/msr-index.h>
34 #include <asm/asm.h>
35 #include <asm/kvm_page_track.h>
36 #include <asm/kvm_vcpu_regs.h>
37 #include <asm/hyperv-tlfs.h>
38 
39 #define __KVM_HAVE_ARCH_VCPU_DEBUGFS
40 
41 #define KVM_MAX_VCPUS 1024
42 
43 /*
44  * In x86, the VCPU ID corresponds to the APIC ID, and APIC IDs
45  * might be larger than the actual number of VCPUs because the
46  * APIC ID encodes CPU topology information.
47  *
48  * In the worst case, we'll need less than one extra bit for the
49  * Core ID, and less than one extra bit for the Package (Die) ID,
50  * so ratio of 4 should be enough.
51  */
52 #define KVM_VCPU_ID_RATIO 4
53 #define KVM_MAX_VCPU_IDS (KVM_MAX_VCPUS * KVM_VCPU_ID_RATIO)
54 
55 /* memory slots that are not exposed to userspace */
56 #define KVM_PRIVATE_MEM_SLOTS 3
57 
58 #define KVM_HALT_POLL_NS_DEFAULT 200000
59 
60 #define KVM_IRQCHIP_NUM_PINS  KVM_IOAPIC_NUM_PINS
61 
62 #define KVM_DIRTY_LOG_MANUAL_CAPS   (KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE | \
63 					KVM_DIRTY_LOG_INITIALLY_SET)
64 
65 #define KVM_BUS_LOCK_DETECTION_VALID_MODE	(KVM_BUS_LOCK_DETECTION_OFF | \
66 						 KVM_BUS_LOCK_DETECTION_EXIT)
67 
68 /* x86-specific vcpu->requests bit members */
69 #define KVM_REQ_MIGRATE_TIMER		KVM_ARCH_REQ(0)
70 #define KVM_REQ_REPORT_TPR_ACCESS	KVM_ARCH_REQ(1)
71 #define KVM_REQ_TRIPLE_FAULT		KVM_ARCH_REQ(2)
72 #define KVM_REQ_MMU_SYNC		KVM_ARCH_REQ(3)
73 #define KVM_REQ_CLOCK_UPDATE		KVM_ARCH_REQ(4)
74 #define KVM_REQ_LOAD_MMU_PGD		KVM_ARCH_REQ(5)
75 #define KVM_REQ_EVENT			KVM_ARCH_REQ(6)
76 #define KVM_REQ_APF_HALT		KVM_ARCH_REQ(7)
77 #define KVM_REQ_STEAL_UPDATE		KVM_ARCH_REQ(8)
78 #define KVM_REQ_NMI			KVM_ARCH_REQ(9)
79 #define KVM_REQ_PMU			KVM_ARCH_REQ(10)
80 #define KVM_REQ_PMI			KVM_ARCH_REQ(11)
81 #define KVM_REQ_SMI			KVM_ARCH_REQ(12)
82 #define KVM_REQ_MASTERCLOCK_UPDATE	KVM_ARCH_REQ(13)
83 #define KVM_REQ_MCLOCK_INPROGRESS \
84 	KVM_ARCH_REQ_FLAGS(14, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
85 #define KVM_REQ_SCAN_IOAPIC \
86 	KVM_ARCH_REQ_FLAGS(15, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
87 #define KVM_REQ_GLOBAL_CLOCK_UPDATE	KVM_ARCH_REQ(16)
88 #define KVM_REQ_APIC_PAGE_RELOAD \
89 	KVM_ARCH_REQ_FLAGS(17, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
90 #define KVM_REQ_HV_CRASH		KVM_ARCH_REQ(18)
91 #define KVM_REQ_IOAPIC_EOI_EXIT		KVM_ARCH_REQ(19)
92 #define KVM_REQ_HV_RESET		KVM_ARCH_REQ(20)
93 #define KVM_REQ_HV_EXIT			KVM_ARCH_REQ(21)
94 #define KVM_REQ_HV_STIMER		KVM_ARCH_REQ(22)
95 #define KVM_REQ_LOAD_EOI_EXITMAP	KVM_ARCH_REQ(23)
96 #define KVM_REQ_GET_NESTED_STATE_PAGES	KVM_ARCH_REQ(24)
97 #define KVM_REQ_APICV_UPDATE \
98 	KVM_ARCH_REQ_FLAGS(25, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
99 #define KVM_REQ_TLB_FLUSH_CURRENT	KVM_ARCH_REQ(26)
100 #define KVM_REQ_TLB_FLUSH_GUEST \
101 	KVM_ARCH_REQ_FLAGS(27, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
102 #define KVM_REQ_APF_READY		KVM_ARCH_REQ(28)
103 #define KVM_REQ_MSR_FILTER_CHANGED	KVM_ARCH_REQ(29)
104 #define KVM_REQ_UPDATE_CPU_DIRTY_LOGGING \
105 	KVM_ARCH_REQ_FLAGS(30, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
106 #define KVM_REQ_MMU_FREE_OBSOLETE_ROOTS \
107 	KVM_ARCH_REQ_FLAGS(31, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
108 
109 #define CR0_RESERVED_BITS                                               \
110 	(~(unsigned long)(X86_CR0_PE | X86_CR0_MP | X86_CR0_EM | X86_CR0_TS \
111 			  | X86_CR0_ET | X86_CR0_NE | X86_CR0_WP | X86_CR0_AM \
112 			  | X86_CR0_NW | X86_CR0_CD | X86_CR0_PG))
113 
114 #define CR4_RESERVED_BITS                                               \
115 	(~(unsigned long)(X86_CR4_VME | X86_CR4_PVI | X86_CR4_TSD | X86_CR4_DE\
116 			  | X86_CR4_PSE | X86_CR4_PAE | X86_CR4_MCE     \
117 			  | X86_CR4_PGE | X86_CR4_PCE | X86_CR4_OSFXSR | X86_CR4_PCIDE \
118 			  | X86_CR4_OSXSAVE | X86_CR4_SMEP | X86_CR4_FSGSBASE \
119 			  | X86_CR4_OSXMMEXCPT | X86_CR4_LA57 | X86_CR4_VMXE \
120 			  | X86_CR4_SMAP | X86_CR4_PKE | X86_CR4_UMIP))
121 
122 #define CR8_RESERVED_BITS (~(unsigned long)X86_CR8_TPR)
123 
124 
125 
126 #define INVALID_PAGE (~(hpa_t)0)
127 #define VALID_PAGE(x) ((x) != INVALID_PAGE)
128 
129 #define UNMAPPED_GVA (~(gpa_t)0)
130 #define INVALID_GPA (~(gpa_t)0)
131 
132 /* KVM Hugepage definitions for x86 */
133 #define KVM_MAX_HUGEPAGE_LEVEL	PG_LEVEL_1G
134 #define KVM_NR_PAGE_SIZES	(KVM_MAX_HUGEPAGE_LEVEL - PG_LEVEL_4K + 1)
135 #define KVM_HPAGE_GFN_SHIFT(x)	(((x) - 1) * 9)
136 #define KVM_HPAGE_SHIFT(x)	(PAGE_SHIFT + KVM_HPAGE_GFN_SHIFT(x))
137 #define KVM_HPAGE_SIZE(x)	(1UL << KVM_HPAGE_SHIFT(x))
138 #define KVM_HPAGE_MASK(x)	(~(KVM_HPAGE_SIZE(x) - 1))
139 #define KVM_PAGES_PER_HPAGE(x)	(KVM_HPAGE_SIZE(x) / PAGE_SIZE)
140 
141 #define KVM_MEMSLOT_PAGES_TO_MMU_PAGES_RATIO 50
142 #define KVM_MIN_ALLOC_MMU_PAGES 64UL
143 #define KVM_MMU_HASH_SHIFT 12
144 #define KVM_NUM_MMU_PAGES (1 << KVM_MMU_HASH_SHIFT)
145 #define KVM_MIN_FREE_MMU_PAGES 5
146 #define KVM_REFILL_PAGES 25
147 #define KVM_MAX_CPUID_ENTRIES 256
148 #define KVM_NR_FIXED_MTRR_REGION 88
149 #define KVM_NR_VAR_MTRR 8
150 
151 #define ASYNC_PF_PER_VCPU 64
152 
153 enum kvm_reg {
154 	VCPU_REGS_RAX = __VCPU_REGS_RAX,
155 	VCPU_REGS_RCX = __VCPU_REGS_RCX,
156 	VCPU_REGS_RDX = __VCPU_REGS_RDX,
157 	VCPU_REGS_RBX = __VCPU_REGS_RBX,
158 	VCPU_REGS_RSP = __VCPU_REGS_RSP,
159 	VCPU_REGS_RBP = __VCPU_REGS_RBP,
160 	VCPU_REGS_RSI = __VCPU_REGS_RSI,
161 	VCPU_REGS_RDI = __VCPU_REGS_RDI,
162 #ifdef CONFIG_X86_64
163 	VCPU_REGS_R8  = __VCPU_REGS_R8,
164 	VCPU_REGS_R9  = __VCPU_REGS_R9,
165 	VCPU_REGS_R10 = __VCPU_REGS_R10,
166 	VCPU_REGS_R11 = __VCPU_REGS_R11,
167 	VCPU_REGS_R12 = __VCPU_REGS_R12,
168 	VCPU_REGS_R13 = __VCPU_REGS_R13,
169 	VCPU_REGS_R14 = __VCPU_REGS_R14,
170 	VCPU_REGS_R15 = __VCPU_REGS_R15,
171 #endif
172 	VCPU_REGS_RIP,
173 	NR_VCPU_REGS,
174 
175 	VCPU_EXREG_PDPTR = NR_VCPU_REGS,
176 	VCPU_EXREG_CR0,
177 	VCPU_EXREG_CR3,
178 	VCPU_EXREG_CR4,
179 	VCPU_EXREG_RFLAGS,
180 	VCPU_EXREG_SEGMENTS,
181 	VCPU_EXREG_EXIT_INFO_1,
182 	VCPU_EXREG_EXIT_INFO_2,
183 };
184 
185 enum {
186 	VCPU_SREG_ES,
187 	VCPU_SREG_CS,
188 	VCPU_SREG_SS,
189 	VCPU_SREG_DS,
190 	VCPU_SREG_FS,
191 	VCPU_SREG_GS,
192 	VCPU_SREG_TR,
193 	VCPU_SREG_LDTR,
194 };
195 
196 enum exit_fastpath_completion {
197 	EXIT_FASTPATH_NONE,
198 	EXIT_FASTPATH_REENTER_GUEST,
199 	EXIT_FASTPATH_EXIT_HANDLED,
200 };
201 typedef enum exit_fastpath_completion fastpath_t;
202 
203 struct x86_emulate_ctxt;
204 struct x86_exception;
205 enum x86_intercept;
206 enum x86_intercept_stage;
207 
208 #define KVM_NR_DB_REGS	4
209 
210 #define DR6_BUS_LOCK   (1 << 11)
211 #define DR6_BD		(1 << 13)
212 #define DR6_BS		(1 << 14)
213 #define DR6_BT		(1 << 15)
214 #define DR6_RTM		(1 << 16)
215 /*
216  * DR6_ACTIVE_LOW combines fixed-1 and active-low bits.
217  * We can regard all the bits in DR6_FIXED_1 as active_low bits;
218  * they will never be 0 for now, but when they are defined
219  * in the future it will require no code change.
220  *
221  * DR6_ACTIVE_LOW is also used as the init/reset value for DR6.
222  */
223 #define DR6_ACTIVE_LOW	0xffff0ff0
224 #define DR6_VOLATILE	0x0001e80f
225 #define DR6_FIXED_1	(DR6_ACTIVE_LOW & ~DR6_VOLATILE)
226 
227 #define DR7_BP_EN_MASK	0x000000ff
228 #define DR7_GE		(1 << 9)
229 #define DR7_GD		(1 << 13)
230 #define DR7_FIXED_1	0x00000400
231 #define DR7_VOLATILE	0xffff2bff
232 
233 #define KVM_GUESTDBG_VALID_MASK \
234 	(KVM_GUESTDBG_ENABLE | \
235 	KVM_GUESTDBG_SINGLESTEP | \
236 	KVM_GUESTDBG_USE_HW_BP | \
237 	KVM_GUESTDBG_USE_SW_BP | \
238 	KVM_GUESTDBG_INJECT_BP | \
239 	KVM_GUESTDBG_INJECT_DB | \
240 	KVM_GUESTDBG_BLOCKIRQ)
241 
242 
243 #define PFERR_PRESENT_BIT 0
244 #define PFERR_WRITE_BIT 1
245 #define PFERR_USER_BIT 2
246 #define PFERR_RSVD_BIT 3
247 #define PFERR_FETCH_BIT 4
248 #define PFERR_PK_BIT 5
249 #define PFERR_SGX_BIT 15
250 #define PFERR_GUEST_FINAL_BIT 32
251 #define PFERR_GUEST_PAGE_BIT 33
252 #define PFERR_IMPLICIT_ACCESS_BIT 48
253 
254 #define PFERR_PRESENT_MASK (1U << PFERR_PRESENT_BIT)
255 #define PFERR_WRITE_MASK (1U << PFERR_WRITE_BIT)
256 #define PFERR_USER_MASK (1U << PFERR_USER_BIT)
257 #define PFERR_RSVD_MASK (1U << PFERR_RSVD_BIT)
258 #define PFERR_FETCH_MASK (1U << PFERR_FETCH_BIT)
259 #define PFERR_PK_MASK (1U << PFERR_PK_BIT)
260 #define PFERR_SGX_MASK (1U << PFERR_SGX_BIT)
261 #define PFERR_GUEST_FINAL_MASK (1ULL << PFERR_GUEST_FINAL_BIT)
262 #define PFERR_GUEST_PAGE_MASK (1ULL << PFERR_GUEST_PAGE_BIT)
263 #define PFERR_IMPLICIT_ACCESS (1ULL << PFERR_IMPLICIT_ACCESS_BIT)
264 
265 #define PFERR_NESTED_GUEST_PAGE (PFERR_GUEST_PAGE_MASK |	\
266 				 PFERR_WRITE_MASK |		\
267 				 PFERR_PRESENT_MASK)
268 
269 /* apic attention bits */
270 #define KVM_APIC_CHECK_VAPIC	0
271 /*
272  * The following bit is set with PV-EOI, unset on EOI.
273  * We detect PV-EOI changes by guest by comparing
274  * this bit with PV-EOI in guest memory.
275  * See the implementation in apic_update_pv_eoi.
276  */
277 #define KVM_APIC_PV_EOI_PENDING	1
278 
279 struct kvm_kernel_irq_routing_entry;
280 
281 /*
282  * kvm_mmu_page_role tracks the properties of a shadow page (where shadow page
283  * also includes TDP pages) to determine whether or not a page can be used in
284  * the given MMU context.  This is a subset of the overall kvm_cpu_role to
285  * minimize the size of kvm_memory_slot.arch.gfn_track, i.e. allows allocating
286  * 2 bytes per gfn instead of 4 bytes per gfn.
287  *
288  * Upper-level shadow pages having gptes are tracked for write-protection via
289  * gfn_track.  As above, gfn_track is a 16 bit counter, so KVM must not create
290  * more than 2^16-1 upper-level shadow pages at a single gfn, otherwise
291  * gfn_track will overflow and explosions will ensure.
292  *
293  * A unique shadow page (SP) for a gfn is created if and only if an existing SP
294  * cannot be reused.  The ability to reuse a SP is tracked by its role, which
295  * incorporates various mode bits and properties of the SP.  Roughly speaking,
296  * the number of unique SPs that can theoretically be created is 2^n, where n
297  * is the number of bits that are used to compute the role.
298  *
299  * But, even though there are 19 bits in the mask below, not all combinations
300  * of modes and flags are possible:
301  *
302  *   - invalid shadow pages are not accounted, so the bits are effectively 18
303  *
304  *   - quadrant will only be used if has_4_byte_gpte=1 (non-PAE paging);
305  *     execonly and ad_disabled are only used for nested EPT which has
306  *     has_4_byte_gpte=0.  Therefore, 2 bits are always unused.
307  *
308  *   - the 4 bits of level are effectively limited to the values 2/3/4/5,
309  *     as 4k SPs are not tracked (allowed to go unsync).  In addition non-PAE
310  *     paging has exactly one upper level, making level completely redundant
311  *     when has_4_byte_gpte=1.
312  *
313  *   - on top of this, smep_andnot_wp and smap_andnot_wp are only set if
314  *     cr0_wp=0, therefore these three bits only give rise to 5 possibilities.
315  *
316  * Therefore, the maximum number of possible upper-level shadow pages for a
317  * single gfn is a bit less than 2^13.
318  */
319 union kvm_mmu_page_role {
320 	u32 word;
321 	struct {
322 		unsigned level:4;
323 		unsigned has_4_byte_gpte:1;
324 		unsigned quadrant:2;
325 		unsigned direct:1;
326 		unsigned access:3;
327 		unsigned invalid:1;
328 		unsigned efer_nx:1;
329 		unsigned cr0_wp:1;
330 		unsigned smep_andnot_wp:1;
331 		unsigned smap_andnot_wp:1;
332 		unsigned ad_disabled:1;
333 		unsigned guest_mode:1;
334 		unsigned passthrough:1;
335 		unsigned :5;
336 
337 		/*
338 		 * This is left at the top of the word so that
339 		 * kvm_memslots_for_spte_role can extract it with a
340 		 * simple shift.  While there is room, give it a whole
341 		 * byte so it is also faster to load it from memory.
342 		 */
343 		unsigned smm:8;
344 	};
345 };
346 
347 /*
348  * kvm_mmu_extended_role complements kvm_mmu_page_role, tracking properties
349  * relevant to the current MMU configuration.   When loading CR0, CR4, or EFER,
350  * including on nested transitions, if nothing in the full role changes then
351  * MMU re-configuration can be skipped. @valid bit is set on first usage so we
352  * don't treat all-zero structure as valid data.
353  *
354  * The properties that are tracked in the extended role but not the page role
355  * are for things that either (a) do not affect the validity of the shadow page
356  * or (b) are indirectly reflected in the shadow page's role.  For example,
357  * CR4.PKE only affects permission checks for software walks of the guest page
358  * tables (because KVM doesn't support Protection Keys with shadow paging), and
359  * CR0.PG, CR4.PAE, and CR4.PSE are indirectly reflected in role.level.
360  *
361  * Note, SMEP and SMAP are not redundant with sm*p_andnot_wp in the page role.
362  * If CR0.WP=1, KVM can reuse shadow pages for the guest regardless of SMEP and
363  * SMAP, but the MMU's permission checks for software walks need to be SMEP and
364  * SMAP aware regardless of CR0.WP.
365  */
366 union kvm_mmu_extended_role {
367 	u32 word;
368 	struct {
369 		unsigned int valid:1;
370 		unsigned int execonly:1;
371 		unsigned int cr4_pse:1;
372 		unsigned int cr4_pke:1;
373 		unsigned int cr4_smap:1;
374 		unsigned int cr4_smep:1;
375 		unsigned int cr4_la57:1;
376 		unsigned int efer_lma:1;
377 	};
378 };
379 
380 union kvm_cpu_role {
381 	u64 as_u64;
382 	struct {
383 		union kvm_mmu_page_role base;
384 		union kvm_mmu_extended_role ext;
385 	};
386 };
387 
388 struct kvm_rmap_head {
389 	unsigned long val;
390 };
391 
392 struct kvm_pio_request {
393 	unsigned long linear_rip;
394 	unsigned long count;
395 	int in;
396 	int port;
397 	int size;
398 };
399 
400 #define PT64_ROOT_MAX_LEVEL 5
401 
402 struct rsvd_bits_validate {
403 	u64 rsvd_bits_mask[2][PT64_ROOT_MAX_LEVEL];
404 	u64 bad_mt_xwr;
405 };
406 
407 struct kvm_mmu_root_info {
408 	gpa_t pgd;
409 	hpa_t hpa;
410 };
411 
412 #define KVM_MMU_ROOT_INFO_INVALID \
413 	((struct kvm_mmu_root_info) { .pgd = INVALID_PAGE, .hpa = INVALID_PAGE })
414 
415 #define KVM_MMU_NUM_PREV_ROOTS 3
416 
417 #define KVM_HAVE_MMU_RWLOCK
418 
419 struct kvm_mmu_page;
420 struct kvm_page_fault;
421 
422 /*
423  * x86 supports 4 paging modes (5-level 64-bit, 4-level 64-bit, 3-level 32-bit,
424  * and 2-level 32-bit).  The kvm_mmu structure abstracts the details of the
425  * current mmu mode.
426  */
427 struct kvm_mmu {
428 	unsigned long (*get_guest_pgd)(struct kvm_vcpu *vcpu);
429 	u64 (*get_pdptr)(struct kvm_vcpu *vcpu, int index);
430 	int (*page_fault)(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault);
431 	void (*inject_page_fault)(struct kvm_vcpu *vcpu,
432 				  struct x86_exception *fault);
433 	gpa_t (*gva_to_gpa)(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
434 			    gpa_t gva_or_gpa, u64 access,
435 			    struct x86_exception *exception);
436 	int (*sync_page)(struct kvm_vcpu *vcpu,
437 			 struct kvm_mmu_page *sp);
438 	void (*invlpg)(struct kvm_vcpu *vcpu, gva_t gva, hpa_t root_hpa);
439 	struct kvm_mmu_root_info root;
440 	union kvm_cpu_role cpu_role;
441 	union kvm_mmu_page_role root_role;
442 
443 	/*
444 	* The pkru_mask indicates if protection key checks are needed.  It
445 	* consists of 16 domains indexed by page fault error code bits [4:1],
446 	* with PFEC.RSVD replaced by ACC_USER_MASK from the page tables.
447 	* Each domain has 2 bits which are ANDed with AD and WD from PKRU.
448 	*/
449 	u32 pkru_mask;
450 
451 	struct kvm_mmu_root_info prev_roots[KVM_MMU_NUM_PREV_ROOTS];
452 
453 	/*
454 	 * Bitmap; bit set = permission fault
455 	 * Byte index: page fault error code [4:1]
456 	 * Bit index: pte permissions in ACC_* format
457 	 */
458 	u8 permissions[16];
459 
460 	u64 *pae_root;
461 	u64 *pml4_root;
462 	u64 *pml5_root;
463 
464 	/*
465 	 * check zero bits on shadow page table entries, these
466 	 * bits include not only hardware reserved bits but also
467 	 * the bits spte never used.
468 	 */
469 	struct rsvd_bits_validate shadow_zero_check;
470 
471 	struct rsvd_bits_validate guest_rsvd_check;
472 
473 	u64 pdptrs[4]; /* pae */
474 };
475 
476 struct kvm_tlb_range {
477 	u64 start_gfn;
478 	u64 pages;
479 };
480 
481 enum pmc_type {
482 	KVM_PMC_GP = 0,
483 	KVM_PMC_FIXED,
484 };
485 
486 struct kvm_pmc {
487 	enum pmc_type type;
488 	u8 idx;
489 	u64 counter;
490 	u64 eventsel;
491 	struct perf_event *perf_event;
492 	struct kvm_vcpu *vcpu;
493 	/*
494 	 * eventsel value for general purpose counters,
495 	 * ctrl value for fixed counters.
496 	 */
497 	u64 current_config;
498 	bool is_paused;
499 	bool intr;
500 };
501 
502 #define KVM_PMC_MAX_FIXED	3
503 struct kvm_pmu {
504 	unsigned nr_arch_gp_counters;
505 	unsigned nr_arch_fixed_counters;
506 	unsigned available_event_types;
507 	u64 fixed_ctr_ctrl;
508 	u64 global_ctrl;
509 	u64 global_status;
510 	u64 counter_bitmask[2];
511 	u64 global_ctrl_mask;
512 	u64 global_ovf_ctrl_mask;
513 	u64 reserved_bits;
514 	u64 raw_event_mask;
515 	u8 version;
516 	struct kvm_pmc gp_counters[INTEL_PMC_MAX_GENERIC];
517 	struct kvm_pmc fixed_counters[KVM_PMC_MAX_FIXED];
518 	struct irq_work irq_work;
519 	DECLARE_BITMAP(reprogram_pmi, X86_PMC_IDX_MAX);
520 	DECLARE_BITMAP(all_valid_pmc_idx, X86_PMC_IDX_MAX);
521 	DECLARE_BITMAP(pmc_in_use, X86_PMC_IDX_MAX);
522 
523 	/*
524 	 * The gate to release perf_events not marked in
525 	 * pmc_in_use only once in a vcpu time slice.
526 	 */
527 	bool need_cleanup;
528 
529 	/*
530 	 * The total number of programmed perf_events and it helps to avoid
531 	 * redundant check before cleanup if guest don't use vPMU at all.
532 	 */
533 	u8 event_count;
534 };
535 
536 struct kvm_pmu_ops;
537 
538 enum {
539 	KVM_DEBUGREG_BP_ENABLED = 1,
540 	KVM_DEBUGREG_WONT_EXIT = 2,
541 };
542 
543 struct kvm_mtrr_range {
544 	u64 base;
545 	u64 mask;
546 	struct list_head node;
547 };
548 
549 struct kvm_mtrr {
550 	struct kvm_mtrr_range var_ranges[KVM_NR_VAR_MTRR];
551 	mtrr_type fixed_ranges[KVM_NR_FIXED_MTRR_REGION];
552 	u64 deftype;
553 
554 	struct list_head head;
555 };
556 
557 /* Hyper-V SynIC timer */
558 struct kvm_vcpu_hv_stimer {
559 	struct hrtimer timer;
560 	int index;
561 	union hv_stimer_config config;
562 	u64 count;
563 	u64 exp_time;
564 	struct hv_message msg;
565 	bool msg_pending;
566 };
567 
568 /* Hyper-V synthetic interrupt controller (SynIC)*/
569 struct kvm_vcpu_hv_synic {
570 	u64 version;
571 	u64 control;
572 	u64 msg_page;
573 	u64 evt_page;
574 	atomic64_t sint[HV_SYNIC_SINT_COUNT];
575 	atomic_t sint_to_gsi[HV_SYNIC_SINT_COUNT];
576 	DECLARE_BITMAP(auto_eoi_bitmap, 256);
577 	DECLARE_BITMAP(vec_bitmap, 256);
578 	bool active;
579 	bool dont_zero_synic_pages;
580 };
581 
582 /* Hyper-V per vcpu emulation context */
583 struct kvm_vcpu_hv {
584 	struct kvm_vcpu *vcpu;
585 	u32 vp_index;
586 	u64 hv_vapic;
587 	s64 runtime_offset;
588 	struct kvm_vcpu_hv_synic synic;
589 	struct kvm_hyperv_exit exit;
590 	struct kvm_vcpu_hv_stimer stimer[HV_SYNIC_STIMER_COUNT];
591 	DECLARE_BITMAP(stimer_pending_bitmap, HV_SYNIC_STIMER_COUNT);
592 	bool enforce_cpuid;
593 	struct {
594 		u32 features_eax; /* HYPERV_CPUID_FEATURES.EAX */
595 		u32 features_ebx; /* HYPERV_CPUID_FEATURES.EBX */
596 		u32 features_edx; /* HYPERV_CPUID_FEATURES.EDX */
597 		u32 enlightenments_eax; /* HYPERV_CPUID_ENLIGHTMENT_INFO.EAX */
598 		u32 enlightenments_ebx; /* HYPERV_CPUID_ENLIGHTMENT_INFO.EBX */
599 		u32 syndbg_cap_eax; /* HYPERV_CPUID_SYNDBG_PLATFORM_CAPABILITIES.EAX */
600 	} cpuid_cache;
601 };
602 
603 /* Xen HVM per vcpu emulation context */
604 struct kvm_vcpu_xen {
605 	u64 hypercall_rip;
606 	u32 current_runstate;
607 	u8 upcall_vector;
608 	struct gfn_to_pfn_cache vcpu_info_cache;
609 	struct gfn_to_pfn_cache vcpu_time_info_cache;
610 	struct gfn_to_pfn_cache runstate_cache;
611 	u64 last_steal;
612 	u64 runstate_entry_time;
613 	u64 runstate_times[4];
614 	unsigned long evtchn_pending_sel;
615 	u32 vcpu_id; /* The Xen / ACPI vCPU ID */
616 	u32 timer_virq;
617 	u64 timer_expires; /* In guest epoch */
618 	atomic_t timer_pending;
619 	struct hrtimer timer;
620 	int poll_evtchn;
621 	struct timer_list poll_timer;
622 };
623 
624 struct kvm_vcpu_arch {
625 	/*
626 	 * rip and regs accesses must go through
627 	 * kvm_{register,rip}_{read,write} functions.
628 	 */
629 	unsigned long regs[NR_VCPU_REGS];
630 	u32 regs_avail;
631 	u32 regs_dirty;
632 
633 	unsigned long cr0;
634 	unsigned long cr0_guest_owned_bits;
635 	unsigned long cr2;
636 	unsigned long cr3;
637 	unsigned long cr4;
638 	unsigned long cr4_guest_owned_bits;
639 	unsigned long cr4_guest_rsvd_bits;
640 	unsigned long cr8;
641 	u32 host_pkru;
642 	u32 pkru;
643 	u32 hflags;
644 	u64 efer;
645 	u64 apic_base;
646 	struct kvm_lapic *apic;    /* kernel irqchip context */
647 	bool apicv_active;
648 	bool load_eoi_exitmap_pending;
649 	DECLARE_BITMAP(ioapic_handled_vectors, 256);
650 	unsigned long apic_attention;
651 	int32_t apic_arb_prio;
652 	int mp_state;
653 	u64 ia32_misc_enable_msr;
654 	u64 smbase;
655 	u64 smi_count;
656 	bool at_instruction_boundary;
657 	bool tpr_access_reporting;
658 	bool xsaves_enabled;
659 	bool xfd_no_write_intercept;
660 	u64 ia32_xss;
661 	u64 microcode_version;
662 	u64 arch_capabilities;
663 	u64 perf_capabilities;
664 
665 	/*
666 	 * Paging state of the vcpu
667 	 *
668 	 * If the vcpu runs in guest mode with two level paging this still saves
669 	 * the paging mode of the l1 guest. This context is always used to
670 	 * handle faults.
671 	 */
672 	struct kvm_mmu *mmu;
673 
674 	/* Non-nested MMU for L1 */
675 	struct kvm_mmu root_mmu;
676 
677 	/* L1 MMU when running nested */
678 	struct kvm_mmu guest_mmu;
679 
680 	/*
681 	 * Paging state of an L2 guest (used for nested npt)
682 	 *
683 	 * This context will save all necessary information to walk page tables
684 	 * of an L2 guest. This context is only initialized for page table
685 	 * walking and not for faulting since we never handle l2 page faults on
686 	 * the host.
687 	 */
688 	struct kvm_mmu nested_mmu;
689 
690 	/*
691 	 * Pointer to the mmu context currently used for
692 	 * gva_to_gpa translations.
693 	 */
694 	struct kvm_mmu *walk_mmu;
695 
696 	struct kvm_mmu_memory_cache mmu_pte_list_desc_cache;
697 	struct kvm_mmu_memory_cache mmu_shadow_page_cache;
698 	struct kvm_mmu_memory_cache mmu_gfn_array_cache;
699 	struct kvm_mmu_memory_cache mmu_page_header_cache;
700 
701 	/*
702 	 * QEMU userspace and the guest each have their own FPU state.
703 	 * In vcpu_run, we switch between the user and guest FPU contexts.
704 	 * While running a VCPU, the VCPU thread will have the guest FPU
705 	 * context.
706 	 *
707 	 * Note that while the PKRU state lives inside the fpu registers,
708 	 * it is switched out separately at VMENTER and VMEXIT time. The
709 	 * "guest_fpstate" state here contains the guest FPU context, with the
710 	 * host PRKU bits.
711 	 */
712 	struct fpu_guest guest_fpu;
713 
714 	u64 xcr0;
715 
716 	struct kvm_pio_request pio;
717 	void *pio_data;
718 	void *sev_pio_data;
719 	unsigned sev_pio_count;
720 
721 	u8 event_exit_inst_len;
722 
723 	struct kvm_queued_exception {
724 		bool pending;
725 		bool injected;
726 		bool has_error_code;
727 		u8 nr;
728 		u32 error_code;
729 		unsigned long payload;
730 		bool has_payload;
731 		u8 nested_apf;
732 	} exception;
733 
734 	struct kvm_queued_interrupt {
735 		bool injected;
736 		bool soft;
737 		u8 nr;
738 	} interrupt;
739 
740 	int halt_request; /* real mode on Intel only */
741 
742 	int cpuid_nent;
743 	struct kvm_cpuid_entry2 *cpuid_entries;
744 	u32 kvm_cpuid_base;
745 
746 	u64 reserved_gpa_bits;
747 	int maxphyaddr;
748 
749 	/* emulate context */
750 
751 	struct x86_emulate_ctxt *emulate_ctxt;
752 	bool emulate_regs_need_sync_to_vcpu;
753 	bool emulate_regs_need_sync_from_vcpu;
754 	int (*complete_userspace_io)(struct kvm_vcpu *vcpu);
755 
756 	gpa_t time;
757 	struct pvclock_vcpu_time_info hv_clock;
758 	unsigned int hw_tsc_khz;
759 	struct gfn_to_pfn_cache pv_time;
760 	/* set guest stopped flag in pvclock flags field */
761 	bool pvclock_set_guest_stopped_request;
762 
763 	struct {
764 		u8 preempted;
765 		u64 msr_val;
766 		u64 last_steal;
767 		struct gfn_to_hva_cache cache;
768 	} st;
769 
770 	u64 l1_tsc_offset;
771 	u64 tsc_offset; /* current tsc offset */
772 	u64 last_guest_tsc;
773 	u64 last_host_tsc;
774 	u64 tsc_offset_adjustment;
775 	u64 this_tsc_nsec;
776 	u64 this_tsc_write;
777 	u64 this_tsc_generation;
778 	bool tsc_catchup;
779 	bool tsc_always_catchup;
780 	s8 virtual_tsc_shift;
781 	u32 virtual_tsc_mult;
782 	u32 virtual_tsc_khz;
783 	s64 ia32_tsc_adjust_msr;
784 	u64 msr_ia32_power_ctl;
785 	u64 l1_tsc_scaling_ratio;
786 	u64 tsc_scaling_ratio; /* current scaling ratio */
787 
788 	atomic_t nmi_queued;  /* unprocessed asynchronous NMIs */
789 	unsigned nmi_pending; /* NMI queued after currently running handler */
790 	bool nmi_injected;    /* Trying to inject an NMI this entry */
791 	bool smi_pending;    /* SMI queued after currently running handler */
792 	u8 handling_intr_from_guest;
793 
794 	struct kvm_mtrr mtrr_state;
795 	u64 pat;
796 
797 	unsigned switch_db_regs;
798 	unsigned long db[KVM_NR_DB_REGS];
799 	unsigned long dr6;
800 	unsigned long dr7;
801 	unsigned long eff_db[KVM_NR_DB_REGS];
802 	unsigned long guest_debug_dr7;
803 	u64 msr_platform_info;
804 	u64 msr_misc_features_enables;
805 
806 	u64 mcg_cap;
807 	u64 mcg_status;
808 	u64 mcg_ctl;
809 	u64 mcg_ext_ctl;
810 	u64 *mce_banks;
811 
812 	/* Cache MMIO info */
813 	u64 mmio_gva;
814 	unsigned mmio_access;
815 	gfn_t mmio_gfn;
816 	u64 mmio_gen;
817 
818 	struct kvm_pmu pmu;
819 
820 	/* used for guest single stepping over the given code position */
821 	unsigned long singlestep_rip;
822 
823 	bool hyperv_enabled;
824 	struct kvm_vcpu_hv *hyperv;
825 	struct kvm_vcpu_xen xen;
826 
827 	cpumask_var_t wbinvd_dirty_mask;
828 
829 	unsigned long last_retry_eip;
830 	unsigned long last_retry_addr;
831 
832 	struct {
833 		bool halted;
834 		gfn_t gfns[ASYNC_PF_PER_VCPU];
835 		struct gfn_to_hva_cache data;
836 		u64 msr_en_val; /* MSR_KVM_ASYNC_PF_EN */
837 		u64 msr_int_val; /* MSR_KVM_ASYNC_PF_INT */
838 		u16 vec;
839 		u32 id;
840 		bool send_user_only;
841 		u32 host_apf_flags;
842 		unsigned long nested_apf_token;
843 		bool delivery_as_pf_vmexit;
844 		bool pageready_pending;
845 	} apf;
846 
847 	/* OSVW MSRs (AMD only) */
848 	struct {
849 		u64 length;
850 		u64 status;
851 	} osvw;
852 
853 	struct {
854 		u64 msr_val;
855 		struct gfn_to_hva_cache data;
856 	} pv_eoi;
857 
858 	u64 msr_kvm_poll_control;
859 
860 	/*
861 	 * Indicates the guest is trying to write a gfn that contains one or
862 	 * more of the PTEs used to translate the write itself, i.e. the access
863 	 * is changing its own translation in the guest page tables.  KVM exits
864 	 * to userspace if emulation of the faulting instruction fails and this
865 	 * flag is set, as KVM cannot make forward progress.
866 	 *
867 	 * If emulation fails for a write to guest page tables, KVM unprotects
868 	 * (zaps) the shadow page for the target gfn and resumes the guest to
869 	 * retry the non-emulatable instruction (on hardware).  Unprotecting the
870 	 * gfn doesn't allow forward progress for a self-changing access because
871 	 * doing so also zaps the translation for the gfn, i.e. retrying the
872 	 * instruction will hit a !PRESENT fault, which results in a new shadow
873 	 * page and sends KVM back to square one.
874 	 */
875 	bool write_fault_to_shadow_pgtable;
876 
877 	/* set at EPT violation at this point */
878 	unsigned long exit_qualification;
879 
880 	/* pv related host specific info */
881 	struct {
882 		bool pv_unhalted;
883 	} pv;
884 
885 	int pending_ioapic_eoi;
886 	int pending_external_vector;
887 
888 	/* be preempted when it's in kernel-mode(cpl=0) */
889 	bool preempted_in_kernel;
890 
891 	/* Flush the L1 Data cache for L1TF mitigation on VMENTER */
892 	bool l1tf_flush_l1d;
893 
894 	/* Host CPU on which VM-entry was most recently attempted */
895 	int last_vmentry_cpu;
896 
897 	/* AMD MSRC001_0015 Hardware Configuration */
898 	u64 msr_hwcr;
899 
900 	/* pv related cpuid info */
901 	struct {
902 		/*
903 		 * value of the eax register in the KVM_CPUID_FEATURES CPUID
904 		 * leaf.
905 		 */
906 		u32 features;
907 
908 		/*
909 		 * indicates whether pv emulation should be disabled if features
910 		 * are not present in the guest's cpuid
911 		 */
912 		bool enforce;
913 	} pv_cpuid;
914 
915 	/* Protected Guests */
916 	bool guest_state_protected;
917 
918 	/*
919 	 * Set when PDPTS were loaded directly by the userspace without
920 	 * reading the guest memory
921 	 */
922 	bool pdptrs_from_userspace;
923 
924 #if IS_ENABLED(CONFIG_HYPERV)
925 	hpa_t hv_root_tdp;
926 #endif
927 };
928 
929 struct kvm_lpage_info {
930 	int disallow_lpage;
931 };
932 
933 struct kvm_arch_memory_slot {
934 	struct kvm_rmap_head *rmap[KVM_NR_PAGE_SIZES];
935 	struct kvm_lpage_info *lpage_info[KVM_NR_PAGE_SIZES - 1];
936 	unsigned short *gfn_track[KVM_PAGE_TRACK_MAX];
937 };
938 
939 /*
940  * We use as the mode the number of bits allocated in the LDR for the
941  * logical processor ID.  It happens that these are all powers of two.
942  * This makes it is very easy to detect cases where the APICs are
943  * configured for multiple modes; in that case, we cannot use the map and
944  * hence cannot use kvm_irq_delivery_to_apic_fast either.
945  */
946 #define KVM_APIC_MODE_XAPIC_CLUSTER          4
947 #define KVM_APIC_MODE_XAPIC_FLAT             8
948 #define KVM_APIC_MODE_X2APIC                16
949 
950 struct kvm_apic_map {
951 	struct rcu_head rcu;
952 	u8 mode;
953 	u32 max_apic_id;
954 	union {
955 		struct kvm_lapic *xapic_flat_map[8];
956 		struct kvm_lapic *xapic_cluster_map[16][4];
957 	};
958 	struct kvm_lapic *phys_map[];
959 };
960 
961 /* Hyper-V synthetic debugger (SynDbg)*/
962 struct kvm_hv_syndbg {
963 	struct {
964 		u64 control;
965 		u64 status;
966 		u64 send_page;
967 		u64 recv_page;
968 		u64 pending_page;
969 	} control;
970 	u64 options;
971 };
972 
973 /* Current state of Hyper-V TSC page clocksource */
974 enum hv_tsc_page_status {
975 	/* TSC page was not set up or disabled */
976 	HV_TSC_PAGE_UNSET = 0,
977 	/* TSC page MSR was written by the guest, update pending */
978 	HV_TSC_PAGE_GUEST_CHANGED,
979 	/* TSC page update was triggered from the host side */
980 	HV_TSC_PAGE_HOST_CHANGED,
981 	/* TSC page was properly set up and is currently active  */
982 	HV_TSC_PAGE_SET,
983 	/* TSC page was set up with an inaccessible GPA */
984 	HV_TSC_PAGE_BROKEN,
985 };
986 
987 /* Hyper-V emulation context */
988 struct kvm_hv {
989 	struct mutex hv_lock;
990 	u64 hv_guest_os_id;
991 	u64 hv_hypercall;
992 	u64 hv_tsc_page;
993 	enum hv_tsc_page_status hv_tsc_page_status;
994 
995 	/* Hyper-v based guest crash (NT kernel bugcheck) parameters */
996 	u64 hv_crash_param[HV_X64_MSR_CRASH_PARAMS];
997 	u64 hv_crash_ctl;
998 
999 	struct ms_hyperv_tsc_page tsc_ref;
1000 
1001 	struct idr conn_to_evt;
1002 
1003 	u64 hv_reenlightenment_control;
1004 	u64 hv_tsc_emulation_control;
1005 	u64 hv_tsc_emulation_status;
1006 
1007 	/* How many vCPUs have VP index != vCPU index */
1008 	atomic_t num_mismatched_vp_indexes;
1009 
1010 	/*
1011 	 * How many SynICs use 'AutoEOI' feature
1012 	 * (protected by arch.apicv_update_lock)
1013 	 */
1014 	unsigned int synic_auto_eoi_used;
1015 
1016 	struct hv_partition_assist_pg *hv_pa_pg;
1017 	struct kvm_hv_syndbg hv_syndbg;
1018 };
1019 
1020 struct msr_bitmap_range {
1021 	u32 flags;
1022 	u32 nmsrs;
1023 	u32 base;
1024 	unsigned long *bitmap;
1025 };
1026 
1027 /* Xen emulation context */
1028 struct kvm_xen {
1029 	u32 xen_version;
1030 	bool long_mode;
1031 	u8 upcall_vector;
1032 	struct gfn_to_pfn_cache shinfo_cache;
1033 	struct idr evtchn_ports;
1034 	unsigned long poll_mask[BITS_TO_LONGS(KVM_MAX_VCPUS)];
1035 };
1036 
1037 enum kvm_irqchip_mode {
1038 	KVM_IRQCHIP_NONE,
1039 	KVM_IRQCHIP_KERNEL,       /* created with KVM_CREATE_IRQCHIP */
1040 	KVM_IRQCHIP_SPLIT,        /* created with KVM_CAP_SPLIT_IRQCHIP */
1041 };
1042 
1043 struct kvm_x86_msr_filter {
1044 	u8 count;
1045 	bool default_allow:1;
1046 	struct msr_bitmap_range ranges[16];
1047 };
1048 
1049 enum kvm_apicv_inhibit {
1050 
1051 	/********************************************************************/
1052 	/* INHIBITs that are relevant to both Intel's APICv and AMD's AVIC. */
1053 	/********************************************************************/
1054 
1055 	/*
1056 	 * APIC acceleration is disabled by a module parameter
1057 	 * and/or not supported in hardware.
1058 	 */
1059 	APICV_INHIBIT_REASON_DISABLE,
1060 
1061 	/*
1062 	 * APIC acceleration is inhibited because AutoEOI feature is
1063 	 * being used by a HyperV guest.
1064 	 */
1065 	APICV_INHIBIT_REASON_HYPERV,
1066 
1067 	/*
1068 	 * APIC acceleration is inhibited because the userspace didn't yet
1069 	 * enable the kernel/split irqchip.
1070 	 */
1071 	APICV_INHIBIT_REASON_ABSENT,
1072 
1073 	/* APIC acceleration is inhibited because KVM_GUESTDBG_BLOCKIRQ
1074 	 * (out of band, debug measure of blocking all interrupts on this vCPU)
1075 	 * was enabled, to avoid AVIC/APICv bypassing it.
1076 	 */
1077 	APICV_INHIBIT_REASON_BLOCKIRQ,
1078 
1079 	/*
1080 	 * For simplicity, the APIC acceleration is inhibited
1081 	 * first time either APIC ID or APIC base are changed by the guest
1082 	 * from their reset values.
1083 	 */
1084 	APICV_INHIBIT_REASON_APIC_ID_MODIFIED,
1085 	APICV_INHIBIT_REASON_APIC_BASE_MODIFIED,
1086 
1087 	/******************************************************/
1088 	/* INHIBITs that are relevant only to the AMD's AVIC. */
1089 	/******************************************************/
1090 
1091 	/*
1092 	 * AVIC is inhibited on a vCPU because it runs a nested guest.
1093 	 *
1094 	 * This is needed because unlike APICv, the peers of this vCPU
1095 	 * cannot use the doorbell mechanism to signal interrupts via AVIC when
1096 	 * a vCPU runs nested.
1097 	 */
1098 	APICV_INHIBIT_REASON_NESTED,
1099 
1100 	/*
1101 	 * On SVM, the wait for the IRQ window is implemented with pending vIRQ,
1102 	 * which cannot be injected when the AVIC is enabled, thus AVIC
1103 	 * is inhibited while KVM waits for IRQ window.
1104 	 */
1105 	APICV_INHIBIT_REASON_IRQWIN,
1106 
1107 	/*
1108 	 * PIT (i8254) 're-inject' mode, relies on EOI intercept,
1109 	 * which AVIC doesn't support for edge triggered interrupts.
1110 	 */
1111 	APICV_INHIBIT_REASON_PIT_REINJ,
1112 
1113 	/*
1114 	 * AVIC is inhibited because the guest has x2apic in its CPUID.
1115 	 */
1116 	APICV_INHIBIT_REASON_X2APIC,
1117 
1118 	/*
1119 	 * AVIC is disabled because SEV doesn't support it.
1120 	 */
1121 	APICV_INHIBIT_REASON_SEV,
1122 };
1123 
1124 struct kvm_arch {
1125 	unsigned long n_used_mmu_pages;
1126 	unsigned long n_requested_mmu_pages;
1127 	unsigned long n_max_mmu_pages;
1128 	unsigned int indirect_shadow_pages;
1129 	u8 mmu_valid_gen;
1130 	struct hlist_head mmu_page_hash[KVM_NUM_MMU_PAGES];
1131 	struct list_head active_mmu_pages;
1132 	struct list_head zapped_obsolete_pages;
1133 	struct list_head lpage_disallowed_mmu_pages;
1134 	struct kvm_page_track_notifier_node mmu_sp_tracker;
1135 	struct kvm_page_track_notifier_head track_notifier_head;
1136 	/*
1137 	 * Protects marking pages unsync during page faults, as TDP MMU page
1138 	 * faults only take mmu_lock for read.  For simplicity, the unsync
1139 	 * pages lock is always taken when marking pages unsync regardless of
1140 	 * whether mmu_lock is held for read or write.
1141 	 */
1142 	spinlock_t mmu_unsync_pages_lock;
1143 
1144 	struct list_head assigned_dev_head;
1145 	struct iommu_domain *iommu_domain;
1146 	bool iommu_noncoherent;
1147 #define __KVM_HAVE_ARCH_NONCOHERENT_DMA
1148 	atomic_t noncoherent_dma_count;
1149 #define __KVM_HAVE_ARCH_ASSIGNED_DEVICE
1150 	atomic_t assigned_device_count;
1151 	struct kvm_pic *vpic;
1152 	struct kvm_ioapic *vioapic;
1153 	struct kvm_pit *vpit;
1154 	atomic_t vapics_in_nmi_mode;
1155 	struct mutex apic_map_lock;
1156 	struct kvm_apic_map __rcu *apic_map;
1157 	atomic_t apic_map_dirty;
1158 
1159 	/* Protects apic_access_memslot_enabled and apicv_inhibit_reasons */
1160 	struct rw_semaphore apicv_update_lock;
1161 
1162 	bool apic_access_memslot_enabled;
1163 	unsigned long apicv_inhibit_reasons;
1164 
1165 	gpa_t wall_clock;
1166 
1167 	bool mwait_in_guest;
1168 	bool hlt_in_guest;
1169 	bool pause_in_guest;
1170 	bool cstate_in_guest;
1171 
1172 	unsigned long irq_sources_bitmap;
1173 	s64 kvmclock_offset;
1174 
1175 	/*
1176 	 * This also protects nr_vcpus_matched_tsc which is read from a
1177 	 * preemption-disabled region, so it must be a raw spinlock.
1178 	 */
1179 	raw_spinlock_t tsc_write_lock;
1180 	u64 last_tsc_nsec;
1181 	u64 last_tsc_write;
1182 	u32 last_tsc_khz;
1183 	u64 last_tsc_offset;
1184 	u64 cur_tsc_nsec;
1185 	u64 cur_tsc_write;
1186 	u64 cur_tsc_offset;
1187 	u64 cur_tsc_generation;
1188 	int nr_vcpus_matched_tsc;
1189 
1190 	u32 default_tsc_khz;
1191 
1192 	seqcount_raw_spinlock_t pvclock_sc;
1193 	bool use_master_clock;
1194 	u64 master_kernel_ns;
1195 	u64 master_cycle_now;
1196 	struct delayed_work kvmclock_update_work;
1197 	struct delayed_work kvmclock_sync_work;
1198 
1199 	struct kvm_xen_hvm_config xen_hvm_config;
1200 
1201 	/* reads protected by irq_srcu, writes by irq_lock */
1202 	struct hlist_head mask_notifier_list;
1203 
1204 	struct kvm_hv hyperv;
1205 	struct kvm_xen xen;
1206 
1207 	bool backwards_tsc_observed;
1208 	bool boot_vcpu_runs_old_kvmclock;
1209 	u32 bsp_vcpu_id;
1210 
1211 	u64 disabled_quirks;
1212 	int cpu_dirty_logging_count;
1213 
1214 	enum kvm_irqchip_mode irqchip_mode;
1215 	u8 nr_reserved_ioapic_pins;
1216 
1217 	bool disabled_lapic_found;
1218 
1219 	bool x2apic_format;
1220 	bool x2apic_broadcast_quirk_disabled;
1221 
1222 	bool guest_can_read_msr_platform_info;
1223 	bool exception_payload_enabled;
1224 
1225 	bool bus_lock_detection_enabled;
1226 	bool enable_pmu;
1227 	/*
1228 	 * If exit_on_emulation_error is set, and the in-kernel instruction
1229 	 * emulator fails to emulate an instruction, allow userspace
1230 	 * the opportunity to look at it.
1231 	 */
1232 	bool exit_on_emulation_error;
1233 
1234 	/* Deflect RDMSR and WRMSR to user space when they trigger a #GP */
1235 	u32 user_space_msr_mask;
1236 	struct kvm_x86_msr_filter __rcu *msr_filter;
1237 
1238 	u32 hypercall_exit_enabled;
1239 
1240 	/* Guest can access the SGX PROVISIONKEY. */
1241 	bool sgx_provisioning_allowed;
1242 
1243 	struct kvm_pmu_event_filter __rcu *pmu_event_filter;
1244 	struct task_struct *nx_lpage_recovery_thread;
1245 
1246 #ifdef CONFIG_X86_64
1247 	/*
1248 	 * Whether the TDP MMU is enabled for this VM. This contains a
1249 	 * snapshot of the TDP MMU module parameter from when the VM was
1250 	 * created and remains unchanged for the life of the VM. If this is
1251 	 * true, TDP MMU handler functions will run for various MMU
1252 	 * operations.
1253 	 */
1254 	bool tdp_mmu_enabled;
1255 
1256 	/*
1257 	 * List of struct kvm_mmu_pages being used as roots.
1258 	 * All struct kvm_mmu_pages in the list should have
1259 	 * tdp_mmu_page set.
1260 	 *
1261 	 * For reads, this list is protected by:
1262 	 *	the MMU lock in read mode + RCU or
1263 	 *	the MMU lock in write mode
1264 	 *
1265 	 * For writes, this list is protected by:
1266 	 *	the MMU lock in read mode + the tdp_mmu_pages_lock or
1267 	 *	the MMU lock in write mode
1268 	 *
1269 	 * Roots will remain in the list until their tdp_mmu_root_count
1270 	 * drops to zero, at which point the thread that decremented the
1271 	 * count to zero should removed the root from the list and clean
1272 	 * it up, freeing the root after an RCU grace period.
1273 	 */
1274 	struct list_head tdp_mmu_roots;
1275 
1276 	/*
1277 	 * List of struct kvmp_mmu_pages not being used as roots.
1278 	 * All struct kvm_mmu_pages in the list should have
1279 	 * tdp_mmu_page set and a tdp_mmu_root_count of 0.
1280 	 */
1281 	struct list_head tdp_mmu_pages;
1282 
1283 	/*
1284 	 * Protects accesses to the following fields when the MMU lock
1285 	 * is held in read mode:
1286 	 *  - tdp_mmu_roots (above)
1287 	 *  - tdp_mmu_pages (above)
1288 	 *  - the link field of struct kvm_mmu_pages used by the TDP MMU
1289 	 *  - lpage_disallowed_mmu_pages
1290 	 *  - the lpage_disallowed_link field of struct kvm_mmu_pages used
1291 	 *    by the TDP MMU
1292 	 * It is acceptable, but not necessary, to acquire this lock when
1293 	 * the thread holds the MMU lock in write mode.
1294 	 */
1295 	spinlock_t tdp_mmu_pages_lock;
1296 	struct workqueue_struct *tdp_mmu_zap_wq;
1297 #endif /* CONFIG_X86_64 */
1298 
1299 	/*
1300 	 * If set, at least one shadow root has been allocated. This flag
1301 	 * is used as one input when determining whether certain memslot
1302 	 * related allocations are necessary.
1303 	 */
1304 	bool shadow_root_allocated;
1305 
1306 #if IS_ENABLED(CONFIG_HYPERV)
1307 	hpa_t	hv_root_tdp;
1308 	spinlock_t hv_root_tdp_lock;
1309 #endif
1310 };
1311 
1312 struct kvm_vm_stat {
1313 	struct kvm_vm_stat_generic generic;
1314 	u64 mmu_shadow_zapped;
1315 	u64 mmu_pte_write;
1316 	u64 mmu_pde_zapped;
1317 	u64 mmu_flooded;
1318 	u64 mmu_recycled;
1319 	u64 mmu_cache_miss;
1320 	u64 mmu_unsync;
1321 	union {
1322 		struct {
1323 			atomic64_t pages_4k;
1324 			atomic64_t pages_2m;
1325 			atomic64_t pages_1g;
1326 		};
1327 		atomic64_t pages[KVM_NR_PAGE_SIZES];
1328 	};
1329 	u64 nx_lpage_splits;
1330 	u64 max_mmu_page_hash_collisions;
1331 	u64 max_mmu_rmap_size;
1332 };
1333 
1334 struct kvm_vcpu_stat {
1335 	struct kvm_vcpu_stat_generic generic;
1336 	u64 pf_taken;
1337 	u64 pf_fixed;
1338 	u64 pf_emulate;
1339 	u64 pf_spurious;
1340 	u64 pf_fast;
1341 	u64 pf_mmio_spte_created;
1342 	u64 pf_guest;
1343 	u64 tlb_flush;
1344 	u64 invlpg;
1345 
1346 	u64 exits;
1347 	u64 io_exits;
1348 	u64 mmio_exits;
1349 	u64 signal_exits;
1350 	u64 irq_window_exits;
1351 	u64 nmi_window_exits;
1352 	u64 l1d_flush;
1353 	u64 halt_exits;
1354 	u64 request_irq_exits;
1355 	u64 irq_exits;
1356 	u64 host_state_reload;
1357 	u64 fpu_reload;
1358 	u64 insn_emulation;
1359 	u64 insn_emulation_fail;
1360 	u64 hypercalls;
1361 	u64 irq_injections;
1362 	u64 nmi_injections;
1363 	u64 req_event;
1364 	u64 nested_run;
1365 	u64 directed_yield_attempted;
1366 	u64 directed_yield_successful;
1367 	u64 preemption_reported;
1368 	u64 preemption_other;
1369 	u64 guest_mode;
1370 };
1371 
1372 struct x86_instruction_info;
1373 
1374 struct msr_data {
1375 	bool host_initiated;
1376 	u32 index;
1377 	u64 data;
1378 };
1379 
1380 struct kvm_lapic_irq {
1381 	u32 vector;
1382 	u16 delivery_mode;
1383 	u16 dest_mode;
1384 	bool level;
1385 	u16 trig_mode;
1386 	u32 shorthand;
1387 	u32 dest_id;
1388 	bool msi_redir_hint;
1389 };
1390 
1391 static inline u16 kvm_lapic_irq_dest_mode(bool dest_mode_logical)
1392 {
1393 	return dest_mode_logical ? APIC_DEST_LOGICAL : APIC_DEST_PHYSICAL;
1394 }
1395 
1396 struct kvm_x86_ops {
1397 	const char *name;
1398 
1399 	int (*hardware_enable)(void);
1400 	void (*hardware_disable)(void);
1401 	void (*hardware_unsetup)(void);
1402 	bool (*has_emulated_msr)(struct kvm *kvm, u32 index);
1403 	void (*vcpu_after_set_cpuid)(struct kvm_vcpu *vcpu);
1404 
1405 	unsigned int vm_size;
1406 	int (*vm_init)(struct kvm *kvm);
1407 	void (*vm_destroy)(struct kvm *kvm);
1408 
1409 	/* Create, but do not attach this VCPU */
1410 	int (*vcpu_create)(struct kvm_vcpu *vcpu);
1411 	void (*vcpu_free)(struct kvm_vcpu *vcpu);
1412 	void (*vcpu_reset)(struct kvm_vcpu *vcpu, bool init_event);
1413 
1414 	void (*prepare_switch_to_guest)(struct kvm_vcpu *vcpu);
1415 	void (*vcpu_load)(struct kvm_vcpu *vcpu, int cpu);
1416 	void (*vcpu_put)(struct kvm_vcpu *vcpu);
1417 
1418 	void (*update_exception_bitmap)(struct kvm_vcpu *vcpu);
1419 	int (*get_msr)(struct kvm_vcpu *vcpu, struct msr_data *msr);
1420 	int (*set_msr)(struct kvm_vcpu *vcpu, struct msr_data *msr);
1421 	u64 (*get_segment_base)(struct kvm_vcpu *vcpu, int seg);
1422 	void (*get_segment)(struct kvm_vcpu *vcpu,
1423 			    struct kvm_segment *var, int seg);
1424 	int (*get_cpl)(struct kvm_vcpu *vcpu);
1425 	void (*set_segment)(struct kvm_vcpu *vcpu,
1426 			    struct kvm_segment *var, int seg);
1427 	void (*get_cs_db_l_bits)(struct kvm_vcpu *vcpu, int *db, int *l);
1428 	void (*set_cr0)(struct kvm_vcpu *vcpu, unsigned long cr0);
1429 	void (*post_set_cr3)(struct kvm_vcpu *vcpu, unsigned long cr3);
1430 	bool (*is_valid_cr4)(struct kvm_vcpu *vcpu, unsigned long cr0);
1431 	void (*set_cr4)(struct kvm_vcpu *vcpu, unsigned long cr4);
1432 	int (*set_efer)(struct kvm_vcpu *vcpu, u64 efer);
1433 	void (*get_idt)(struct kvm_vcpu *vcpu, struct desc_ptr *dt);
1434 	void (*set_idt)(struct kvm_vcpu *vcpu, struct desc_ptr *dt);
1435 	void (*get_gdt)(struct kvm_vcpu *vcpu, struct desc_ptr *dt);
1436 	void (*set_gdt)(struct kvm_vcpu *vcpu, struct desc_ptr *dt);
1437 	void (*sync_dirty_debug_regs)(struct kvm_vcpu *vcpu);
1438 	void (*set_dr7)(struct kvm_vcpu *vcpu, unsigned long value);
1439 	void (*cache_reg)(struct kvm_vcpu *vcpu, enum kvm_reg reg);
1440 	unsigned long (*get_rflags)(struct kvm_vcpu *vcpu);
1441 	void (*set_rflags)(struct kvm_vcpu *vcpu, unsigned long rflags);
1442 	bool (*get_if_flag)(struct kvm_vcpu *vcpu);
1443 
1444 	void (*flush_tlb_all)(struct kvm_vcpu *vcpu);
1445 	void (*flush_tlb_current)(struct kvm_vcpu *vcpu);
1446 	int  (*tlb_remote_flush)(struct kvm *kvm);
1447 	int  (*tlb_remote_flush_with_range)(struct kvm *kvm,
1448 			struct kvm_tlb_range *range);
1449 
1450 	/*
1451 	 * Flush any TLB entries associated with the given GVA.
1452 	 * Does not need to flush GPA->HPA mappings.
1453 	 * Can potentially get non-canonical addresses through INVLPGs, which
1454 	 * the implementation may choose to ignore if appropriate.
1455 	 */
1456 	void (*flush_tlb_gva)(struct kvm_vcpu *vcpu, gva_t addr);
1457 
1458 	/*
1459 	 * Flush any TLB entries created by the guest.  Like tlb_flush_gva(),
1460 	 * does not need to flush GPA->HPA mappings.
1461 	 */
1462 	void (*flush_tlb_guest)(struct kvm_vcpu *vcpu);
1463 
1464 	int (*vcpu_pre_run)(struct kvm_vcpu *vcpu);
1465 	enum exit_fastpath_completion (*vcpu_run)(struct kvm_vcpu *vcpu);
1466 	int (*handle_exit)(struct kvm_vcpu *vcpu,
1467 		enum exit_fastpath_completion exit_fastpath);
1468 	int (*skip_emulated_instruction)(struct kvm_vcpu *vcpu);
1469 	void (*update_emulated_instruction)(struct kvm_vcpu *vcpu);
1470 	void (*set_interrupt_shadow)(struct kvm_vcpu *vcpu, int mask);
1471 	u32 (*get_interrupt_shadow)(struct kvm_vcpu *vcpu);
1472 	void (*patch_hypercall)(struct kvm_vcpu *vcpu,
1473 				unsigned char *hypercall_addr);
1474 	void (*inject_irq)(struct kvm_vcpu *vcpu);
1475 	void (*inject_nmi)(struct kvm_vcpu *vcpu);
1476 	void (*queue_exception)(struct kvm_vcpu *vcpu);
1477 	void (*cancel_injection)(struct kvm_vcpu *vcpu);
1478 	int (*interrupt_allowed)(struct kvm_vcpu *vcpu, bool for_injection);
1479 	int (*nmi_allowed)(struct kvm_vcpu *vcpu, bool for_injection);
1480 	bool (*get_nmi_mask)(struct kvm_vcpu *vcpu);
1481 	void (*set_nmi_mask)(struct kvm_vcpu *vcpu, bool masked);
1482 	void (*enable_nmi_window)(struct kvm_vcpu *vcpu);
1483 	void (*enable_irq_window)(struct kvm_vcpu *vcpu);
1484 	void (*update_cr8_intercept)(struct kvm_vcpu *vcpu, int tpr, int irr);
1485 	bool (*check_apicv_inhibit_reasons)(enum kvm_apicv_inhibit reason);
1486 	void (*refresh_apicv_exec_ctrl)(struct kvm_vcpu *vcpu);
1487 	void (*hwapic_irr_update)(struct kvm_vcpu *vcpu, int max_irr);
1488 	void (*hwapic_isr_update)(struct kvm_vcpu *vcpu, int isr);
1489 	bool (*guest_apic_has_interrupt)(struct kvm_vcpu *vcpu);
1490 	void (*load_eoi_exitmap)(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap);
1491 	void (*set_virtual_apic_mode)(struct kvm_vcpu *vcpu);
1492 	void (*set_apic_access_page_addr)(struct kvm_vcpu *vcpu);
1493 	void (*deliver_interrupt)(struct kvm_lapic *apic, int delivery_mode,
1494 				  int trig_mode, int vector);
1495 	int (*sync_pir_to_irr)(struct kvm_vcpu *vcpu);
1496 	int (*set_tss_addr)(struct kvm *kvm, unsigned int addr);
1497 	int (*set_identity_map_addr)(struct kvm *kvm, u64 ident_addr);
1498 	u64 (*get_mt_mask)(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio);
1499 
1500 	void (*load_mmu_pgd)(struct kvm_vcpu *vcpu, hpa_t root_hpa,
1501 			     int root_level);
1502 
1503 	bool (*has_wbinvd_exit)(void);
1504 
1505 	u64 (*get_l2_tsc_offset)(struct kvm_vcpu *vcpu);
1506 	u64 (*get_l2_tsc_multiplier)(struct kvm_vcpu *vcpu);
1507 	void (*write_tsc_offset)(struct kvm_vcpu *vcpu, u64 offset);
1508 	void (*write_tsc_multiplier)(struct kvm_vcpu *vcpu, u64 multiplier);
1509 
1510 	/*
1511 	 * Retrieve somewhat arbitrary exit information.  Intended to
1512 	 * be used only from within tracepoints or error paths.
1513 	 */
1514 	void (*get_exit_info)(struct kvm_vcpu *vcpu, u32 *reason,
1515 			      u64 *info1, u64 *info2,
1516 			      u32 *exit_int_info, u32 *exit_int_info_err_code);
1517 
1518 	int (*check_intercept)(struct kvm_vcpu *vcpu,
1519 			       struct x86_instruction_info *info,
1520 			       enum x86_intercept_stage stage,
1521 			       struct x86_exception *exception);
1522 	void (*handle_exit_irqoff)(struct kvm_vcpu *vcpu);
1523 
1524 	void (*request_immediate_exit)(struct kvm_vcpu *vcpu);
1525 
1526 	void (*sched_in)(struct kvm_vcpu *kvm, int cpu);
1527 
1528 	/*
1529 	 * Size of the CPU's dirty log buffer, i.e. VMX's PML buffer.  A zero
1530 	 * value indicates CPU dirty logging is unsupported or disabled.
1531 	 */
1532 	int cpu_dirty_log_size;
1533 	void (*update_cpu_dirty_logging)(struct kvm_vcpu *vcpu);
1534 
1535 	const struct kvm_x86_nested_ops *nested_ops;
1536 
1537 	void (*vcpu_blocking)(struct kvm_vcpu *vcpu);
1538 	void (*vcpu_unblocking)(struct kvm_vcpu *vcpu);
1539 
1540 	int (*pi_update_irte)(struct kvm *kvm, unsigned int host_irq,
1541 			      uint32_t guest_irq, bool set);
1542 	void (*pi_start_assignment)(struct kvm *kvm);
1543 	void (*apicv_post_state_restore)(struct kvm_vcpu *vcpu);
1544 	bool (*dy_apicv_has_pending_interrupt)(struct kvm_vcpu *vcpu);
1545 
1546 	int (*set_hv_timer)(struct kvm_vcpu *vcpu, u64 guest_deadline_tsc,
1547 			    bool *expired);
1548 	void (*cancel_hv_timer)(struct kvm_vcpu *vcpu);
1549 
1550 	void (*setup_mce)(struct kvm_vcpu *vcpu);
1551 
1552 	int (*smi_allowed)(struct kvm_vcpu *vcpu, bool for_injection);
1553 	int (*enter_smm)(struct kvm_vcpu *vcpu, char *smstate);
1554 	int (*leave_smm)(struct kvm_vcpu *vcpu, const char *smstate);
1555 	void (*enable_smi_window)(struct kvm_vcpu *vcpu);
1556 
1557 	int (*mem_enc_ioctl)(struct kvm *kvm, void __user *argp);
1558 	int (*mem_enc_register_region)(struct kvm *kvm, struct kvm_enc_region *argp);
1559 	int (*mem_enc_unregister_region)(struct kvm *kvm, struct kvm_enc_region *argp);
1560 	int (*vm_copy_enc_context_from)(struct kvm *kvm, unsigned int source_fd);
1561 	int (*vm_move_enc_context_from)(struct kvm *kvm, unsigned int source_fd);
1562 	void (*guest_memory_reclaimed)(struct kvm *kvm);
1563 
1564 	int (*get_msr_feature)(struct kvm_msr_entry *entry);
1565 
1566 	bool (*can_emulate_instruction)(struct kvm_vcpu *vcpu, int emul_type,
1567 					void *insn, int insn_len);
1568 
1569 	bool (*apic_init_signal_blocked)(struct kvm_vcpu *vcpu);
1570 	int (*enable_direct_tlbflush)(struct kvm_vcpu *vcpu);
1571 
1572 	void (*migrate_timers)(struct kvm_vcpu *vcpu);
1573 	void (*msr_filter_changed)(struct kvm_vcpu *vcpu);
1574 	int (*complete_emulated_msr)(struct kvm_vcpu *vcpu, int err);
1575 
1576 	void (*vcpu_deliver_sipi_vector)(struct kvm_vcpu *vcpu, u8 vector);
1577 
1578 	/*
1579 	 * Returns vCPU specific APICv inhibit reasons
1580 	 */
1581 	unsigned long (*vcpu_get_apicv_inhibit_reasons)(struct kvm_vcpu *vcpu);
1582 };
1583 
1584 struct kvm_x86_nested_ops {
1585 	void (*leave_nested)(struct kvm_vcpu *vcpu);
1586 	int (*check_events)(struct kvm_vcpu *vcpu);
1587 	bool (*handle_page_fault_workaround)(struct kvm_vcpu *vcpu,
1588 					     struct x86_exception *fault);
1589 	bool (*hv_timer_pending)(struct kvm_vcpu *vcpu);
1590 	void (*triple_fault)(struct kvm_vcpu *vcpu);
1591 	int (*get_state)(struct kvm_vcpu *vcpu,
1592 			 struct kvm_nested_state __user *user_kvm_nested_state,
1593 			 unsigned user_data_size);
1594 	int (*set_state)(struct kvm_vcpu *vcpu,
1595 			 struct kvm_nested_state __user *user_kvm_nested_state,
1596 			 struct kvm_nested_state *kvm_state);
1597 	bool (*get_nested_state_pages)(struct kvm_vcpu *vcpu);
1598 	int (*write_log_dirty)(struct kvm_vcpu *vcpu, gpa_t l2_gpa);
1599 
1600 	int (*enable_evmcs)(struct kvm_vcpu *vcpu,
1601 			    uint16_t *vmcs_version);
1602 	uint16_t (*get_evmcs_version)(struct kvm_vcpu *vcpu);
1603 };
1604 
1605 struct kvm_x86_init_ops {
1606 	int (*cpu_has_kvm_support)(void);
1607 	int (*disabled_by_bios)(void);
1608 	int (*check_processor_compatibility)(void);
1609 	int (*hardware_setup)(void);
1610 	unsigned int (*handle_intel_pt_intr)(void);
1611 
1612 	struct kvm_x86_ops *runtime_ops;
1613 	struct kvm_pmu_ops *pmu_ops;
1614 };
1615 
1616 struct kvm_arch_async_pf {
1617 	u32 token;
1618 	gfn_t gfn;
1619 	unsigned long cr3;
1620 	bool direct_map;
1621 };
1622 
1623 extern u32 __read_mostly kvm_nr_uret_msrs;
1624 extern u64 __read_mostly host_efer;
1625 extern bool __read_mostly allow_smaller_maxphyaddr;
1626 extern bool __read_mostly enable_apicv;
1627 extern struct kvm_x86_ops kvm_x86_ops;
1628 
1629 #define KVM_X86_OP(func) \
1630 	DECLARE_STATIC_CALL(kvm_x86_##func, *(((struct kvm_x86_ops *)0)->func));
1631 #define KVM_X86_OP_OPTIONAL KVM_X86_OP
1632 #define KVM_X86_OP_OPTIONAL_RET0 KVM_X86_OP
1633 #include <asm/kvm-x86-ops.h>
1634 
1635 #define __KVM_HAVE_ARCH_VM_ALLOC
1636 static inline struct kvm *kvm_arch_alloc_vm(void)
1637 {
1638 	return __vmalloc(kvm_x86_ops.vm_size, GFP_KERNEL_ACCOUNT | __GFP_ZERO);
1639 }
1640 
1641 #define __KVM_HAVE_ARCH_VM_FREE
1642 void kvm_arch_free_vm(struct kvm *kvm);
1643 
1644 #define __KVM_HAVE_ARCH_FLUSH_REMOTE_TLB
1645 static inline int kvm_arch_flush_remote_tlb(struct kvm *kvm)
1646 {
1647 	if (kvm_x86_ops.tlb_remote_flush &&
1648 	    !static_call(kvm_x86_tlb_remote_flush)(kvm))
1649 		return 0;
1650 	else
1651 		return -ENOTSUPP;
1652 }
1653 
1654 #define kvm_arch_pmi_in_guest(vcpu) \
1655 	((vcpu) && (vcpu)->arch.handling_intr_from_guest)
1656 
1657 void kvm_mmu_x86_module_init(void);
1658 int kvm_mmu_vendor_module_init(void);
1659 void kvm_mmu_vendor_module_exit(void);
1660 
1661 void kvm_mmu_destroy(struct kvm_vcpu *vcpu);
1662 int kvm_mmu_create(struct kvm_vcpu *vcpu);
1663 int kvm_mmu_init_vm(struct kvm *kvm);
1664 void kvm_mmu_uninit_vm(struct kvm *kvm);
1665 
1666 void kvm_mmu_after_set_cpuid(struct kvm_vcpu *vcpu);
1667 void kvm_mmu_reset_context(struct kvm_vcpu *vcpu);
1668 void kvm_mmu_slot_remove_write_access(struct kvm *kvm,
1669 				      const struct kvm_memory_slot *memslot,
1670 				      int start_level);
1671 void kvm_mmu_slot_try_split_huge_pages(struct kvm *kvm,
1672 				       const struct kvm_memory_slot *memslot,
1673 				       int target_level);
1674 void kvm_mmu_try_split_huge_pages(struct kvm *kvm,
1675 				  const struct kvm_memory_slot *memslot,
1676 				  u64 start, u64 end,
1677 				  int target_level);
1678 void kvm_mmu_zap_collapsible_sptes(struct kvm *kvm,
1679 				   const struct kvm_memory_slot *memslot);
1680 void kvm_mmu_slot_leaf_clear_dirty(struct kvm *kvm,
1681 				   const struct kvm_memory_slot *memslot);
1682 void kvm_mmu_zap_all(struct kvm *kvm);
1683 void kvm_mmu_invalidate_mmio_sptes(struct kvm *kvm, u64 gen);
1684 void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned long kvm_nr_mmu_pages);
1685 
1686 int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3);
1687 
1688 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
1689 			  const void *val, int bytes);
1690 
1691 struct kvm_irq_mask_notifier {
1692 	void (*func)(struct kvm_irq_mask_notifier *kimn, bool masked);
1693 	int irq;
1694 	struct hlist_node link;
1695 };
1696 
1697 void kvm_register_irq_mask_notifier(struct kvm *kvm, int irq,
1698 				    struct kvm_irq_mask_notifier *kimn);
1699 void kvm_unregister_irq_mask_notifier(struct kvm *kvm, int irq,
1700 				      struct kvm_irq_mask_notifier *kimn);
1701 void kvm_fire_mask_notifiers(struct kvm *kvm, unsigned irqchip, unsigned pin,
1702 			     bool mask);
1703 
1704 extern bool tdp_enabled;
1705 
1706 u64 vcpu_tsc_khz(struct kvm_vcpu *vcpu);
1707 
1708 /* control of guest tsc rate supported? */
1709 extern bool kvm_has_tsc_control;
1710 /* maximum supported tsc_khz for guests */
1711 extern u32  kvm_max_guest_tsc_khz;
1712 /* number of bits of the fractional part of the TSC scaling ratio */
1713 extern u8   kvm_tsc_scaling_ratio_frac_bits;
1714 /* maximum allowed value of TSC scaling ratio */
1715 extern u64  kvm_max_tsc_scaling_ratio;
1716 /* 1ull << kvm_tsc_scaling_ratio_frac_bits */
1717 extern u64  kvm_default_tsc_scaling_ratio;
1718 /* bus lock detection supported? */
1719 extern bool kvm_has_bus_lock_exit;
1720 
1721 extern u64 kvm_mce_cap_supported;
1722 
1723 /*
1724  * EMULTYPE_NO_DECODE - Set when re-emulating an instruction (after completing
1725  *			userspace I/O) to indicate that the emulation context
1726  *			should be reused as is, i.e. skip initialization of
1727  *			emulation context, instruction fetch and decode.
1728  *
1729  * EMULTYPE_TRAP_UD - Set when emulating an intercepted #UD from hardware.
1730  *		      Indicates that only select instructions (tagged with
1731  *		      EmulateOnUD) should be emulated (to minimize the emulator
1732  *		      attack surface).  See also EMULTYPE_TRAP_UD_FORCED.
1733  *
1734  * EMULTYPE_SKIP - Set when emulating solely to skip an instruction, i.e. to
1735  *		   decode the instruction length.  For use *only* by
1736  *		   kvm_x86_ops.skip_emulated_instruction() implementations if
1737  *		   EMULTYPE_COMPLETE_USER_EXIT is not set.
1738  *
1739  * EMULTYPE_ALLOW_RETRY_PF - Set when the emulator should resume the guest to
1740  *			     retry native execution under certain conditions,
1741  *			     Can only be set in conjunction with EMULTYPE_PF.
1742  *
1743  * EMULTYPE_TRAP_UD_FORCED - Set when emulating an intercepted #UD that was
1744  *			     triggered by KVM's magic "force emulation" prefix,
1745  *			     which is opt in via module param (off by default).
1746  *			     Bypasses EmulateOnUD restriction despite emulating
1747  *			     due to an intercepted #UD (see EMULTYPE_TRAP_UD).
1748  *			     Used to test the full emulator from userspace.
1749  *
1750  * EMULTYPE_VMWARE_GP - Set when emulating an intercepted #GP for VMware
1751  *			backdoor emulation, which is opt in via module param.
1752  *			VMware backdoor emulation handles select instructions
1753  *			and reinjects the #GP for all other cases.
1754  *
1755  * EMULTYPE_PF - Set when emulating MMIO by way of an intercepted #PF, in which
1756  *		 case the CR2/GPA value pass on the stack is valid.
1757  *
1758  * EMULTYPE_COMPLETE_USER_EXIT - Set when the emulator should update interruptibility
1759  *				 state and inject single-step #DBs after skipping
1760  *				 an instruction (after completing userspace I/O).
1761  */
1762 #define EMULTYPE_NO_DECODE	    (1 << 0)
1763 #define EMULTYPE_TRAP_UD	    (1 << 1)
1764 #define EMULTYPE_SKIP		    (1 << 2)
1765 #define EMULTYPE_ALLOW_RETRY_PF	    (1 << 3)
1766 #define EMULTYPE_TRAP_UD_FORCED	    (1 << 4)
1767 #define EMULTYPE_VMWARE_GP	    (1 << 5)
1768 #define EMULTYPE_PF		    (1 << 6)
1769 #define EMULTYPE_COMPLETE_USER_EXIT (1 << 7)
1770 
1771 int kvm_emulate_instruction(struct kvm_vcpu *vcpu, int emulation_type);
1772 int kvm_emulate_instruction_from_buffer(struct kvm_vcpu *vcpu,
1773 					void *insn, int insn_len);
1774 void __kvm_prepare_emulation_failure_exit(struct kvm_vcpu *vcpu,
1775 					  u64 *data, u8 ndata);
1776 void kvm_prepare_emulation_failure_exit(struct kvm_vcpu *vcpu);
1777 
1778 void kvm_enable_efer_bits(u64);
1779 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer);
1780 int __kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data, bool host_initiated);
1781 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data);
1782 int kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data);
1783 int kvm_emulate_rdmsr(struct kvm_vcpu *vcpu);
1784 int kvm_emulate_wrmsr(struct kvm_vcpu *vcpu);
1785 int kvm_emulate_as_nop(struct kvm_vcpu *vcpu);
1786 int kvm_emulate_invd(struct kvm_vcpu *vcpu);
1787 int kvm_emulate_mwait(struct kvm_vcpu *vcpu);
1788 int kvm_handle_invalid_op(struct kvm_vcpu *vcpu);
1789 int kvm_emulate_monitor(struct kvm_vcpu *vcpu);
1790 
1791 int kvm_fast_pio(struct kvm_vcpu *vcpu, int size, unsigned short port, int in);
1792 int kvm_emulate_cpuid(struct kvm_vcpu *vcpu);
1793 int kvm_emulate_halt(struct kvm_vcpu *vcpu);
1794 int kvm_emulate_halt_noskip(struct kvm_vcpu *vcpu);
1795 int kvm_emulate_ap_reset_hold(struct kvm_vcpu *vcpu);
1796 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu);
1797 
1798 void kvm_get_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg);
1799 int kvm_load_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector, int seg);
1800 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector);
1801 
1802 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
1803 		    int reason, bool has_error_code, u32 error_code);
1804 
1805 void kvm_post_set_cr0(struct kvm_vcpu *vcpu, unsigned long old_cr0, unsigned long cr0);
1806 void kvm_post_set_cr4(struct kvm_vcpu *vcpu, unsigned long old_cr4, unsigned long cr4);
1807 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0);
1808 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3);
1809 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4);
1810 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8);
1811 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val);
1812 void kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val);
1813 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu);
1814 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw);
1815 int kvm_emulate_xsetbv(struct kvm_vcpu *vcpu);
1816 
1817 int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr);
1818 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr);
1819 
1820 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu);
1821 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags);
1822 int kvm_emulate_rdpmc(struct kvm_vcpu *vcpu);
1823 
1824 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr);
1825 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code);
1826 void kvm_queue_exception_p(struct kvm_vcpu *vcpu, unsigned nr, unsigned long payload);
1827 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr);
1828 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code);
1829 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault);
1830 bool kvm_inject_emulated_page_fault(struct kvm_vcpu *vcpu,
1831 				    struct x86_exception *fault);
1832 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl);
1833 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr);
1834 
1835 static inline int __kvm_irq_line_state(unsigned long *irq_state,
1836 				       int irq_source_id, int level)
1837 {
1838 	/* Logical OR for level trig interrupt */
1839 	if (level)
1840 		__set_bit(irq_source_id, irq_state);
1841 	else
1842 		__clear_bit(irq_source_id, irq_state);
1843 
1844 	return !!(*irq_state);
1845 }
1846 
1847 #define KVM_MMU_ROOT_CURRENT		BIT(0)
1848 #define KVM_MMU_ROOT_PREVIOUS(i)	BIT(1+i)
1849 #define KVM_MMU_ROOTS_ALL		(~0UL)
1850 
1851 int kvm_pic_set_irq(struct kvm_pic *pic, int irq, int irq_source_id, int level);
1852 void kvm_pic_clear_all(struct kvm_pic *pic, int irq_source_id);
1853 
1854 void kvm_inject_nmi(struct kvm_vcpu *vcpu);
1855 
1856 void kvm_update_dr7(struct kvm_vcpu *vcpu);
1857 
1858 int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn);
1859 void kvm_mmu_free_roots(struct kvm *kvm, struct kvm_mmu *mmu,
1860 			ulong roots_to_free);
1861 void kvm_mmu_free_guest_mode_roots(struct kvm *kvm, struct kvm_mmu *mmu);
1862 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
1863 			      struct x86_exception *exception);
1864 gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva,
1865 			       struct x86_exception *exception);
1866 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
1867 			       struct x86_exception *exception);
1868 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
1869 				struct x86_exception *exception);
1870 
1871 bool kvm_apicv_activated(struct kvm *kvm);
1872 bool kvm_vcpu_apicv_activated(struct kvm_vcpu *vcpu);
1873 void kvm_vcpu_update_apicv(struct kvm_vcpu *vcpu);
1874 void __kvm_set_or_clear_apicv_inhibit(struct kvm *kvm,
1875 				      enum kvm_apicv_inhibit reason, bool set);
1876 void kvm_set_or_clear_apicv_inhibit(struct kvm *kvm,
1877 				    enum kvm_apicv_inhibit reason, bool set);
1878 
1879 static inline void kvm_set_apicv_inhibit(struct kvm *kvm,
1880 					 enum kvm_apicv_inhibit reason)
1881 {
1882 	kvm_set_or_clear_apicv_inhibit(kvm, reason, true);
1883 }
1884 
1885 static inline void kvm_clear_apicv_inhibit(struct kvm *kvm,
1886 					   enum kvm_apicv_inhibit reason)
1887 {
1888 	kvm_set_or_clear_apicv_inhibit(kvm, reason, false);
1889 }
1890 
1891 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu);
1892 
1893 int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, u64 error_code,
1894 		       void *insn, int insn_len);
1895 void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva);
1896 void kvm_mmu_invalidate_gva(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
1897 			    gva_t gva, hpa_t root_hpa);
1898 void kvm_mmu_invpcid_gva(struct kvm_vcpu *vcpu, gva_t gva, unsigned long pcid);
1899 void kvm_mmu_new_pgd(struct kvm_vcpu *vcpu, gpa_t new_pgd);
1900 
1901 void kvm_configure_mmu(bool enable_tdp, int tdp_forced_root_level,
1902 		       int tdp_max_root_level, int tdp_huge_page_level);
1903 
1904 static inline u16 kvm_read_ldt(void)
1905 {
1906 	u16 ldt;
1907 	asm("sldt %0" : "=g"(ldt));
1908 	return ldt;
1909 }
1910 
1911 static inline void kvm_load_ldt(u16 sel)
1912 {
1913 	asm("lldt %0" : : "rm"(sel));
1914 }
1915 
1916 #ifdef CONFIG_X86_64
1917 static inline unsigned long read_msr(unsigned long msr)
1918 {
1919 	u64 value;
1920 
1921 	rdmsrl(msr, value);
1922 	return value;
1923 }
1924 #endif
1925 
1926 static inline void kvm_inject_gp(struct kvm_vcpu *vcpu, u32 error_code)
1927 {
1928 	kvm_queue_exception_e(vcpu, GP_VECTOR, error_code);
1929 }
1930 
1931 #define TSS_IOPB_BASE_OFFSET 0x66
1932 #define TSS_BASE_SIZE 0x68
1933 #define TSS_IOPB_SIZE (65536 / 8)
1934 #define TSS_REDIRECTION_SIZE (256 / 8)
1935 #define RMODE_TSS_SIZE							\
1936 	(TSS_BASE_SIZE + TSS_REDIRECTION_SIZE + TSS_IOPB_SIZE + 1)
1937 
1938 enum {
1939 	TASK_SWITCH_CALL = 0,
1940 	TASK_SWITCH_IRET = 1,
1941 	TASK_SWITCH_JMP = 2,
1942 	TASK_SWITCH_GATE = 3,
1943 };
1944 
1945 #define HF_GIF_MASK		(1 << 0)
1946 #define HF_NMI_MASK		(1 << 3)
1947 #define HF_IRET_MASK		(1 << 4)
1948 #define HF_GUEST_MASK		(1 << 5) /* VCPU is in guest-mode */
1949 #define HF_SMM_MASK		(1 << 6)
1950 #define HF_SMM_INSIDE_NMI_MASK	(1 << 7)
1951 
1952 #define __KVM_VCPU_MULTIPLE_ADDRESS_SPACE
1953 #define KVM_ADDRESS_SPACE_NUM 2
1954 
1955 #define kvm_arch_vcpu_memslots_id(vcpu) ((vcpu)->arch.hflags & HF_SMM_MASK ? 1 : 0)
1956 #define kvm_memslots_for_spte_role(kvm, role) __kvm_memslots(kvm, (role).smm)
1957 
1958 #define KVM_ARCH_WANT_MMU_NOTIFIER
1959 
1960 int kvm_cpu_has_injectable_intr(struct kvm_vcpu *v);
1961 int kvm_cpu_has_interrupt(struct kvm_vcpu *vcpu);
1962 int kvm_cpu_has_extint(struct kvm_vcpu *v);
1963 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu);
1964 int kvm_cpu_get_interrupt(struct kvm_vcpu *v);
1965 void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event);
1966 
1967 int kvm_pv_send_ipi(struct kvm *kvm, unsigned long ipi_bitmap_low,
1968 		    unsigned long ipi_bitmap_high, u32 min,
1969 		    unsigned long icr, int op_64_bit);
1970 
1971 int kvm_add_user_return_msr(u32 msr);
1972 int kvm_find_user_return_msr(u32 msr);
1973 int kvm_set_user_return_msr(unsigned index, u64 val, u64 mask);
1974 
1975 static inline bool kvm_is_supported_user_return_msr(u32 msr)
1976 {
1977 	return kvm_find_user_return_msr(msr) >= 0;
1978 }
1979 
1980 u64 kvm_scale_tsc(u64 tsc, u64 ratio);
1981 u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc);
1982 u64 kvm_calc_nested_tsc_offset(u64 l1_offset, u64 l2_offset, u64 l2_multiplier);
1983 u64 kvm_calc_nested_tsc_multiplier(u64 l1_multiplier, u64 l2_multiplier);
1984 
1985 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu);
1986 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip);
1987 
1988 void kvm_make_scan_ioapic_request(struct kvm *kvm);
1989 void kvm_make_scan_ioapic_request_mask(struct kvm *kvm,
1990 				       unsigned long *vcpu_bitmap);
1991 
1992 bool kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
1993 				     struct kvm_async_pf *work);
1994 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
1995 				 struct kvm_async_pf *work);
1996 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu,
1997 			       struct kvm_async_pf *work);
1998 void kvm_arch_async_page_present_queued(struct kvm_vcpu *vcpu);
1999 bool kvm_arch_can_dequeue_async_page_present(struct kvm_vcpu *vcpu);
2000 extern bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn);
2001 
2002 int kvm_skip_emulated_instruction(struct kvm_vcpu *vcpu);
2003 int kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err);
2004 void __kvm_request_immediate_exit(struct kvm_vcpu *vcpu);
2005 
2006 void __user *__x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa,
2007 				     u32 size);
2008 bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu);
2009 bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu);
2010 
2011 bool kvm_intr_is_single_vcpu(struct kvm *kvm, struct kvm_lapic_irq *irq,
2012 			     struct kvm_vcpu **dest_vcpu);
2013 
2014 void kvm_set_msi_irq(struct kvm *kvm, struct kvm_kernel_irq_routing_entry *e,
2015 		     struct kvm_lapic_irq *irq);
2016 
2017 static inline bool kvm_irq_is_postable(struct kvm_lapic_irq *irq)
2018 {
2019 	/* We can only post Fixed and LowPrio IRQs */
2020 	return (irq->delivery_mode == APIC_DM_FIXED ||
2021 		irq->delivery_mode == APIC_DM_LOWEST);
2022 }
2023 
2024 static inline void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu)
2025 {
2026 	static_call_cond(kvm_x86_vcpu_blocking)(vcpu);
2027 }
2028 
2029 static inline void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu)
2030 {
2031 	static_call_cond(kvm_x86_vcpu_unblocking)(vcpu);
2032 }
2033 
2034 static inline int kvm_cpu_get_apicid(int mps_cpu)
2035 {
2036 #ifdef CONFIG_X86_LOCAL_APIC
2037 	return default_cpu_present_to_apicid(mps_cpu);
2038 #else
2039 	WARN_ON_ONCE(1);
2040 	return BAD_APICID;
2041 #endif
2042 }
2043 
2044 #define put_smstate(type, buf, offset, val)                      \
2045 	*(type *)((buf) + (offset) - 0x7e00) = val
2046 
2047 #define GET_SMSTATE(type, buf, offset)		\
2048 	(*(type *)((buf) + (offset) - 0x7e00))
2049 
2050 int kvm_cpu_dirty_log_size(void);
2051 
2052 int memslot_rmap_alloc(struct kvm_memory_slot *slot, unsigned long npages);
2053 
2054 #define KVM_CLOCK_VALID_FLAGS						\
2055 	(KVM_CLOCK_TSC_STABLE | KVM_CLOCK_REALTIME | KVM_CLOCK_HOST_TSC)
2056 
2057 #define KVM_X86_VALID_QUIRKS			\
2058 	(KVM_X86_QUIRK_LINT0_REENABLED |	\
2059 	 KVM_X86_QUIRK_CD_NW_CLEARED |		\
2060 	 KVM_X86_QUIRK_LAPIC_MMIO_HOLE |	\
2061 	 KVM_X86_QUIRK_OUT_7E_INC_RIP |		\
2062 	 KVM_X86_QUIRK_MISC_ENABLE_NO_MWAIT |	\
2063 	 KVM_X86_QUIRK_FIX_HYPERCALL_INSN)
2064 
2065 #endif /* _ASM_X86_KVM_HOST_H */
2066