1 /* SPDX-License-Identifier: GPL-2.0-only */ 2 /* 3 * Kernel-based Virtual Machine driver for Linux 4 * 5 * This header defines architecture specific interfaces, x86 version 6 */ 7 8 #ifndef _ASM_X86_KVM_HOST_H 9 #define _ASM_X86_KVM_HOST_H 10 11 #include <linux/types.h> 12 #include <linux/mm.h> 13 #include <linux/mmu_notifier.h> 14 #include <linux/tracepoint.h> 15 #include <linux/cpumask.h> 16 #include <linux/irq_work.h> 17 #include <linux/irq.h> 18 #include <linux/workqueue.h> 19 20 #include <linux/kvm.h> 21 #include <linux/kvm_para.h> 22 #include <linux/kvm_types.h> 23 #include <linux/perf_event.h> 24 #include <linux/pvclock_gtod.h> 25 #include <linux/clocksource.h> 26 #include <linux/irqbypass.h> 27 #include <linux/hyperv.h> 28 #include <linux/kfifo.h> 29 30 #include <asm/apic.h> 31 #include <asm/pvclock-abi.h> 32 #include <asm/desc.h> 33 #include <asm/mtrr.h> 34 #include <asm/msr-index.h> 35 #include <asm/asm.h> 36 #include <asm/kvm_page_track.h> 37 #include <asm/kvm_vcpu_regs.h> 38 #include <asm/hyperv-tlfs.h> 39 40 #define __KVM_HAVE_ARCH_VCPU_DEBUGFS 41 42 #define KVM_MAX_VCPUS 1024 43 44 /* 45 * In x86, the VCPU ID corresponds to the APIC ID, and APIC IDs 46 * might be larger than the actual number of VCPUs because the 47 * APIC ID encodes CPU topology information. 48 * 49 * In the worst case, we'll need less than one extra bit for the 50 * Core ID, and less than one extra bit for the Package (Die) ID, 51 * so ratio of 4 should be enough. 52 */ 53 #define KVM_VCPU_ID_RATIO 4 54 #define KVM_MAX_VCPU_IDS (KVM_MAX_VCPUS * KVM_VCPU_ID_RATIO) 55 56 /* memory slots that are not exposed to userspace */ 57 #define KVM_INTERNAL_MEM_SLOTS 3 58 59 #define KVM_HALT_POLL_NS_DEFAULT 200000 60 61 #define KVM_IRQCHIP_NUM_PINS KVM_IOAPIC_NUM_PINS 62 63 #define KVM_DIRTY_LOG_MANUAL_CAPS (KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE | \ 64 KVM_DIRTY_LOG_INITIALLY_SET) 65 66 #define KVM_BUS_LOCK_DETECTION_VALID_MODE (KVM_BUS_LOCK_DETECTION_OFF | \ 67 KVM_BUS_LOCK_DETECTION_EXIT) 68 69 #define KVM_X86_NOTIFY_VMEXIT_VALID_BITS (KVM_X86_NOTIFY_VMEXIT_ENABLED | \ 70 KVM_X86_NOTIFY_VMEXIT_USER) 71 72 /* x86-specific vcpu->requests bit members */ 73 #define KVM_REQ_MIGRATE_TIMER KVM_ARCH_REQ(0) 74 #define KVM_REQ_REPORT_TPR_ACCESS KVM_ARCH_REQ(1) 75 #define KVM_REQ_TRIPLE_FAULT KVM_ARCH_REQ(2) 76 #define KVM_REQ_MMU_SYNC KVM_ARCH_REQ(3) 77 #define KVM_REQ_CLOCK_UPDATE KVM_ARCH_REQ(4) 78 #define KVM_REQ_LOAD_MMU_PGD KVM_ARCH_REQ(5) 79 #define KVM_REQ_EVENT KVM_ARCH_REQ(6) 80 #define KVM_REQ_APF_HALT KVM_ARCH_REQ(7) 81 #define KVM_REQ_STEAL_UPDATE KVM_ARCH_REQ(8) 82 #define KVM_REQ_NMI KVM_ARCH_REQ(9) 83 #define KVM_REQ_PMU KVM_ARCH_REQ(10) 84 #define KVM_REQ_PMI KVM_ARCH_REQ(11) 85 #ifdef CONFIG_KVM_SMM 86 #define KVM_REQ_SMI KVM_ARCH_REQ(12) 87 #endif 88 #define KVM_REQ_MASTERCLOCK_UPDATE KVM_ARCH_REQ(13) 89 #define KVM_REQ_MCLOCK_INPROGRESS \ 90 KVM_ARCH_REQ_FLAGS(14, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP) 91 #define KVM_REQ_SCAN_IOAPIC \ 92 KVM_ARCH_REQ_FLAGS(15, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP) 93 #define KVM_REQ_GLOBAL_CLOCK_UPDATE KVM_ARCH_REQ(16) 94 #define KVM_REQ_APIC_PAGE_RELOAD \ 95 KVM_ARCH_REQ_FLAGS(17, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP) 96 #define KVM_REQ_HV_CRASH KVM_ARCH_REQ(18) 97 #define KVM_REQ_IOAPIC_EOI_EXIT KVM_ARCH_REQ(19) 98 #define KVM_REQ_HV_RESET KVM_ARCH_REQ(20) 99 #define KVM_REQ_HV_EXIT KVM_ARCH_REQ(21) 100 #define KVM_REQ_HV_STIMER KVM_ARCH_REQ(22) 101 #define KVM_REQ_LOAD_EOI_EXITMAP KVM_ARCH_REQ(23) 102 #define KVM_REQ_GET_NESTED_STATE_PAGES KVM_ARCH_REQ(24) 103 #define KVM_REQ_APICV_UPDATE \ 104 KVM_ARCH_REQ_FLAGS(25, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP) 105 #define KVM_REQ_TLB_FLUSH_CURRENT KVM_ARCH_REQ(26) 106 #define KVM_REQ_TLB_FLUSH_GUEST \ 107 KVM_ARCH_REQ_FLAGS(27, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP) 108 #define KVM_REQ_APF_READY KVM_ARCH_REQ(28) 109 #define KVM_REQ_MSR_FILTER_CHANGED KVM_ARCH_REQ(29) 110 #define KVM_REQ_UPDATE_CPU_DIRTY_LOGGING \ 111 KVM_ARCH_REQ_FLAGS(30, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP) 112 #define KVM_REQ_MMU_FREE_OBSOLETE_ROOTS \ 113 KVM_ARCH_REQ_FLAGS(31, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP) 114 #define KVM_REQ_HV_TLB_FLUSH \ 115 KVM_ARCH_REQ_FLAGS(32, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP) 116 117 #define CR0_RESERVED_BITS \ 118 (~(unsigned long)(X86_CR0_PE | X86_CR0_MP | X86_CR0_EM | X86_CR0_TS \ 119 | X86_CR0_ET | X86_CR0_NE | X86_CR0_WP | X86_CR0_AM \ 120 | X86_CR0_NW | X86_CR0_CD | X86_CR0_PG)) 121 122 #define CR4_RESERVED_BITS \ 123 (~(unsigned long)(X86_CR4_VME | X86_CR4_PVI | X86_CR4_TSD | X86_CR4_DE\ 124 | X86_CR4_PSE | X86_CR4_PAE | X86_CR4_MCE \ 125 | X86_CR4_PGE | X86_CR4_PCE | X86_CR4_OSFXSR | X86_CR4_PCIDE \ 126 | X86_CR4_OSXSAVE | X86_CR4_SMEP | X86_CR4_FSGSBASE \ 127 | X86_CR4_OSXMMEXCPT | X86_CR4_LA57 | X86_CR4_VMXE \ 128 | X86_CR4_SMAP | X86_CR4_PKE | X86_CR4_UMIP)) 129 130 #define CR8_RESERVED_BITS (~(unsigned long)X86_CR8_TPR) 131 132 133 134 #define INVALID_PAGE (~(hpa_t)0) 135 #define VALID_PAGE(x) ((x) != INVALID_PAGE) 136 137 /* KVM Hugepage definitions for x86 */ 138 #define KVM_MAX_HUGEPAGE_LEVEL PG_LEVEL_1G 139 #define KVM_NR_PAGE_SIZES (KVM_MAX_HUGEPAGE_LEVEL - PG_LEVEL_4K + 1) 140 #define KVM_HPAGE_GFN_SHIFT(x) (((x) - 1) * 9) 141 #define KVM_HPAGE_SHIFT(x) (PAGE_SHIFT + KVM_HPAGE_GFN_SHIFT(x)) 142 #define KVM_HPAGE_SIZE(x) (1UL << KVM_HPAGE_SHIFT(x)) 143 #define KVM_HPAGE_MASK(x) (~(KVM_HPAGE_SIZE(x) - 1)) 144 #define KVM_PAGES_PER_HPAGE(x) (KVM_HPAGE_SIZE(x) / PAGE_SIZE) 145 146 #define KVM_MEMSLOT_PAGES_TO_MMU_PAGES_RATIO 50 147 #define KVM_MIN_ALLOC_MMU_PAGES 64UL 148 #define KVM_MMU_HASH_SHIFT 12 149 #define KVM_NUM_MMU_PAGES (1 << KVM_MMU_HASH_SHIFT) 150 #define KVM_MIN_FREE_MMU_PAGES 5 151 #define KVM_REFILL_PAGES 25 152 #define KVM_MAX_CPUID_ENTRIES 256 153 #define KVM_NR_FIXED_MTRR_REGION 88 154 #define KVM_NR_VAR_MTRR 8 155 156 #define ASYNC_PF_PER_VCPU 64 157 158 enum kvm_reg { 159 VCPU_REGS_RAX = __VCPU_REGS_RAX, 160 VCPU_REGS_RCX = __VCPU_REGS_RCX, 161 VCPU_REGS_RDX = __VCPU_REGS_RDX, 162 VCPU_REGS_RBX = __VCPU_REGS_RBX, 163 VCPU_REGS_RSP = __VCPU_REGS_RSP, 164 VCPU_REGS_RBP = __VCPU_REGS_RBP, 165 VCPU_REGS_RSI = __VCPU_REGS_RSI, 166 VCPU_REGS_RDI = __VCPU_REGS_RDI, 167 #ifdef CONFIG_X86_64 168 VCPU_REGS_R8 = __VCPU_REGS_R8, 169 VCPU_REGS_R9 = __VCPU_REGS_R9, 170 VCPU_REGS_R10 = __VCPU_REGS_R10, 171 VCPU_REGS_R11 = __VCPU_REGS_R11, 172 VCPU_REGS_R12 = __VCPU_REGS_R12, 173 VCPU_REGS_R13 = __VCPU_REGS_R13, 174 VCPU_REGS_R14 = __VCPU_REGS_R14, 175 VCPU_REGS_R15 = __VCPU_REGS_R15, 176 #endif 177 VCPU_REGS_RIP, 178 NR_VCPU_REGS, 179 180 VCPU_EXREG_PDPTR = NR_VCPU_REGS, 181 VCPU_EXREG_CR0, 182 VCPU_EXREG_CR3, 183 VCPU_EXREG_CR4, 184 VCPU_EXREG_RFLAGS, 185 VCPU_EXREG_SEGMENTS, 186 VCPU_EXREG_EXIT_INFO_1, 187 VCPU_EXREG_EXIT_INFO_2, 188 }; 189 190 enum { 191 VCPU_SREG_ES, 192 VCPU_SREG_CS, 193 VCPU_SREG_SS, 194 VCPU_SREG_DS, 195 VCPU_SREG_FS, 196 VCPU_SREG_GS, 197 VCPU_SREG_TR, 198 VCPU_SREG_LDTR, 199 }; 200 201 enum exit_fastpath_completion { 202 EXIT_FASTPATH_NONE, 203 EXIT_FASTPATH_REENTER_GUEST, 204 EXIT_FASTPATH_EXIT_HANDLED, 205 }; 206 typedef enum exit_fastpath_completion fastpath_t; 207 208 struct x86_emulate_ctxt; 209 struct x86_exception; 210 union kvm_smram; 211 enum x86_intercept; 212 enum x86_intercept_stage; 213 214 #define KVM_NR_DB_REGS 4 215 216 #define DR6_BUS_LOCK (1 << 11) 217 #define DR6_BD (1 << 13) 218 #define DR6_BS (1 << 14) 219 #define DR6_BT (1 << 15) 220 #define DR6_RTM (1 << 16) 221 /* 222 * DR6_ACTIVE_LOW combines fixed-1 and active-low bits. 223 * We can regard all the bits in DR6_FIXED_1 as active_low bits; 224 * they will never be 0 for now, but when they are defined 225 * in the future it will require no code change. 226 * 227 * DR6_ACTIVE_LOW is also used as the init/reset value for DR6. 228 */ 229 #define DR6_ACTIVE_LOW 0xffff0ff0 230 #define DR6_VOLATILE 0x0001e80f 231 #define DR6_FIXED_1 (DR6_ACTIVE_LOW & ~DR6_VOLATILE) 232 233 #define DR7_BP_EN_MASK 0x000000ff 234 #define DR7_GE (1 << 9) 235 #define DR7_GD (1 << 13) 236 #define DR7_FIXED_1 0x00000400 237 #define DR7_VOLATILE 0xffff2bff 238 239 #define KVM_GUESTDBG_VALID_MASK \ 240 (KVM_GUESTDBG_ENABLE | \ 241 KVM_GUESTDBG_SINGLESTEP | \ 242 KVM_GUESTDBG_USE_HW_BP | \ 243 KVM_GUESTDBG_USE_SW_BP | \ 244 KVM_GUESTDBG_INJECT_BP | \ 245 KVM_GUESTDBG_INJECT_DB | \ 246 KVM_GUESTDBG_BLOCKIRQ) 247 248 249 #define PFERR_PRESENT_BIT 0 250 #define PFERR_WRITE_BIT 1 251 #define PFERR_USER_BIT 2 252 #define PFERR_RSVD_BIT 3 253 #define PFERR_FETCH_BIT 4 254 #define PFERR_PK_BIT 5 255 #define PFERR_SGX_BIT 15 256 #define PFERR_GUEST_FINAL_BIT 32 257 #define PFERR_GUEST_PAGE_BIT 33 258 #define PFERR_IMPLICIT_ACCESS_BIT 48 259 260 #define PFERR_PRESENT_MASK BIT(PFERR_PRESENT_BIT) 261 #define PFERR_WRITE_MASK BIT(PFERR_WRITE_BIT) 262 #define PFERR_USER_MASK BIT(PFERR_USER_BIT) 263 #define PFERR_RSVD_MASK BIT(PFERR_RSVD_BIT) 264 #define PFERR_FETCH_MASK BIT(PFERR_FETCH_BIT) 265 #define PFERR_PK_MASK BIT(PFERR_PK_BIT) 266 #define PFERR_SGX_MASK BIT(PFERR_SGX_BIT) 267 #define PFERR_GUEST_FINAL_MASK BIT_ULL(PFERR_GUEST_FINAL_BIT) 268 #define PFERR_GUEST_PAGE_MASK BIT_ULL(PFERR_GUEST_PAGE_BIT) 269 #define PFERR_IMPLICIT_ACCESS BIT_ULL(PFERR_IMPLICIT_ACCESS_BIT) 270 271 #define PFERR_NESTED_GUEST_PAGE (PFERR_GUEST_PAGE_MASK | \ 272 PFERR_WRITE_MASK | \ 273 PFERR_PRESENT_MASK) 274 275 /* apic attention bits */ 276 #define KVM_APIC_CHECK_VAPIC 0 277 /* 278 * The following bit is set with PV-EOI, unset on EOI. 279 * We detect PV-EOI changes by guest by comparing 280 * this bit with PV-EOI in guest memory. 281 * See the implementation in apic_update_pv_eoi. 282 */ 283 #define KVM_APIC_PV_EOI_PENDING 1 284 285 struct kvm_kernel_irq_routing_entry; 286 287 /* 288 * kvm_mmu_page_role tracks the properties of a shadow page (where shadow page 289 * also includes TDP pages) to determine whether or not a page can be used in 290 * the given MMU context. This is a subset of the overall kvm_cpu_role to 291 * minimize the size of kvm_memory_slot.arch.gfn_write_track, i.e. allows 292 * allocating 2 bytes per gfn instead of 4 bytes per gfn. 293 * 294 * Upper-level shadow pages having gptes are tracked for write-protection via 295 * gfn_write_track. As above, gfn_write_track is a 16 bit counter, so KVM must 296 * not create more than 2^16-1 upper-level shadow pages at a single gfn, 297 * otherwise gfn_write_track will overflow and explosions will ensue. 298 * 299 * A unique shadow page (SP) for a gfn is created if and only if an existing SP 300 * cannot be reused. The ability to reuse a SP is tracked by its role, which 301 * incorporates various mode bits and properties of the SP. Roughly speaking, 302 * the number of unique SPs that can theoretically be created is 2^n, where n 303 * is the number of bits that are used to compute the role. 304 * 305 * But, even though there are 19 bits in the mask below, not all combinations 306 * of modes and flags are possible: 307 * 308 * - invalid shadow pages are not accounted, so the bits are effectively 18 309 * 310 * - quadrant will only be used if has_4_byte_gpte=1 (non-PAE paging); 311 * execonly and ad_disabled are only used for nested EPT which has 312 * has_4_byte_gpte=0. Therefore, 2 bits are always unused. 313 * 314 * - the 4 bits of level are effectively limited to the values 2/3/4/5, 315 * as 4k SPs are not tracked (allowed to go unsync). In addition non-PAE 316 * paging has exactly one upper level, making level completely redundant 317 * when has_4_byte_gpte=1. 318 * 319 * - on top of this, smep_andnot_wp and smap_andnot_wp are only set if 320 * cr0_wp=0, therefore these three bits only give rise to 5 possibilities. 321 * 322 * Therefore, the maximum number of possible upper-level shadow pages for a 323 * single gfn is a bit less than 2^13. 324 */ 325 union kvm_mmu_page_role { 326 u32 word; 327 struct { 328 unsigned level:4; 329 unsigned has_4_byte_gpte:1; 330 unsigned quadrant:2; 331 unsigned direct:1; 332 unsigned access:3; 333 unsigned invalid:1; 334 unsigned efer_nx:1; 335 unsigned cr0_wp:1; 336 unsigned smep_andnot_wp:1; 337 unsigned smap_andnot_wp:1; 338 unsigned ad_disabled:1; 339 unsigned guest_mode:1; 340 unsigned passthrough:1; 341 unsigned :5; 342 343 /* 344 * This is left at the top of the word so that 345 * kvm_memslots_for_spte_role can extract it with a 346 * simple shift. While there is room, give it a whole 347 * byte so it is also faster to load it from memory. 348 */ 349 unsigned smm:8; 350 }; 351 }; 352 353 /* 354 * kvm_mmu_extended_role complements kvm_mmu_page_role, tracking properties 355 * relevant to the current MMU configuration. When loading CR0, CR4, or EFER, 356 * including on nested transitions, if nothing in the full role changes then 357 * MMU re-configuration can be skipped. @valid bit is set on first usage so we 358 * don't treat all-zero structure as valid data. 359 * 360 * The properties that are tracked in the extended role but not the page role 361 * are for things that either (a) do not affect the validity of the shadow page 362 * or (b) are indirectly reflected in the shadow page's role. For example, 363 * CR4.PKE only affects permission checks for software walks of the guest page 364 * tables (because KVM doesn't support Protection Keys with shadow paging), and 365 * CR0.PG, CR4.PAE, and CR4.PSE are indirectly reflected in role.level. 366 * 367 * Note, SMEP and SMAP are not redundant with sm*p_andnot_wp in the page role. 368 * If CR0.WP=1, KVM can reuse shadow pages for the guest regardless of SMEP and 369 * SMAP, but the MMU's permission checks for software walks need to be SMEP and 370 * SMAP aware regardless of CR0.WP. 371 */ 372 union kvm_mmu_extended_role { 373 u32 word; 374 struct { 375 unsigned int valid:1; 376 unsigned int execonly:1; 377 unsigned int cr4_pse:1; 378 unsigned int cr4_pke:1; 379 unsigned int cr4_smap:1; 380 unsigned int cr4_smep:1; 381 unsigned int cr4_la57:1; 382 unsigned int efer_lma:1; 383 }; 384 }; 385 386 union kvm_cpu_role { 387 u64 as_u64; 388 struct { 389 union kvm_mmu_page_role base; 390 union kvm_mmu_extended_role ext; 391 }; 392 }; 393 394 struct kvm_rmap_head { 395 unsigned long val; 396 }; 397 398 struct kvm_pio_request { 399 unsigned long linear_rip; 400 unsigned long count; 401 int in; 402 int port; 403 int size; 404 }; 405 406 #define PT64_ROOT_MAX_LEVEL 5 407 408 struct rsvd_bits_validate { 409 u64 rsvd_bits_mask[2][PT64_ROOT_MAX_LEVEL]; 410 u64 bad_mt_xwr; 411 }; 412 413 struct kvm_mmu_root_info { 414 gpa_t pgd; 415 hpa_t hpa; 416 }; 417 418 #define KVM_MMU_ROOT_INFO_INVALID \ 419 ((struct kvm_mmu_root_info) { .pgd = INVALID_PAGE, .hpa = INVALID_PAGE }) 420 421 #define KVM_MMU_NUM_PREV_ROOTS 3 422 423 #define KVM_MMU_ROOT_CURRENT BIT(0) 424 #define KVM_MMU_ROOT_PREVIOUS(i) BIT(1+i) 425 #define KVM_MMU_ROOTS_ALL (BIT(1 + KVM_MMU_NUM_PREV_ROOTS) - 1) 426 427 #define KVM_HAVE_MMU_RWLOCK 428 429 struct kvm_mmu_page; 430 struct kvm_page_fault; 431 432 /* 433 * x86 supports 4 paging modes (5-level 64-bit, 4-level 64-bit, 3-level 32-bit, 434 * and 2-level 32-bit). The kvm_mmu structure abstracts the details of the 435 * current mmu mode. 436 */ 437 struct kvm_mmu { 438 unsigned long (*get_guest_pgd)(struct kvm_vcpu *vcpu); 439 u64 (*get_pdptr)(struct kvm_vcpu *vcpu, int index); 440 int (*page_fault)(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault); 441 void (*inject_page_fault)(struct kvm_vcpu *vcpu, 442 struct x86_exception *fault); 443 gpa_t (*gva_to_gpa)(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, 444 gpa_t gva_or_gpa, u64 access, 445 struct x86_exception *exception); 446 int (*sync_spte)(struct kvm_vcpu *vcpu, 447 struct kvm_mmu_page *sp, int i); 448 struct kvm_mmu_root_info root; 449 union kvm_cpu_role cpu_role; 450 union kvm_mmu_page_role root_role; 451 452 /* 453 * The pkru_mask indicates if protection key checks are needed. It 454 * consists of 16 domains indexed by page fault error code bits [4:1], 455 * with PFEC.RSVD replaced by ACC_USER_MASK from the page tables. 456 * Each domain has 2 bits which are ANDed with AD and WD from PKRU. 457 */ 458 u32 pkru_mask; 459 460 struct kvm_mmu_root_info prev_roots[KVM_MMU_NUM_PREV_ROOTS]; 461 462 /* 463 * Bitmap; bit set = permission fault 464 * Byte index: page fault error code [4:1] 465 * Bit index: pte permissions in ACC_* format 466 */ 467 u8 permissions[16]; 468 469 u64 *pae_root; 470 u64 *pml4_root; 471 u64 *pml5_root; 472 473 /* 474 * check zero bits on shadow page table entries, these 475 * bits include not only hardware reserved bits but also 476 * the bits spte never used. 477 */ 478 struct rsvd_bits_validate shadow_zero_check; 479 480 struct rsvd_bits_validate guest_rsvd_check; 481 482 u64 pdptrs[4]; /* pae */ 483 }; 484 485 enum pmc_type { 486 KVM_PMC_GP = 0, 487 KVM_PMC_FIXED, 488 }; 489 490 struct kvm_pmc { 491 enum pmc_type type; 492 u8 idx; 493 bool is_paused; 494 bool intr; 495 u64 counter; 496 u64 prev_counter; 497 u64 eventsel; 498 struct perf_event *perf_event; 499 struct kvm_vcpu *vcpu; 500 /* 501 * only for creating or reusing perf_event, 502 * eventsel value for general purpose counters, 503 * ctrl value for fixed counters. 504 */ 505 u64 current_config; 506 }; 507 508 /* More counters may conflict with other existing Architectural MSRs */ 509 #define KVM_INTEL_PMC_MAX_GENERIC 8 510 #define MSR_ARCH_PERFMON_PERFCTR_MAX (MSR_ARCH_PERFMON_PERFCTR0 + KVM_INTEL_PMC_MAX_GENERIC - 1) 511 #define MSR_ARCH_PERFMON_EVENTSEL_MAX (MSR_ARCH_PERFMON_EVENTSEL0 + KVM_INTEL_PMC_MAX_GENERIC - 1) 512 #define KVM_PMC_MAX_FIXED 3 513 #define MSR_ARCH_PERFMON_FIXED_CTR_MAX (MSR_ARCH_PERFMON_FIXED_CTR0 + KVM_PMC_MAX_FIXED - 1) 514 #define KVM_AMD_PMC_MAX_GENERIC 6 515 struct kvm_pmu { 516 u8 version; 517 unsigned nr_arch_gp_counters; 518 unsigned nr_arch_fixed_counters; 519 unsigned available_event_types; 520 u64 fixed_ctr_ctrl; 521 u64 fixed_ctr_ctrl_mask; 522 u64 global_ctrl; 523 u64 global_status; 524 u64 counter_bitmask[2]; 525 u64 global_ctrl_mask; 526 u64 global_status_mask; 527 u64 reserved_bits; 528 u64 raw_event_mask; 529 struct kvm_pmc gp_counters[KVM_INTEL_PMC_MAX_GENERIC]; 530 struct kvm_pmc fixed_counters[KVM_PMC_MAX_FIXED]; 531 532 /* 533 * Overlay the bitmap with a 64-bit atomic so that all bits can be 534 * set in a single access, e.g. to reprogram all counters when the PMU 535 * filter changes. 536 */ 537 union { 538 DECLARE_BITMAP(reprogram_pmi, X86_PMC_IDX_MAX); 539 atomic64_t __reprogram_pmi; 540 }; 541 DECLARE_BITMAP(all_valid_pmc_idx, X86_PMC_IDX_MAX); 542 DECLARE_BITMAP(pmc_in_use, X86_PMC_IDX_MAX); 543 544 u64 ds_area; 545 u64 pebs_enable; 546 u64 pebs_enable_mask; 547 u64 pebs_data_cfg; 548 u64 pebs_data_cfg_mask; 549 550 /* 551 * If a guest counter is cross-mapped to host counter with different 552 * index, its PEBS capability will be temporarily disabled. 553 * 554 * The user should make sure that this mask is updated 555 * after disabling interrupts and before perf_guest_get_msrs(); 556 */ 557 u64 host_cross_mapped_mask; 558 559 /* 560 * The gate to release perf_events not marked in 561 * pmc_in_use only once in a vcpu time slice. 562 */ 563 bool need_cleanup; 564 565 /* 566 * The total number of programmed perf_events and it helps to avoid 567 * redundant check before cleanup if guest don't use vPMU at all. 568 */ 569 u8 event_count; 570 }; 571 572 struct kvm_pmu_ops; 573 574 enum { 575 KVM_DEBUGREG_BP_ENABLED = 1, 576 KVM_DEBUGREG_WONT_EXIT = 2, 577 }; 578 579 struct kvm_mtrr_range { 580 u64 base; 581 u64 mask; 582 struct list_head node; 583 }; 584 585 struct kvm_mtrr { 586 struct kvm_mtrr_range var_ranges[KVM_NR_VAR_MTRR]; 587 mtrr_type fixed_ranges[KVM_NR_FIXED_MTRR_REGION]; 588 u64 deftype; 589 590 struct list_head head; 591 }; 592 593 /* Hyper-V SynIC timer */ 594 struct kvm_vcpu_hv_stimer { 595 struct hrtimer timer; 596 int index; 597 union hv_stimer_config config; 598 u64 count; 599 u64 exp_time; 600 struct hv_message msg; 601 bool msg_pending; 602 }; 603 604 /* Hyper-V synthetic interrupt controller (SynIC)*/ 605 struct kvm_vcpu_hv_synic { 606 u64 version; 607 u64 control; 608 u64 msg_page; 609 u64 evt_page; 610 atomic64_t sint[HV_SYNIC_SINT_COUNT]; 611 atomic_t sint_to_gsi[HV_SYNIC_SINT_COUNT]; 612 DECLARE_BITMAP(auto_eoi_bitmap, 256); 613 DECLARE_BITMAP(vec_bitmap, 256); 614 bool active; 615 bool dont_zero_synic_pages; 616 }; 617 618 /* The maximum number of entries on the TLB flush fifo. */ 619 #define KVM_HV_TLB_FLUSH_FIFO_SIZE (16) 620 /* 621 * Note: the following 'magic' entry is made up by KVM to avoid putting 622 * anything besides GVA on the TLB flush fifo. It is theoretically possible 623 * to observe a request to flush 4095 PFNs starting from 0xfffffffffffff000 624 * which will look identical. KVM's action to 'flush everything' instead of 625 * flushing these particular addresses is, however, fully legitimate as 626 * flushing more than requested is always OK. 627 */ 628 #define KVM_HV_TLB_FLUSHALL_ENTRY ((u64)-1) 629 630 enum hv_tlb_flush_fifos { 631 HV_L1_TLB_FLUSH_FIFO, 632 HV_L2_TLB_FLUSH_FIFO, 633 HV_NR_TLB_FLUSH_FIFOS, 634 }; 635 636 struct kvm_vcpu_hv_tlb_flush_fifo { 637 spinlock_t write_lock; 638 DECLARE_KFIFO(entries, u64, KVM_HV_TLB_FLUSH_FIFO_SIZE); 639 }; 640 641 /* Hyper-V per vcpu emulation context */ 642 struct kvm_vcpu_hv { 643 struct kvm_vcpu *vcpu; 644 u32 vp_index; 645 u64 hv_vapic; 646 s64 runtime_offset; 647 struct kvm_vcpu_hv_synic synic; 648 struct kvm_hyperv_exit exit; 649 struct kvm_vcpu_hv_stimer stimer[HV_SYNIC_STIMER_COUNT]; 650 DECLARE_BITMAP(stimer_pending_bitmap, HV_SYNIC_STIMER_COUNT); 651 bool enforce_cpuid; 652 struct { 653 u32 features_eax; /* HYPERV_CPUID_FEATURES.EAX */ 654 u32 features_ebx; /* HYPERV_CPUID_FEATURES.EBX */ 655 u32 features_edx; /* HYPERV_CPUID_FEATURES.EDX */ 656 u32 enlightenments_eax; /* HYPERV_CPUID_ENLIGHTMENT_INFO.EAX */ 657 u32 enlightenments_ebx; /* HYPERV_CPUID_ENLIGHTMENT_INFO.EBX */ 658 u32 syndbg_cap_eax; /* HYPERV_CPUID_SYNDBG_PLATFORM_CAPABILITIES.EAX */ 659 u32 nested_eax; /* HYPERV_CPUID_NESTED_FEATURES.EAX */ 660 u32 nested_ebx; /* HYPERV_CPUID_NESTED_FEATURES.EBX */ 661 } cpuid_cache; 662 663 struct kvm_vcpu_hv_tlb_flush_fifo tlb_flush_fifo[HV_NR_TLB_FLUSH_FIFOS]; 664 665 /* Preallocated buffer for handling hypercalls passing sparse vCPU set */ 666 u64 sparse_banks[HV_MAX_SPARSE_VCPU_BANKS]; 667 668 struct hv_vp_assist_page vp_assist_page; 669 670 struct { 671 u64 pa_page_gpa; 672 u64 vm_id; 673 u32 vp_id; 674 } nested; 675 }; 676 677 struct kvm_hypervisor_cpuid { 678 u32 base; 679 u32 limit; 680 }; 681 682 /* Xen HVM per vcpu emulation context */ 683 struct kvm_vcpu_xen { 684 u64 hypercall_rip; 685 u32 current_runstate; 686 u8 upcall_vector; 687 struct gfn_to_pfn_cache vcpu_info_cache; 688 struct gfn_to_pfn_cache vcpu_time_info_cache; 689 struct gfn_to_pfn_cache runstate_cache; 690 struct gfn_to_pfn_cache runstate2_cache; 691 u64 last_steal; 692 u64 runstate_entry_time; 693 u64 runstate_times[4]; 694 unsigned long evtchn_pending_sel; 695 u32 vcpu_id; /* The Xen / ACPI vCPU ID */ 696 u32 timer_virq; 697 u64 timer_expires; /* In guest epoch */ 698 atomic_t timer_pending; 699 struct hrtimer timer; 700 int poll_evtchn; 701 struct timer_list poll_timer; 702 struct kvm_hypervisor_cpuid cpuid; 703 }; 704 705 struct kvm_queued_exception { 706 bool pending; 707 bool injected; 708 bool has_error_code; 709 u8 vector; 710 u32 error_code; 711 unsigned long payload; 712 bool has_payload; 713 }; 714 715 struct kvm_vcpu_arch { 716 /* 717 * rip and regs accesses must go through 718 * kvm_{register,rip}_{read,write} functions. 719 */ 720 unsigned long regs[NR_VCPU_REGS]; 721 u32 regs_avail; 722 u32 regs_dirty; 723 724 unsigned long cr0; 725 unsigned long cr0_guest_owned_bits; 726 unsigned long cr2; 727 unsigned long cr3; 728 unsigned long cr4; 729 unsigned long cr4_guest_owned_bits; 730 unsigned long cr4_guest_rsvd_bits; 731 unsigned long cr8; 732 u32 host_pkru; 733 u32 pkru; 734 u32 hflags; 735 u64 efer; 736 u64 apic_base; 737 struct kvm_lapic *apic; /* kernel irqchip context */ 738 bool load_eoi_exitmap_pending; 739 DECLARE_BITMAP(ioapic_handled_vectors, 256); 740 unsigned long apic_attention; 741 int32_t apic_arb_prio; 742 int mp_state; 743 u64 ia32_misc_enable_msr; 744 u64 smbase; 745 u64 smi_count; 746 bool at_instruction_boundary; 747 bool tpr_access_reporting; 748 bool xfd_no_write_intercept; 749 u64 ia32_xss; 750 u64 microcode_version; 751 u64 arch_capabilities; 752 u64 perf_capabilities; 753 754 /* 755 * Paging state of the vcpu 756 * 757 * If the vcpu runs in guest mode with two level paging this still saves 758 * the paging mode of the l1 guest. This context is always used to 759 * handle faults. 760 */ 761 struct kvm_mmu *mmu; 762 763 /* Non-nested MMU for L1 */ 764 struct kvm_mmu root_mmu; 765 766 /* L1 MMU when running nested */ 767 struct kvm_mmu guest_mmu; 768 769 /* 770 * Paging state of an L2 guest (used for nested npt) 771 * 772 * This context will save all necessary information to walk page tables 773 * of an L2 guest. This context is only initialized for page table 774 * walking and not for faulting since we never handle l2 page faults on 775 * the host. 776 */ 777 struct kvm_mmu nested_mmu; 778 779 /* 780 * Pointer to the mmu context currently used for 781 * gva_to_gpa translations. 782 */ 783 struct kvm_mmu *walk_mmu; 784 785 struct kvm_mmu_memory_cache mmu_pte_list_desc_cache; 786 struct kvm_mmu_memory_cache mmu_shadow_page_cache; 787 struct kvm_mmu_memory_cache mmu_shadowed_info_cache; 788 struct kvm_mmu_memory_cache mmu_page_header_cache; 789 790 /* 791 * QEMU userspace and the guest each have their own FPU state. 792 * In vcpu_run, we switch between the user and guest FPU contexts. 793 * While running a VCPU, the VCPU thread will have the guest FPU 794 * context. 795 * 796 * Note that while the PKRU state lives inside the fpu registers, 797 * it is switched out separately at VMENTER and VMEXIT time. The 798 * "guest_fpstate" state here contains the guest FPU context, with the 799 * host PRKU bits. 800 */ 801 struct fpu_guest guest_fpu; 802 803 u64 xcr0; 804 u64 guest_supported_xcr0; 805 806 struct kvm_pio_request pio; 807 void *pio_data; 808 void *sev_pio_data; 809 unsigned sev_pio_count; 810 811 u8 event_exit_inst_len; 812 813 bool exception_from_userspace; 814 815 /* Exceptions to be injected to the guest. */ 816 struct kvm_queued_exception exception; 817 /* Exception VM-Exits to be synthesized to L1. */ 818 struct kvm_queued_exception exception_vmexit; 819 820 struct kvm_queued_interrupt { 821 bool injected; 822 bool soft; 823 u8 nr; 824 } interrupt; 825 826 int halt_request; /* real mode on Intel only */ 827 828 int cpuid_nent; 829 struct kvm_cpuid_entry2 *cpuid_entries; 830 struct kvm_hypervisor_cpuid kvm_cpuid; 831 832 /* 833 * FIXME: Drop this macro and use KVM_NR_GOVERNED_FEATURES directly 834 * when "struct kvm_vcpu_arch" is no longer defined in an 835 * arch/x86/include/asm header. The max is mostly arbitrary, i.e. 836 * can be increased as necessary. 837 */ 838 #define KVM_MAX_NR_GOVERNED_FEATURES BITS_PER_LONG 839 840 /* 841 * Track whether or not the guest is allowed to use features that are 842 * governed by KVM, where "governed" means KVM needs to manage state 843 * and/or explicitly enable the feature in hardware. Typically, but 844 * not always, governed features can be used by the guest if and only 845 * if both KVM and userspace want to expose the feature to the guest. 846 */ 847 struct { 848 DECLARE_BITMAP(enabled, KVM_MAX_NR_GOVERNED_FEATURES); 849 } governed_features; 850 851 u64 reserved_gpa_bits; 852 int maxphyaddr; 853 854 /* emulate context */ 855 856 struct x86_emulate_ctxt *emulate_ctxt; 857 bool emulate_regs_need_sync_to_vcpu; 858 bool emulate_regs_need_sync_from_vcpu; 859 int (*complete_userspace_io)(struct kvm_vcpu *vcpu); 860 861 gpa_t time; 862 struct pvclock_vcpu_time_info hv_clock; 863 unsigned int hw_tsc_khz; 864 struct gfn_to_pfn_cache pv_time; 865 /* set guest stopped flag in pvclock flags field */ 866 bool pvclock_set_guest_stopped_request; 867 868 struct { 869 u8 preempted; 870 u64 msr_val; 871 u64 last_steal; 872 struct gfn_to_hva_cache cache; 873 } st; 874 875 u64 l1_tsc_offset; 876 u64 tsc_offset; /* current tsc offset */ 877 u64 last_guest_tsc; 878 u64 last_host_tsc; 879 u64 tsc_offset_adjustment; 880 u64 this_tsc_nsec; 881 u64 this_tsc_write; 882 u64 this_tsc_generation; 883 bool tsc_catchup; 884 bool tsc_always_catchup; 885 s8 virtual_tsc_shift; 886 u32 virtual_tsc_mult; 887 u32 virtual_tsc_khz; 888 s64 ia32_tsc_adjust_msr; 889 u64 msr_ia32_power_ctl; 890 u64 l1_tsc_scaling_ratio; 891 u64 tsc_scaling_ratio; /* current scaling ratio */ 892 893 atomic_t nmi_queued; /* unprocessed asynchronous NMIs */ 894 /* Number of NMIs pending injection, not including hardware vNMIs. */ 895 unsigned int nmi_pending; 896 bool nmi_injected; /* Trying to inject an NMI this entry */ 897 bool smi_pending; /* SMI queued after currently running handler */ 898 u8 handling_intr_from_guest; 899 900 struct kvm_mtrr mtrr_state; 901 u64 pat; 902 903 unsigned switch_db_regs; 904 unsigned long db[KVM_NR_DB_REGS]; 905 unsigned long dr6; 906 unsigned long dr7; 907 unsigned long eff_db[KVM_NR_DB_REGS]; 908 unsigned long guest_debug_dr7; 909 u64 msr_platform_info; 910 u64 msr_misc_features_enables; 911 912 u64 mcg_cap; 913 u64 mcg_status; 914 u64 mcg_ctl; 915 u64 mcg_ext_ctl; 916 u64 *mce_banks; 917 u64 *mci_ctl2_banks; 918 919 /* Cache MMIO info */ 920 u64 mmio_gva; 921 unsigned mmio_access; 922 gfn_t mmio_gfn; 923 u64 mmio_gen; 924 925 struct kvm_pmu pmu; 926 927 /* used for guest single stepping over the given code position */ 928 unsigned long singlestep_rip; 929 930 bool hyperv_enabled; 931 struct kvm_vcpu_hv *hyperv; 932 struct kvm_vcpu_xen xen; 933 934 cpumask_var_t wbinvd_dirty_mask; 935 936 unsigned long last_retry_eip; 937 unsigned long last_retry_addr; 938 939 struct { 940 bool halted; 941 gfn_t gfns[ASYNC_PF_PER_VCPU]; 942 struct gfn_to_hva_cache data; 943 u64 msr_en_val; /* MSR_KVM_ASYNC_PF_EN */ 944 u64 msr_int_val; /* MSR_KVM_ASYNC_PF_INT */ 945 u16 vec; 946 u32 id; 947 bool send_user_only; 948 u32 host_apf_flags; 949 bool delivery_as_pf_vmexit; 950 bool pageready_pending; 951 } apf; 952 953 /* OSVW MSRs (AMD only) */ 954 struct { 955 u64 length; 956 u64 status; 957 } osvw; 958 959 struct { 960 u64 msr_val; 961 struct gfn_to_hva_cache data; 962 } pv_eoi; 963 964 u64 msr_kvm_poll_control; 965 966 /* set at EPT violation at this point */ 967 unsigned long exit_qualification; 968 969 /* pv related host specific info */ 970 struct { 971 bool pv_unhalted; 972 } pv; 973 974 int pending_ioapic_eoi; 975 int pending_external_vector; 976 977 /* be preempted when it's in kernel-mode(cpl=0) */ 978 bool preempted_in_kernel; 979 980 /* Flush the L1 Data cache for L1TF mitigation on VMENTER */ 981 bool l1tf_flush_l1d; 982 983 /* Host CPU on which VM-entry was most recently attempted */ 984 int last_vmentry_cpu; 985 986 /* AMD MSRC001_0015 Hardware Configuration */ 987 u64 msr_hwcr; 988 989 /* pv related cpuid info */ 990 struct { 991 /* 992 * value of the eax register in the KVM_CPUID_FEATURES CPUID 993 * leaf. 994 */ 995 u32 features; 996 997 /* 998 * indicates whether pv emulation should be disabled if features 999 * are not present in the guest's cpuid 1000 */ 1001 bool enforce; 1002 } pv_cpuid; 1003 1004 /* Protected Guests */ 1005 bool guest_state_protected; 1006 1007 /* 1008 * Set when PDPTS were loaded directly by the userspace without 1009 * reading the guest memory 1010 */ 1011 bool pdptrs_from_userspace; 1012 1013 #if IS_ENABLED(CONFIG_HYPERV) 1014 hpa_t hv_root_tdp; 1015 #endif 1016 }; 1017 1018 struct kvm_lpage_info { 1019 int disallow_lpage; 1020 }; 1021 1022 struct kvm_arch_memory_slot { 1023 struct kvm_rmap_head *rmap[KVM_NR_PAGE_SIZES]; 1024 struct kvm_lpage_info *lpage_info[KVM_NR_PAGE_SIZES - 1]; 1025 unsigned short *gfn_write_track; 1026 }; 1027 1028 /* 1029 * Track the mode of the optimized logical map, as the rules for decoding the 1030 * destination vary per mode. Enabling the optimized logical map requires all 1031 * software-enabled local APIs to be in the same mode, each addressable APIC to 1032 * be mapped to only one MDA, and each MDA to map to at most one APIC. 1033 */ 1034 enum kvm_apic_logical_mode { 1035 /* All local APICs are software disabled. */ 1036 KVM_APIC_MODE_SW_DISABLED, 1037 /* All software enabled local APICs in xAPIC cluster addressing mode. */ 1038 KVM_APIC_MODE_XAPIC_CLUSTER, 1039 /* All software enabled local APICs in xAPIC flat addressing mode. */ 1040 KVM_APIC_MODE_XAPIC_FLAT, 1041 /* All software enabled local APICs in x2APIC mode. */ 1042 KVM_APIC_MODE_X2APIC, 1043 /* 1044 * Optimized map disabled, e.g. not all local APICs in the same logical 1045 * mode, same logical ID assigned to multiple APICs, etc. 1046 */ 1047 KVM_APIC_MODE_MAP_DISABLED, 1048 }; 1049 1050 struct kvm_apic_map { 1051 struct rcu_head rcu; 1052 enum kvm_apic_logical_mode logical_mode; 1053 u32 max_apic_id; 1054 union { 1055 struct kvm_lapic *xapic_flat_map[8]; 1056 struct kvm_lapic *xapic_cluster_map[16][4]; 1057 }; 1058 struct kvm_lapic *phys_map[]; 1059 }; 1060 1061 /* Hyper-V synthetic debugger (SynDbg)*/ 1062 struct kvm_hv_syndbg { 1063 struct { 1064 u64 control; 1065 u64 status; 1066 u64 send_page; 1067 u64 recv_page; 1068 u64 pending_page; 1069 } control; 1070 u64 options; 1071 }; 1072 1073 /* Current state of Hyper-V TSC page clocksource */ 1074 enum hv_tsc_page_status { 1075 /* TSC page was not set up or disabled */ 1076 HV_TSC_PAGE_UNSET = 0, 1077 /* TSC page MSR was written by the guest, update pending */ 1078 HV_TSC_PAGE_GUEST_CHANGED, 1079 /* TSC page update was triggered from the host side */ 1080 HV_TSC_PAGE_HOST_CHANGED, 1081 /* TSC page was properly set up and is currently active */ 1082 HV_TSC_PAGE_SET, 1083 /* TSC page was set up with an inaccessible GPA */ 1084 HV_TSC_PAGE_BROKEN, 1085 }; 1086 1087 /* Hyper-V emulation context */ 1088 struct kvm_hv { 1089 struct mutex hv_lock; 1090 u64 hv_guest_os_id; 1091 u64 hv_hypercall; 1092 u64 hv_tsc_page; 1093 enum hv_tsc_page_status hv_tsc_page_status; 1094 1095 /* Hyper-v based guest crash (NT kernel bugcheck) parameters */ 1096 u64 hv_crash_param[HV_X64_MSR_CRASH_PARAMS]; 1097 u64 hv_crash_ctl; 1098 1099 struct ms_hyperv_tsc_page tsc_ref; 1100 1101 struct idr conn_to_evt; 1102 1103 u64 hv_reenlightenment_control; 1104 u64 hv_tsc_emulation_control; 1105 u64 hv_tsc_emulation_status; 1106 u64 hv_invtsc_control; 1107 1108 /* How many vCPUs have VP index != vCPU index */ 1109 atomic_t num_mismatched_vp_indexes; 1110 1111 /* 1112 * How many SynICs use 'AutoEOI' feature 1113 * (protected by arch.apicv_update_lock) 1114 */ 1115 unsigned int synic_auto_eoi_used; 1116 1117 struct hv_partition_assist_pg *hv_pa_pg; 1118 struct kvm_hv_syndbg hv_syndbg; 1119 }; 1120 1121 struct msr_bitmap_range { 1122 u32 flags; 1123 u32 nmsrs; 1124 u32 base; 1125 unsigned long *bitmap; 1126 }; 1127 1128 /* Xen emulation context */ 1129 struct kvm_xen { 1130 struct mutex xen_lock; 1131 u32 xen_version; 1132 bool long_mode; 1133 bool runstate_update_flag; 1134 u8 upcall_vector; 1135 struct gfn_to_pfn_cache shinfo_cache; 1136 struct idr evtchn_ports; 1137 unsigned long poll_mask[BITS_TO_LONGS(KVM_MAX_VCPUS)]; 1138 }; 1139 1140 enum kvm_irqchip_mode { 1141 KVM_IRQCHIP_NONE, 1142 KVM_IRQCHIP_KERNEL, /* created with KVM_CREATE_IRQCHIP */ 1143 KVM_IRQCHIP_SPLIT, /* created with KVM_CAP_SPLIT_IRQCHIP */ 1144 }; 1145 1146 struct kvm_x86_msr_filter { 1147 u8 count; 1148 bool default_allow:1; 1149 struct msr_bitmap_range ranges[16]; 1150 }; 1151 1152 struct kvm_x86_pmu_event_filter { 1153 __u32 action; 1154 __u32 nevents; 1155 __u32 fixed_counter_bitmap; 1156 __u32 flags; 1157 __u32 nr_includes; 1158 __u32 nr_excludes; 1159 __u64 *includes; 1160 __u64 *excludes; 1161 __u64 events[]; 1162 }; 1163 1164 enum kvm_apicv_inhibit { 1165 1166 /********************************************************************/ 1167 /* INHIBITs that are relevant to both Intel's APICv and AMD's AVIC. */ 1168 /********************************************************************/ 1169 1170 /* 1171 * APIC acceleration is disabled by a module parameter 1172 * and/or not supported in hardware. 1173 */ 1174 APICV_INHIBIT_REASON_DISABLE, 1175 1176 /* 1177 * APIC acceleration is inhibited because AutoEOI feature is 1178 * being used by a HyperV guest. 1179 */ 1180 APICV_INHIBIT_REASON_HYPERV, 1181 1182 /* 1183 * APIC acceleration is inhibited because the userspace didn't yet 1184 * enable the kernel/split irqchip. 1185 */ 1186 APICV_INHIBIT_REASON_ABSENT, 1187 1188 /* APIC acceleration is inhibited because KVM_GUESTDBG_BLOCKIRQ 1189 * (out of band, debug measure of blocking all interrupts on this vCPU) 1190 * was enabled, to avoid AVIC/APICv bypassing it. 1191 */ 1192 APICV_INHIBIT_REASON_BLOCKIRQ, 1193 1194 /* 1195 * APICv is disabled because not all vCPUs have a 1:1 mapping between 1196 * APIC ID and vCPU, _and_ KVM is not applying its x2APIC hotplug hack. 1197 */ 1198 APICV_INHIBIT_REASON_PHYSICAL_ID_ALIASED, 1199 1200 /* 1201 * For simplicity, the APIC acceleration is inhibited 1202 * first time either APIC ID or APIC base are changed by the guest 1203 * from their reset values. 1204 */ 1205 APICV_INHIBIT_REASON_APIC_ID_MODIFIED, 1206 APICV_INHIBIT_REASON_APIC_BASE_MODIFIED, 1207 1208 /******************************************************/ 1209 /* INHIBITs that are relevant only to the AMD's AVIC. */ 1210 /******************************************************/ 1211 1212 /* 1213 * AVIC is inhibited on a vCPU because it runs a nested guest. 1214 * 1215 * This is needed because unlike APICv, the peers of this vCPU 1216 * cannot use the doorbell mechanism to signal interrupts via AVIC when 1217 * a vCPU runs nested. 1218 */ 1219 APICV_INHIBIT_REASON_NESTED, 1220 1221 /* 1222 * On SVM, the wait for the IRQ window is implemented with pending vIRQ, 1223 * which cannot be injected when the AVIC is enabled, thus AVIC 1224 * is inhibited while KVM waits for IRQ window. 1225 */ 1226 APICV_INHIBIT_REASON_IRQWIN, 1227 1228 /* 1229 * PIT (i8254) 're-inject' mode, relies on EOI intercept, 1230 * which AVIC doesn't support for edge triggered interrupts. 1231 */ 1232 APICV_INHIBIT_REASON_PIT_REINJ, 1233 1234 /* 1235 * AVIC is disabled because SEV doesn't support it. 1236 */ 1237 APICV_INHIBIT_REASON_SEV, 1238 1239 /* 1240 * AVIC is disabled because not all vCPUs with a valid LDR have a 1:1 1241 * mapping between logical ID and vCPU. 1242 */ 1243 APICV_INHIBIT_REASON_LOGICAL_ID_ALIASED, 1244 }; 1245 1246 struct kvm_arch { 1247 unsigned long n_used_mmu_pages; 1248 unsigned long n_requested_mmu_pages; 1249 unsigned long n_max_mmu_pages; 1250 unsigned int indirect_shadow_pages; 1251 u8 mmu_valid_gen; 1252 struct hlist_head mmu_page_hash[KVM_NUM_MMU_PAGES]; 1253 struct list_head active_mmu_pages; 1254 struct list_head zapped_obsolete_pages; 1255 /* 1256 * A list of kvm_mmu_page structs that, if zapped, could possibly be 1257 * replaced by an NX huge page. A shadow page is on this list if its 1258 * existence disallows an NX huge page (nx_huge_page_disallowed is set) 1259 * and there are no other conditions that prevent a huge page, e.g. 1260 * the backing host page is huge, dirtly logging is not enabled for its 1261 * memslot, etc... Note, zapping shadow pages on this list doesn't 1262 * guarantee an NX huge page will be created in its stead, e.g. if the 1263 * guest attempts to execute from the region then KVM obviously can't 1264 * create an NX huge page (without hanging the guest). 1265 */ 1266 struct list_head possible_nx_huge_pages; 1267 #ifdef CONFIG_KVM_EXTERNAL_WRITE_TRACKING 1268 struct kvm_page_track_notifier_head track_notifier_head; 1269 #endif 1270 /* 1271 * Protects marking pages unsync during page faults, as TDP MMU page 1272 * faults only take mmu_lock for read. For simplicity, the unsync 1273 * pages lock is always taken when marking pages unsync regardless of 1274 * whether mmu_lock is held for read or write. 1275 */ 1276 spinlock_t mmu_unsync_pages_lock; 1277 1278 struct list_head assigned_dev_head; 1279 struct iommu_domain *iommu_domain; 1280 bool iommu_noncoherent; 1281 #define __KVM_HAVE_ARCH_NONCOHERENT_DMA 1282 atomic_t noncoherent_dma_count; 1283 #define __KVM_HAVE_ARCH_ASSIGNED_DEVICE 1284 atomic_t assigned_device_count; 1285 struct kvm_pic *vpic; 1286 struct kvm_ioapic *vioapic; 1287 struct kvm_pit *vpit; 1288 atomic_t vapics_in_nmi_mode; 1289 struct mutex apic_map_lock; 1290 struct kvm_apic_map __rcu *apic_map; 1291 atomic_t apic_map_dirty; 1292 1293 bool apic_access_memslot_enabled; 1294 bool apic_access_memslot_inhibited; 1295 1296 /* Protects apicv_inhibit_reasons */ 1297 struct rw_semaphore apicv_update_lock; 1298 unsigned long apicv_inhibit_reasons; 1299 1300 gpa_t wall_clock; 1301 1302 bool mwait_in_guest; 1303 bool hlt_in_guest; 1304 bool pause_in_guest; 1305 bool cstate_in_guest; 1306 1307 unsigned long irq_sources_bitmap; 1308 s64 kvmclock_offset; 1309 1310 /* 1311 * This also protects nr_vcpus_matched_tsc which is read from a 1312 * preemption-disabled region, so it must be a raw spinlock. 1313 */ 1314 raw_spinlock_t tsc_write_lock; 1315 u64 last_tsc_nsec; 1316 u64 last_tsc_write; 1317 u32 last_tsc_khz; 1318 u64 last_tsc_offset; 1319 u64 cur_tsc_nsec; 1320 u64 cur_tsc_write; 1321 u64 cur_tsc_offset; 1322 u64 cur_tsc_generation; 1323 int nr_vcpus_matched_tsc; 1324 1325 u32 default_tsc_khz; 1326 1327 seqcount_raw_spinlock_t pvclock_sc; 1328 bool use_master_clock; 1329 u64 master_kernel_ns; 1330 u64 master_cycle_now; 1331 struct delayed_work kvmclock_update_work; 1332 struct delayed_work kvmclock_sync_work; 1333 1334 struct kvm_xen_hvm_config xen_hvm_config; 1335 1336 /* reads protected by irq_srcu, writes by irq_lock */ 1337 struct hlist_head mask_notifier_list; 1338 1339 struct kvm_hv hyperv; 1340 struct kvm_xen xen; 1341 1342 bool backwards_tsc_observed; 1343 bool boot_vcpu_runs_old_kvmclock; 1344 u32 bsp_vcpu_id; 1345 1346 u64 disabled_quirks; 1347 1348 enum kvm_irqchip_mode irqchip_mode; 1349 u8 nr_reserved_ioapic_pins; 1350 1351 bool disabled_lapic_found; 1352 1353 bool x2apic_format; 1354 bool x2apic_broadcast_quirk_disabled; 1355 1356 bool guest_can_read_msr_platform_info; 1357 bool exception_payload_enabled; 1358 1359 bool triple_fault_event; 1360 1361 bool bus_lock_detection_enabled; 1362 bool enable_pmu; 1363 1364 u32 notify_window; 1365 u32 notify_vmexit_flags; 1366 /* 1367 * If exit_on_emulation_error is set, and the in-kernel instruction 1368 * emulator fails to emulate an instruction, allow userspace 1369 * the opportunity to look at it. 1370 */ 1371 bool exit_on_emulation_error; 1372 1373 /* Deflect RDMSR and WRMSR to user space when they trigger a #GP */ 1374 u32 user_space_msr_mask; 1375 struct kvm_x86_msr_filter __rcu *msr_filter; 1376 1377 u32 hypercall_exit_enabled; 1378 1379 /* Guest can access the SGX PROVISIONKEY. */ 1380 bool sgx_provisioning_allowed; 1381 1382 struct kvm_x86_pmu_event_filter __rcu *pmu_event_filter; 1383 struct task_struct *nx_huge_page_recovery_thread; 1384 1385 #ifdef CONFIG_X86_64 1386 /* The number of TDP MMU pages across all roots. */ 1387 atomic64_t tdp_mmu_pages; 1388 1389 /* 1390 * List of struct kvm_mmu_pages being used as roots. 1391 * All struct kvm_mmu_pages in the list should have 1392 * tdp_mmu_page set. 1393 * 1394 * For reads, this list is protected by: 1395 * the MMU lock in read mode + RCU or 1396 * the MMU lock in write mode 1397 * 1398 * For writes, this list is protected by: 1399 * the MMU lock in read mode + the tdp_mmu_pages_lock or 1400 * the MMU lock in write mode 1401 * 1402 * Roots will remain in the list until their tdp_mmu_root_count 1403 * drops to zero, at which point the thread that decremented the 1404 * count to zero should removed the root from the list and clean 1405 * it up, freeing the root after an RCU grace period. 1406 */ 1407 struct list_head tdp_mmu_roots; 1408 1409 /* 1410 * Protects accesses to the following fields when the MMU lock 1411 * is held in read mode: 1412 * - tdp_mmu_roots (above) 1413 * - the link field of kvm_mmu_page structs used by the TDP MMU 1414 * - possible_nx_huge_pages; 1415 * - the possible_nx_huge_page_link field of kvm_mmu_page structs used 1416 * by the TDP MMU 1417 * It is acceptable, but not necessary, to acquire this lock when 1418 * the thread holds the MMU lock in write mode. 1419 */ 1420 spinlock_t tdp_mmu_pages_lock; 1421 #endif /* CONFIG_X86_64 */ 1422 1423 /* 1424 * If set, at least one shadow root has been allocated. This flag 1425 * is used as one input when determining whether certain memslot 1426 * related allocations are necessary. 1427 */ 1428 bool shadow_root_allocated; 1429 1430 #if IS_ENABLED(CONFIG_HYPERV) 1431 hpa_t hv_root_tdp; 1432 spinlock_t hv_root_tdp_lock; 1433 #endif 1434 /* 1435 * VM-scope maximum vCPU ID. Used to determine the size of structures 1436 * that increase along with the maximum vCPU ID, in which case, using 1437 * the global KVM_MAX_VCPU_IDS may lead to significant memory waste. 1438 */ 1439 u32 max_vcpu_ids; 1440 1441 bool disable_nx_huge_pages; 1442 1443 /* 1444 * Memory caches used to allocate shadow pages when performing eager 1445 * page splitting. No need for a shadowed_info_cache since eager page 1446 * splitting only allocates direct shadow pages. 1447 * 1448 * Protected by kvm->slots_lock. 1449 */ 1450 struct kvm_mmu_memory_cache split_shadow_page_cache; 1451 struct kvm_mmu_memory_cache split_page_header_cache; 1452 1453 /* 1454 * Memory cache used to allocate pte_list_desc structs while splitting 1455 * huge pages. In the worst case, to split one huge page, 512 1456 * pte_list_desc structs are needed to add each lower level leaf sptep 1457 * to the rmap plus 1 to extend the parent_ptes rmap of the lower level 1458 * page table. 1459 * 1460 * Protected by kvm->slots_lock. 1461 */ 1462 #define SPLIT_DESC_CACHE_MIN_NR_OBJECTS (SPTE_ENT_PER_PAGE + 1) 1463 struct kvm_mmu_memory_cache split_desc_cache; 1464 }; 1465 1466 struct kvm_vm_stat { 1467 struct kvm_vm_stat_generic generic; 1468 u64 mmu_shadow_zapped; 1469 u64 mmu_pte_write; 1470 u64 mmu_pde_zapped; 1471 u64 mmu_flooded; 1472 u64 mmu_recycled; 1473 u64 mmu_cache_miss; 1474 u64 mmu_unsync; 1475 union { 1476 struct { 1477 atomic64_t pages_4k; 1478 atomic64_t pages_2m; 1479 atomic64_t pages_1g; 1480 }; 1481 atomic64_t pages[KVM_NR_PAGE_SIZES]; 1482 }; 1483 u64 nx_lpage_splits; 1484 u64 max_mmu_page_hash_collisions; 1485 u64 max_mmu_rmap_size; 1486 }; 1487 1488 struct kvm_vcpu_stat { 1489 struct kvm_vcpu_stat_generic generic; 1490 u64 pf_taken; 1491 u64 pf_fixed; 1492 u64 pf_emulate; 1493 u64 pf_spurious; 1494 u64 pf_fast; 1495 u64 pf_mmio_spte_created; 1496 u64 pf_guest; 1497 u64 tlb_flush; 1498 u64 invlpg; 1499 1500 u64 exits; 1501 u64 io_exits; 1502 u64 mmio_exits; 1503 u64 signal_exits; 1504 u64 irq_window_exits; 1505 u64 nmi_window_exits; 1506 u64 l1d_flush; 1507 u64 halt_exits; 1508 u64 request_irq_exits; 1509 u64 irq_exits; 1510 u64 host_state_reload; 1511 u64 fpu_reload; 1512 u64 insn_emulation; 1513 u64 insn_emulation_fail; 1514 u64 hypercalls; 1515 u64 irq_injections; 1516 u64 nmi_injections; 1517 u64 req_event; 1518 u64 nested_run; 1519 u64 directed_yield_attempted; 1520 u64 directed_yield_successful; 1521 u64 preemption_reported; 1522 u64 preemption_other; 1523 u64 guest_mode; 1524 u64 notify_window_exits; 1525 }; 1526 1527 struct x86_instruction_info; 1528 1529 struct msr_data { 1530 bool host_initiated; 1531 u32 index; 1532 u64 data; 1533 }; 1534 1535 struct kvm_lapic_irq { 1536 u32 vector; 1537 u16 delivery_mode; 1538 u16 dest_mode; 1539 bool level; 1540 u16 trig_mode; 1541 u32 shorthand; 1542 u32 dest_id; 1543 bool msi_redir_hint; 1544 }; 1545 1546 static inline u16 kvm_lapic_irq_dest_mode(bool dest_mode_logical) 1547 { 1548 return dest_mode_logical ? APIC_DEST_LOGICAL : APIC_DEST_PHYSICAL; 1549 } 1550 1551 struct kvm_x86_ops { 1552 const char *name; 1553 1554 int (*check_processor_compatibility)(void); 1555 1556 int (*hardware_enable)(void); 1557 void (*hardware_disable)(void); 1558 void (*hardware_unsetup)(void); 1559 bool (*has_emulated_msr)(struct kvm *kvm, u32 index); 1560 void (*vcpu_after_set_cpuid)(struct kvm_vcpu *vcpu); 1561 1562 unsigned int vm_size; 1563 int (*vm_init)(struct kvm *kvm); 1564 void (*vm_destroy)(struct kvm *kvm); 1565 1566 /* Create, but do not attach this VCPU */ 1567 int (*vcpu_precreate)(struct kvm *kvm); 1568 int (*vcpu_create)(struct kvm_vcpu *vcpu); 1569 void (*vcpu_free)(struct kvm_vcpu *vcpu); 1570 void (*vcpu_reset)(struct kvm_vcpu *vcpu, bool init_event); 1571 1572 void (*prepare_switch_to_guest)(struct kvm_vcpu *vcpu); 1573 void (*vcpu_load)(struct kvm_vcpu *vcpu, int cpu); 1574 void (*vcpu_put)(struct kvm_vcpu *vcpu); 1575 1576 void (*update_exception_bitmap)(struct kvm_vcpu *vcpu); 1577 int (*get_msr)(struct kvm_vcpu *vcpu, struct msr_data *msr); 1578 int (*set_msr)(struct kvm_vcpu *vcpu, struct msr_data *msr); 1579 u64 (*get_segment_base)(struct kvm_vcpu *vcpu, int seg); 1580 void (*get_segment)(struct kvm_vcpu *vcpu, 1581 struct kvm_segment *var, int seg); 1582 int (*get_cpl)(struct kvm_vcpu *vcpu); 1583 void (*set_segment)(struct kvm_vcpu *vcpu, 1584 struct kvm_segment *var, int seg); 1585 void (*get_cs_db_l_bits)(struct kvm_vcpu *vcpu, int *db, int *l); 1586 bool (*is_valid_cr0)(struct kvm_vcpu *vcpu, unsigned long cr0); 1587 void (*set_cr0)(struct kvm_vcpu *vcpu, unsigned long cr0); 1588 void (*post_set_cr3)(struct kvm_vcpu *vcpu, unsigned long cr3); 1589 bool (*is_valid_cr4)(struct kvm_vcpu *vcpu, unsigned long cr4); 1590 void (*set_cr4)(struct kvm_vcpu *vcpu, unsigned long cr4); 1591 int (*set_efer)(struct kvm_vcpu *vcpu, u64 efer); 1592 void (*get_idt)(struct kvm_vcpu *vcpu, struct desc_ptr *dt); 1593 void (*set_idt)(struct kvm_vcpu *vcpu, struct desc_ptr *dt); 1594 void (*get_gdt)(struct kvm_vcpu *vcpu, struct desc_ptr *dt); 1595 void (*set_gdt)(struct kvm_vcpu *vcpu, struct desc_ptr *dt); 1596 void (*sync_dirty_debug_regs)(struct kvm_vcpu *vcpu); 1597 void (*set_dr7)(struct kvm_vcpu *vcpu, unsigned long value); 1598 void (*cache_reg)(struct kvm_vcpu *vcpu, enum kvm_reg reg); 1599 unsigned long (*get_rflags)(struct kvm_vcpu *vcpu); 1600 void (*set_rflags)(struct kvm_vcpu *vcpu, unsigned long rflags); 1601 bool (*get_if_flag)(struct kvm_vcpu *vcpu); 1602 1603 void (*flush_tlb_all)(struct kvm_vcpu *vcpu); 1604 void (*flush_tlb_current)(struct kvm_vcpu *vcpu); 1605 int (*flush_remote_tlbs)(struct kvm *kvm); 1606 int (*flush_remote_tlbs_range)(struct kvm *kvm, gfn_t gfn, 1607 gfn_t nr_pages); 1608 1609 /* 1610 * Flush any TLB entries associated with the given GVA. 1611 * Does not need to flush GPA->HPA mappings. 1612 * Can potentially get non-canonical addresses through INVLPGs, which 1613 * the implementation may choose to ignore if appropriate. 1614 */ 1615 void (*flush_tlb_gva)(struct kvm_vcpu *vcpu, gva_t addr); 1616 1617 /* 1618 * Flush any TLB entries created by the guest. Like tlb_flush_gva(), 1619 * does not need to flush GPA->HPA mappings. 1620 */ 1621 void (*flush_tlb_guest)(struct kvm_vcpu *vcpu); 1622 1623 int (*vcpu_pre_run)(struct kvm_vcpu *vcpu); 1624 enum exit_fastpath_completion (*vcpu_run)(struct kvm_vcpu *vcpu); 1625 int (*handle_exit)(struct kvm_vcpu *vcpu, 1626 enum exit_fastpath_completion exit_fastpath); 1627 int (*skip_emulated_instruction)(struct kvm_vcpu *vcpu); 1628 void (*update_emulated_instruction)(struct kvm_vcpu *vcpu); 1629 void (*set_interrupt_shadow)(struct kvm_vcpu *vcpu, int mask); 1630 u32 (*get_interrupt_shadow)(struct kvm_vcpu *vcpu); 1631 void (*patch_hypercall)(struct kvm_vcpu *vcpu, 1632 unsigned char *hypercall_addr); 1633 void (*inject_irq)(struct kvm_vcpu *vcpu, bool reinjected); 1634 void (*inject_nmi)(struct kvm_vcpu *vcpu); 1635 void (*inject_exception)(struct kvm_vcpu *vcpu); 1636 void (*cancel_injection)(struct kvm_vcpu *vcpu); 1637 int (*interrupt_allowed)(struct kvm_vcpu *vcpu, bool for_injection); 1638 int (*nmi_allowed)(struct kvm_vcpu *vcpu, bool for_injection); 1639 bool (*get_nmi_mask)(struct kvm_vcpu *vcpu); 1640 void (*set_nmi_mask)(struct kvm_vcpu *vcpu, bool masked); 1641 /* Whether or not a virtual NMI is pending in hardware. */ 1642 bool (*is_vnmi_pending)(struct kvm_vcpu *vcpu); 1643 /* 1644 * Attempt to pend a virtual NMI in harware. Returns %true on success 1645 * to allow using static_call_ret0 as the fallback. 1646 */ 1647 bool (*set_vnmi_pending)(struct kvm_vcpu *vcpu); 1648 void (*enable_nmi_window)(struct kvm_vcpu *vcpu); 1649 void (*enable_irq_window)(struct kvm_vcpu *vcpu); 1650 void (*update_cr8_intercept)(struct kvm_vcpu *vcpu, int tpr, int irr); 1651 bool (*check_apicv_inhibit_reasons)(enum kvm_apicv_inhibit reason); 1652 const unsigned long required_apicv_inhibits; 1653 bool allow_apicv_in_x2apic_without_x2apic_virtualization; 1654 void (*refresh_apicv_exec_ctrl)(struct kvm_vcpu *vcpu); 1655 void (*hwapic_irr_update)(struct kvm_vcpu *vcpu, int max_irr); 1656 void (*hwapic_isr_update)(int isr); 1657 bool (*guest_apic_has_interrupt)(struct kvm_vcpu *vcpu); 1658 void (*load_eoi_exitmap)(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap); 1659 void (*set_virtual_apic_mode)(struct kvm_vcpu *vcpu); 1660 void (*set_apic_access_page_addr)(struct kvm_vcpu *vcpu); 1661 void (*deliver_interrupt)(struct kvm_lapic *apic, int delivery_mode, 1662 int trig_mode, int vector); 1663 int (*sync_pir_to_irr)(struct kvm_vcpu *vcpu); 1664 int (*set_tss_addr)(struct kvm *kvm, unsigned int addr); 1665 int (*set_identity_map_addr)(struct kvm *kvm, u64 ident_addr); 1666 u8 (*get_mt_mask)(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio); 1667 1668 void (*load_mmu_pgd)(struct kvm_vcpu *vcpu, hpa_t root_hpa, 1669 int root_level); 1670 1671 bool (*has_wbinvd_exit)(void); 1672 1673 u64 (*get_l2_tsc_offset)(struct kvm_vcpu *vcpu); 1674 u64 (*get_l2_tsc_multiplier)(struct kvm_vcpu *vcpu); 1675 void (*write_tsc_offset)(struct kvm_vcpu *vcpu); 1676 void (*write_tsc_multiplier)(struct kvm_vcpu *vcpu); 1677 1678 /* 1679 * Retrieve somewhat arbitrary exit information. Intended to 1680 * be used only from within tracepoints or error paths. 1681 */ 1682 void (*get_exit_info)(struct kvm_vcpu *vcpu, u32 *reason, 1683 u64 *info1, u64 *info2, 1684 u32 *exit_int_info, u32 *exit_int_info_err_code); 1685 1686 int (*check_intercept)(struct kvm_vcpu *vcpu, 1687 struct x86_instruction_info *info, 1688 enum x86_intercept_stage stage, 1689 struct x86_exception *exception); 1690 void (*handle_exit_irqoff)(struct kvm_vcpu *vcpu); 1691 1692 void (*request_immediate_exit)(struct kvm_vcpu *vcpu); 1693 1694 void (*sched_in)(struct kvm_vcpu *kvm, int cpu); 1695 1696 /* 1697 * Size of the CPU's dirty log buffer, i.e. VMX's PML buffer. A zero 1698 * value indicates CPU dirty logging is unsupported or disabled. 1699 */ 1700 int cpu_dirty_log_size; 1701 void (*update_cpu_dirty_logging)(struct kvm_vcpu *vcpu); 1702 1703 const struct kvm_x86_nested_ops *nested_ops; 1704 1705 void (*vcpu_blocking)(struct kvm_vcpu *vcpu); 1706 void (*vcpu_unblocking)(struct kvm_vcpu *vcpu); 1707 1708 int (*pi_update_irte)(struct kvm *kvm, unsigned int host_irq, 1709 uint32_t guest_irq, bool set); 1710 void (*pi_start_assignment)(struct kvm *kvm); 1711 void (*apicv_post_state_restore)(struct kvm_vcpu *vcpu); 1712 bool (*dy_apicv_has_pending_interrupt)(struct kvm_vcpu *vcpu); 1713 1714 int (*set_hv_timer)(struct kvm_vcpu *vcpu, u64 guest_deadline_tsc, 1715 bool *expired); 1716 void (*cancel_hv_timer)(struct kvm_vcpu *vcpu); 1717 1718 void (*setup_mce)(struct kvm_vcpu *vcpu); 1719 1720 #ifdef CONFIG_KVM_SMM 1721 int (*smi_allowed)(struct kvm_vcpu *vcpu, bool for_injection); 1722 int (*enter_smm)(struct kvm_vcpu *vcpu, union kvm_smram *smram); 1723 int (*leave_smm)(struct kvm_vcpu *vcpu, const union kvm_smram *smram); 1724 void (*enable_smi_window)(struct kvm_vcpu *vcpu); 1725 #endif 1726 1727 int (*mem_enc_ioctl)(struct kvm *kvm, void __user *argp); 1728 int (*mem_enc_register_region)(struct kvm *kvm, struct kvm_enc_region *argp); 1729 int (*mem_enc_unregister_region)(struct kvm *kvm, struct kvm_enc_region *argp); 1730 int (*vm_copy_enc_context_from)(struct kvm *kvm, unsigned int source_fd); 1731 int (*vm_move_enc_context_from)(struct kvm *kvm, unsigned int source_fd); 1732 void (*guest_memory_reclaimed)(struct kvm *kvm); 1733 1734 int (*get_msr_feature)(struct kvm_msr_entry *entry); 1735 1736 bool (*can_emulate_instruction)(struct kvm_vcpu *vcpu, int emul_type, 1737 void *insn, int insn_len); 1738 1739 bool (*apic_init_signal_blocked)(struct kvm_vcpu *vcpu); 1740 int (*enable_l2_tlb_flush)(struct kvm_vcpu *vcpu); 1741 1742 void (*migrate_timers)(struct kvm_vcpu *vcpu); 1743 void (*msr_filter_changed)(struct kvm_vcpu *vcpu); 1744 int (*complete_emulated_msr)(struct kvm_vcpu *vcpu, int err); 1745 1746 void (*vcpu_deliver_sipi_vector)(struct kvm_vcpu *vcpu, u8 vector); 1747 1748 /* 1749 * Returns vCPU specific APICv inhibit reasons 1750 */ 1751 unsigned long (*vcpu_get_apicv_inhibit_reasons)(struct kvm_vcpu *vcpu); 1752 }; 1753 1754 struct kvm_x86_nested_ops { 1755 void (*leave_nested)(struct kvm_vcpu *vcpu); 1756 bool (*is_exception_vmexit)(struct kvm_vcpu *vcpu, u8 vector, 1757 u32 error_code); 1758 int (*check_events)(struct kvm_vcpu *vcpu); 1759 bool (*has_events)(struct kvm_vcpu *vcpu); 1760 void (*triple_fault)(struct kvm_vcpu *vcpu); 1761 int (*get_state)(struct kvm_vcpu *vcpu, 1762 struct kvm_nested_state __user *user_kvm_nested_state, 1763 unsigned user_data_size); 1764 int (*set_state)(struct kvm_vcpu *vcpu, 1765 struct kvm_nested_state __user *user_kvm_nested_state, 1766 struct kvm_nested_state *kvm_state); 1767 bool (*get_nested_state_pages)(struct kvm_vcpu *vcpu); 1768 int (*write_log_dirty)(struct kvm_vcpu *vcpu, gpa_t l2_gpa); 1769 1770 int (*enable_evmcs)(struct kvm_vcpu *vcpu, 1771 uint16_t *vmcs_version); 1772 uint16_t (*get_evmcs_version)(struct kvm_vcpu *vcpu); 1773 void (*hv_inject_synthetic_vmexit_post_tlb_flush)(struct kvm_vcpu *vcpu); 1774 }; 1775 1776 struct kvm_x86_init_ops { 1777 int (*hardware_setup)(void); 1778 unsigned int (*handle_intel_pt_intr)(void); 1779 1780 struct kvm_x86_ops *runtime_ops; 1781 struct kvm_pmu_ops *pmu_ops; 1782 }; 1783 1784 struct kvm_arch_async_pf { 1785 u32 token; 1786 gfn_t gfn; 1787 unsigned long cr3; 1788 bool direct_map; 1789 }; 1790 1791 extern u32 __read_mostly kvm_nr_uret_msrs; 1792 extern u64 __read_mostly host_efer; 1793 extern bool __read_mostly allow_smaller_maxphyaddr; 1794 extern bool __read_mostly enable_apicv; 1795 extern struct kvm_x86_ops kvm_x86_ops; 1796 1797 #define KVM_X86_OP(func) \ 1798 DECLARE_STATIC_CALL(kvm_x86_##func, *(((struct kvm_x86_ops *)0)->func)); 1799 #define KVM_X86_OP_OPTIONAL KVM_X86_OP 1800 #define KVM_X86_OP_OPTIONAL_RET0 KVM_X86_OP 1801 #include <asm/kvm-x86-ops.h> 1802 1803 int kvm_x86_vendor_init(struct kvm_x86_init_ops *ops); 1804 void kvm_x86_vendor_exit(void); 1805 1806 #define __KVM_HAVE_ARCH_VM_ALLOC 1807 static inline struct kvm *kvm_arch_alloc_vm(void) 1808 { 1809 return __vmalloc(kvm_x86_ops.vm_size, GFP_KERNEL_ACCOUNT | __GFP_ZERO); 1810 } 1811 1812 #define __KVM_HAVE_ARCH_VM_FREE 1813 void kvm_arch_free_vm(struct kvm *kvm); 1814 1815 #define __KVM_HAVE_ARCH_FLUSH_REMOTE_TLBS 1816 static inline int kvm_arch_flush_remote_tlbs(struct kvm *kvm) 1817 { 1818 if (kvm_x86_ops.flush_remote_tlbs && 1819 !static_call(kvm_x86_flush_remote_tlbs)(kvm)) 1820 return 0; 1821 else 1822 return -ENOTSUPP; 1823 } 1824 1825 #define __KVM_HAVE_ARCH_FLUSH_REMOTE_TLBS_RANGE 1826 1827 #define kvm_arch_pmi_in_guest(vcpu) \ 1828 ((vcpu) && (vcpu)->arch.handling_intr_from_guest) 1829 1830 void __init kvm_mmu_x86_module_init(void); 1831 int kvm_mmu_vendor_module_init(void); 1832 void kvm_mmu_vendor_module_exit(void); 1833 1834 void kvm_mmu_destroy(struct kvm_vcpu *vcpu); 1835 int kvm_mmu_create(struct kvm_vcpu *vcpu); 1836 void kvm_mmu_init_vm(struct kvm *kvm); 1837 void kvm_mmu_uninit_vm(struct kvm *kvm); 1838 1839 void kvm_mmu_after_set_cpuid(struct kvm_vcpu *vcpu); 1840 void kvm_mmu_reset_context(struct kvm_vcpu *vcpu); 1841 void kvm_mmu_slot_remove_write_access(struct kvm *kvm, 1842 const struct kvm_memory_slot *memslot, 1843 int start_level); 1844 void kvm_mmu_slot_try_split_huge_pages(struct kvm *kvm, 1845 const struct kvm_memory_slot *memslot, 1846 int target_level); 1847 void kvm_mmu_try_split_huge_pages(struct kvm *kvm, 1848 const struct kvm_memory_slot *memslot, 1849 u64 start, u64 end, 1850 int target_level); 1851 void kvm_mmu_zap_collapsible_sptes(struct kvm *kvm, 1852 const struct kvm_memory_slot *memslot); 1853 void kvm_mmu_slot_leaf_clear_dirty(struct kvm *kvm, 1854 const struct kvm_memory_slot *memslot); 1855 void kvm_mmu_invalidate_mmio_sptes(struct kvm *kvm, u64 gen); 1856 void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned long kvm_nr_mmu_pages); 1857 1858 int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3); 1859 1860 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa, 1861 const void *val, int bytes); 1862 1863 struct kvm_irq_mask_notifier { 1864 void (*func)(struct kvm_irq_mask_notifier *kimn, bool masked); 1865 int irq; 1866 struct hlist_node link; 1867 }; 1868 1869 void kvm_register_irq_mask_notifier(struct kvm *kvm, int irq, 1870 struct kvm_irq_mask_notifier *kimn); 1871 void kvm_unregister_irq_mask_notifier(struct kvm *kvm, int irq, 1872 struct kvm_irq_mask_notifier *kimn); 1873 void kvm_fire_mask_notifiers(struct kvm *kvm, unsigned irqchip, unsigned pin, 1874 bool mask); 1875 1876 extern bool tdp_enabled; 1877 1878 u64 vcpu_tsc_khz(struct kvm_vcpu *vcpu); 1879 1880 /* 1881 * EMULTYPE_NO_DECODE - Set when re-emulating an instruction (after completing 1882 * userspace I/O) to indicate that the emulation context 1883 * should be reused as is, i.e. skip initialization of 1884 * emulation context, instruction fetch and decode. 1885 * 1886 * EMULTYPE_TRAP_UD - Set when emulating an intercepted #UD from hardware. 1887 * Indicates that only select instructions (tagged with 1888 * EmulateOnUD) should be emulated (to minimize the emulator 1889 * attack surface). See also EMULTYPE_TRAP_UD_FORCED. 1890 * 1891 * EMULTYPE_SKIP - Set when emulating solely to skip an instruction, i.e. to 1892 * decode the instruction length. For use *only* by 1893 * kvm_x86_ops.skip_emulated_instruction() implementations if 1894 * EMULTYPE_COMPLETE_USER_EXIT is not set. 1895 * 1896 * EMULTYPE_ALLOW_RETRY_PF - Set when the emulator should resume the guest to 1897 * retry native execution under certain conditions, 1898 * Can only be set in conjunction with EMULTYPE_PF. 1899 * 1900 * EMULTYPE_TRAP_UD_FORCED - Set when emulating an intercepted #UD that was 1901 * triggered by KVM's magic "force emulation" prefix, 1902 * which is opt in via module param (off by default). 1903 * Bypasses EmulateOnUD restriction despite emulating 1904 * due to an intercepted #UD (see EMULTYPE_TRAP_UD). 1905 * Used to test the full emulator from userspace. 1906 * 1907 * EMULTYPE_VMWARE_GP - Set when emulating an intercepted #GP for VMware 1908 * backdoor emulation, which is opt in via module param. 1909 * VMware backdoor emulation handles select instructions 1910 * and reinjects the #GP for all other cases. 1911 * 1912 * EMULTYPE_PF - Set when emulating MMIO by way of an intercepted #PF, in which 1913 * case the CR2/GPA value pass on the stack is valid. 1914 * 1915 * EMULTYPE_COMPLETE_USER_EXIT - Set when the emulator should update interruptibility 1916 * state and inject single-step #DBs after skipping 1917 * an instruction (after completing userspace I/O). 1918 * 1919 * EMULTYPE_WRITE_PF_TO_SP - Set when emulating an intercepted page fault that 1920 * is attempting to write a gfn that contains one or 1921 * more of the PTEs used to translate the write itself, 1922 * and the owning page table is being shadowed by KVM. 1923 * If emulation of the faulting instruction fails and 1924 * this flag is set, KVM will exit to userspace instead 1925 * of retrying emulation as KVM cannot make forward 1926 * progress. 1927 * 1928 * If emulation fails for a write to guest page tables, 1929 * KVM unprotects (zaps) the shadow page for the target 1930 * gfn and resumes the guest to retry the non-emulatable 1931 * instruction (on hardware). Unprotecting the gfn 1932 * doesn't allow forward progress for a self-changing 1933 * access because doing so also zaps the translation for 1934 * the gfn, i.e. retrying the instruction will hit a 1935 * !PRESENT fault, which results in a new shadow page 1936 * and sends KVM back to square one. 1937 */ 1938 #define EMULTYPE_NO_DECODE (1 << 0) 1939 #define EMULTYPE_TRAP_UD (1 << 1) 1940 #define EMULTYPE_SKIP (1 << 2) 1941 #define EMULTYPE_ALLOW_RETRY_PF (1 << 3) 1942 #define EMULTYPE_TRAP_UD_FORCED (1 << 4) 1943 #define EMULTYPE_VMWARE_GP (1 << 5) 1944 #define EMULTYPE_PF (1 << 6) 1945 #define EMULTYPE_COMPLETE_USER_EXIT (1 << 7) 1946 #define EMULTYPE_WRITE_PF_TO_SP (1 << 8) 1947 1948 int kvm_emulate_instruction(struct kvm_vcpu *vcpu, int emulation_type); 1949 int kvm_emulate_instruction_from_buffer(struct kvm_vcpu *vcpu, 1950 void *insn, int insn_len); 1951 void __kvm_prepare_emulation_failure_exit(struct kvm_vcpu *vcpu, 1952 u64 *data, u8 ndata); 1953 void kvm_prepare_emulation_failure_exit(struct kvm_vcpu *vcpu); 1954 1955 void kvm_enable_efer_bits(u64); 1956 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer); 1957 int __kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data, bool host_initiated); 1958 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data); 1959 int kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data); 1960 int kvm_emulate_rdmsr(struct kvm_vcpu *vcpu); 1961 int kvm_emulate_wrmsr(struct kvm_vcpu *vcpu); 1962 int kvm_emulate_as_nop(struct kvm_vcpu *vcpu); 1963 int kvm_emulate_invd(struct kvm_vcpu *vcpu); 1964 int kvm_emulate_mwait(struct kvm_vcpu *vcpu); 1965 int kvm_handle_invalid_op(struct kvm_vcpu *vcpu); 1966 int kvm_emulate_monitor(struct kvm_vcpu *vcpu); 1967 1968 int kvm_fast_pio(struct kvm_vcpu *vcpu, int size, unsigned short port, int in); 1969 int kvm_emulate_cpuid(struct kvm_vcpu *vcpu); 1970 int kvm_emulate_halt(struct kvm_vcpu *vcpu); 1971 int kvm_emulate_halt_noskip(struct kvm_vcpu *vcpu); 1972 int kvm_emulate_ap_reset_hold(struct kvm_vcpu *vcpu); 1973 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu); 1974 1975 void kvm_get_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg); 1976 void kvm_set_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg); 1977 int kvm_load_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector, int seg); 1978 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector); 1979 1980 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index, 1981 int reason, bool has_error_code, u32 error_code); 1982 1983 void kvm_post_set_cr0(struct kvm_vcpu *vcpu, unsigned long old_cr0, unsigned long cr0); 1984 void kvm_post_set_cr4(struct kvm_vcpu *vcpu, unsigned long old_cr4, unsigned long cr4); 1985 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0); 1986 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3); 1987 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4); 1988 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8); 1989 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val); 1990 void kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val); 1991 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu); 1992 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw); 1993 int kvm_emulate_xsetbv(struct kvm_vcpu *vcpu); 1994 1995 int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr); 1996 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr); 1997 1998 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu); 1999 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags); 2000 int kvm_emulate_rdpmc(struct kvm_vcpu *vcpu); 2001 2002 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr); 2003 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code); 2004 void kvm_queue_exception_p(struct kvm_vcpu *vcpu, unsigned nr, unsigned long payload); 2005 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr); 2006 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code); 2007 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault); 2008 void kvm_inject_emulated_page_fault(struct kvm_vcpu *vcpu, 2009 struct x86_exception *fault); 2010 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl); 2011 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr); 2012 2013 static inline int __kvm_irq_line_state(unsigned long *irq_state, 2014 int irq_source_id, int level) 2015 { 2016 /* Logical OR for level trig interrupt */ 2017 if (level) 2018 __set_bit(irq_source_id, irq_state); 2019 else 2020 __clear_bit(irq_source_id, irq_state); 2021 2022 return !!(*irq_state); 2023 } 2024 2025 int kvm_pic_set_irq(struct kvm_pic *pic, int irq, int irq_source_id, int level); 2026 void kvm_pic_clear_all(struct kvm_pic *pic, int irq_source_id); 2027 2028 void kvm_inject_nmi(struct kvm_vcpu *vcpu); 2029 int kvm_get_nr_pending_nmis(struct kvm_vcpu *vcpu); 2030 2031 void kvm_update_dr7(struct kvm_vcpu *vcpu); 2032 2033 int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn); 2034 void kvm_mmu_free_roots(struct kvm *kvm, struct kvm_mmu *mmu, 2035 ulong roots_to_free); 2036 void kvm_mmu_free_guest_mode_roots(struct kvm *kvm, struct kvm_mmu *mmu); 2037 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva, 2038 struct x86_exception *exception); 2039 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva, 2040 struct x86_exception *exception); 2041 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva, 2042 struct x86_exception *exception); 2043 2044 bool kvm_apicv_activated(struct kvm *kvm); 2045 bool kvm_vcpu_apicv_activated(struct kvm_vcpu *vcpu); 2046 void __kvm_vcpu_update_apicv(struct kvm_vcpu *vcpu); 2047 void __kvm_set_or_clear_apicv_inhibit(struct kvm *kvm, 2048 enum kvm_apicv_inhibit reason, bool set); 2049 void kvm_set_or_clear_apicv_inhibit(struct kvm *kvm, 2050 enum kvm_apicv_inhibit reason, bool set); 2051 2052 static inline void kvm_set_apicv_inhibit(struct kvm *kvm, 2053 enum kvm_apicv_inhibit reason) 2054 { 2055 kvm_set_or_clear_apicv_inhibit(kvm, reason, true); 2056 } 2057 2058 static inline void kvm_clear_apicv_inhibit(struct kvm *kvm, 2059 enum kvm_apicv_inhibit reason) 2060 { 2061 kvm_set_or_clear_apicv_inhibit(kvm, reason, false); 2062 } 2063 2064 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu); 2065 2066 int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, u64 error_code, 2067 void *insn, int insn_len); 2068 void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva); 2069 void kvm_mmu_invalidate_addr(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, 2070 u64 addr, unsigned long roots); 2071 void kvm_mmu_invpcid_gva(struct kvm_vcpu *vcpu, gva_t gva, unsigned long pcid); 2072 void kvm_mmu_new_pgd(struct kvm_vcpu *vcpu, gpa_t new_pgd); 2073 2074 void kvm_configure_mmu(bool enable_tdp, int tdp_forced_root_level, 2075 int tdp_max_root_level, int tdp_huge_page_level); 2076 2077 static inline u16 kvm_read_ldt(void) 2078 { 2079 u16 ldt; 2080 asm("sldt %0" : "=g"(ldt)); 2081 return ldt; 2082 } 2083 2084 static inline void kvm_load_ldt(u16 sel) 2085 { 2086 asm("lldt %0" : : "rm"(sel)); 2087 } 2088 2089 #ifdef CONFIG_X86_64 2090 static inline unsigned long read_msr(unsigned long msr) 2091 { 2092 u64 value; 2093 2094 rdmsrl(msr, value); 2095 return value; 2096 } 2097 #endif 2098 2099 static inline void kvm_inject_gp(struct kvm_vcpu *vcpu, u32 error_code) 2100 { 2101 kvm_queue_exception_e(vcpu, GP_VECTOR, error_code); 2102 } 2103 2104 #define TSS_IOPB_BASE_OFFSET 0x66 2105 #define TSS_BASE_SIZE 0x68 2106 #define TSS_IOPB_SIZE (65536 / 8) 2107 #define TSS_REDIRECTION_SIZE (256 / 8) 2108 #define RMODE_TSS_SIZE \ 2109 (TSS_BASE_SIZE + TSS_REDIRECTION_SIZE + TSS_IOPB_SIZE + 1) 2110 2111 enum { 2112 TASK_SWITCH_CALL = 0, 2113 TASK_SWITCH_IRET = 1, 2114 TASK_SWITCH_JMP = 2, 2115 TASK_SWITCH_GATE = 3, 2116 }; 2117 2118 #define HF_GUEST_MASK (1 << 0) /* VCPU is in guest-mode */ 2119 2120 #ifdef CONFIG_KVM_SMM 2121 #define HF_SMM_MASK (1 << 1) 2122 #define HF_SMM_INSIDE_NMI_MASK (1 << 2) 2123 2124 # define __KVM_VCPU_MULTIPLE_ADDRESS_SPACE 2125 # define KVM_ADDRESS_SPACE_NUM 2 2126 # define kvm_arch_vcpu_memslots_id(vcpu) ((vcpu)->arch.hflags & HF_SMM_MASK ? 1 : 0) 2127 # define kvm_memslots_for_spte_role(kvm, role) __kvm_memslots(kvm, (role).smm) 2128 #else 2129 # define kvm_memslots_for_spte_role(kvm, role) __kvm_memslots(kvm, 0) 2130 #endif 2131 2132 #define KVM_ARCH_WANT_MMU_NOTIFIER 2133 2134 int kvm_cpu_has_injectable_intr(struct kvm_vcpu *v); 2135 int kvm_cpu_has_interrupt(struct kvm_vcpu *vcpu); 2136 int kvm_cpu_has_extint(struct kvm_vcpu *v); 2137 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu); 2138 int kvm_cpu_get_interrupt(struct kvm_vcpu *v); 2139 void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event); 2140 2141 int kvm_pv_send_ipi(struct kvm *kvm, unsigned long ipi_bitmap_low, 2142 unsigned long ipi_bitmap_high, u32 min, 2143 unsigned long icr, int op_64_bit); 2144 2145 int kvm_add_user_return_msr(u32 msr); 2146 int kvm_find_user_return_msr(u32 msr); 2147 int kvm_set_user_return_msr(unsigned index, u64 val, u64 mask); 2148 2149 static inline bool kvm_is_supported_user_return_msr(u32 msr) 2150 { 2151 return kvm_find_user_return_msr(msr) >= 0; 2152 } 2153 2154 u64 kvm_scale_tsc(u64 tsc, u64 ratio); 2155 u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc); 2156 u64 kvm_calc_nested_tsc_offset(u64 l1_offset, u64 l2_offset, u64 l2_multiplier); 2157 u64 kvm_calc_nested_tsc_multiplier(u64 l1_multiplier, u64 l2_multiplier); 2158 2159 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu); 2160 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip); 2161 2162 void kvm_make_scan_ioapic_request(struct kvm *kvm); 2163 void kvm_make_scan_ioapic_request_mask(struct kvm *kvm, 2164 unsigned long *vcpu_bitmap); 2165 2166 bool kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu, 2167 struct kvm_async_pf *work); 2168 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu, 2169 struct kvm_async_pf *work); 2170 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, 2171 struct kvm_async_pf *work); 2172 void kvm_arch_async_page_present_queued(struct kvm_vcpu *vcpu); 2173 bool kvm_arch_can_dequeue_async_page_present(struct kvm_vcpu *vcpu); 2174 extern bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn); 2175 2176 int kvm_skip_emulated_instruction(struct kvm_vcpu *vcpu); 2177 int kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err); 2178 void __kvm_request_immediate_exit(struct kvm_vcpu *vcpu); 2179 2180 void __user *__x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, 2181 u32 size); 2182 bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu); 2183 bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu); 2184 2185 bool kvm_intr_is_single_vcpu(struct kvm *kvm, struct kvm_lapic_irq *irq, 2186 struct kvm_vcpu **dest_vcpu); 2187 2188 void kvm_set_msi_irq(struct kvm *kvm, struct kvm_kernel_irq_routing_entry *e, 2189 struct kvm_lapic_irq *irq); 2190 2191 static inline bool kvm_irq_is_postable(struct kvm_lapic_irq *irq) 2192 { 2193 /* We can only post Fixed and LowPrio IRQs */ 2194 return (irq->delivery_mode == APIC_DM_FIXED || 2195 irq->delivery_mode == APIC_DM_LOWEST); 2196 } 2197 2198 static inline void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu) 2199 { 2200 static_call_cond(kvm_x86_vcpu_blocking)(vcpu); 2201 } 2202 2203 static inline void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu) 2204 { 2205 static_call_cond(kvm_x86_vcpu_unblocking)(vcpu); 2206 } 2207 2208 static inline int kvm_cpu_get_apicid(int mps_cpu) 2209 { 2210 #ifdef CONFIG_X86_LOCAL_APIC 2211 return default_cpu_present_to_apicid(mps_cpu); 2212 #else 2213 WARN_ON_ONCE(1); 2214 return BAD_APICID; 2215 #endif 2216 } 2217 2218 int memslot_rmap_alloc(struct kvm_memory_slot *slot, unsigned long npages); 2219 2220 #define KVM_CLOCK_VALID_FLAGS \ 2221 (KVM_CLOCK_TSC_STABLE | KVM_CLOCK_REALTIME | KVM_CLOCK_HOST_TSC) 2222 2223 #define KVM_X86_VALID_QUIRKS \ 2224 (KVM_X86_QUIRK_LINT0_REENABLED | \ 2225 KVM_X86_QUIRK_CD_NW_CLEARED | \ 2226 KVM_X86_QUIRK_LAPIC_MMIO_HOLE | \ 2227 KVM_X86_QUIRK_OUT_7E_INC_RIP | \ 2228 KVM_X86_QUIRK_MISC_ENABLE_NO_MWAIT | \ 2229 KVM_X86_QUIRK_FIX_HYPERCALL_INSN | \ 2230 KVM_X86_QUIRK_MWAIT_NEVER_UD_FAULTS) 2231 2232 /* 2233 * KVM previously used a u32 field in kvm_run to indicate the hypercall was 2234 * initiated from long mode. KVM now sets bit 0 to indicate long mode, but the 2235 * remaining 31 lower bits must be 0 to preserve ABI. 2236 */ 2237 #define KVM_EXIT_HYPERCALL_MBZ GENMASK_ULL(31, 1) 2238 2239 #endif /* _ASM_X86_KVM_HOST_H */ 2240