xref: /openbmc/linux/arch/x86/include/asm/kvm_host.h (revision 6c8c1406)
1 /* SPDX-License-Identifier: GPL-2.0-only */
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  *
5  * This header defines architecture specific interfaces, x86 version
6  */
7 
8 #ifndef _ASM_X86_KVM_HOST_H
9 #define _ASM_X86_KVM_HOST_H
10 
11 #include <linux/types.h>
12 #include <linux/mm.h>
13 #include <linux/mmu_notifier.h>
14 #include <linux/tracepoint.h>
15 #include <linux/cpumask.h>
16 #include <linux/irq_work.h>
17 #include <linux/irq.h>
18 #include <linux/workqueue.h>
19 
20 #include <linux/kvm.h>
21 #include <linux/kvm_para.h>
22 #include <linux/kvm_types.h>
23 #include <linux/perf_event.h>
24 #include <linux/pvclock_gtod.h>
25 #include <linux/clocksource.h>
26 #include <linux/irqbypass.h>
27 #include <linux/hyperv.h>
28 
29 #include <asm/apic.h>
30 #include <asm/pvclock-abi.h>
31 #include <asm/desc.h>
32 #include <asm/mtrr.h>
33 #include <asm/msr-index.h>
34 #include <asm/asm.h>
35 #include <asm/kvm_page_track.h>
36 #include <asm/kvm_vcpu_regs.h>
37 #include <asm/hyperv-tlfs.h>
38 
39 #define __KVM_HAVE_ARCH_VCPU_DEBUGFS
40 
41 #define KVM_MAX_VCPUS 1024
42 
43 /*
44  * In x86, the VCPU ID corresponds to the APIC ID, and APIC IDs
45  * might be larger than the actual number of VCPUs because the
46  * APIC ID encodes CPU topology information.
47  *
48  * In the worst case, we'll need less than one extra bit for the
49  * Core ID, and less than one extra bit for the Package (Die) ID,
50  * so ratio of 4 should be enough.
51  */
52 #define KVM_VCPU_ID_RATIO 4
53 #define KVM_MAX_VCPU_IDS (KVM_MAX_VCPUS * KVM_VCPU_ID_RATIO)
54 
55 /* memory slots that are not exposed to userspace */
56 #define KVM_INTERNAL_MEM_SLOTS 3
57 
58 #define KVM_HALT_POLL_NS_DEFAULT 200000
59 
60 #define KVM_IRQCHIP_NUM_PINS  KVM_IOAPIC_NUM_PINS
61 
62 #define KVM_DIRTY_LOG_MANUAL_CAPS   (KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE | \
63 					KVM_DIRTY_LOG_INITIALLY_SET)
64 
65 #define KVM_BUS_LOCK_DETECTION_VALID_MODE	(KVM_BUS_LOCK_DETECTION_OFF | \
66 						 KVM_BUS_LOCK_DETECTION_EXIT)
67 
68 #define KVM_X86_NOTIFY_VMEXIT_VALID_BITS	(KVM_X86_NOTIFY_VMEXIT_ENABLED | \
69 						 KVM_X86_NOTIFY_VMEXIT_USER)
70 
71 /* x86-specific vcpu->requests bit members */
72 #define KVM_REQ_MIGRATE_TIMER		KVM_ARCH_REQ(0)
73 #define KVM_REQ_REPORT_TPR_ACCESS	KVM_ARCH_REQ(1)
74 #define KVM_REQ_TRIPLE_FAULT		KVM_ARCH_REQ(2)
75 #define KVM_REQ_MMU_SYNC		KVM_ARCH_REQ(3)
76 #define KVM_REQ_CLOCK_UPDATE		KVM_ARCH_REQ(4)
77 #define KVM_REQ_LOAD_MMU_PGD		KVM_ARCH_REQ(5)
78 #define KVM_REQ_EVENT			KVM_ARCH_REQ(6)
79 #define KVM_REQ_APF_HALT		KVM_ARCH_REQ(7)
80 #define KVM_REQ_STEAL_UPDATE		KVM_ARCH_REQ(8)
81 #define KVM_REQ_NMI			KVM_ARCH_REQ(9)
82 #define KVM_REQ_PMU			KVM_ARCH_REQ(10)
83 #define KVM_REQ_PMI			KVM_ARCH_REQ(11)
84 #define KVM_REQ_SMI			KVM_ARCH_REQ(12)
85 #define KVM_REQ_MASTERCLOCK_UPDATE	KVM_ARCH_REQ(13)
86 #define KVM_REQ_MCLOCK_INPROGRESS \
87 	KVM_ARCH_REQ_FLAGS(14, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
88 #define KVM_REQ_SCAN_IOAPIC \
89 	KVM_ARCH_REQ_FLAGS(15, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
90 #define KVM_REQ_GLOBAL_CLOCK_UPDATE	KVM_ARCH_REQ(16)
91 #define KVM_REQ_APIC_PAGE_RELOAD \
92 	KVM_ARCH_REQ_FLAGS(17, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
93 #define KVM_REQ_HV_CRASH		KVM_ARCH_REQ(18)
94 #define KVM_REQ_IOAPIC_EOI_EXIT		KVM_ARCH_REQ(19)
95 #define KVM_REQ_HV_RESET		KVM_ARCH_REQ(20)
96 #define KVM_REQ_HV_EXIT			KVM_ARCH_REQ(21)
97 #define KVM_REQ_HV_STIMER		KVM_ARCH_REQ(22)
98 #define KVM_REQ_LOAD_EOI_EXITMAP	KVM_ARCH_REQ(23)
99 #define KVM_REQ_GET_NESTED_STATE_PAGES	KVM_ARCH_REQ(24)
100 #define KVM_REQ_APICV_UPDATE \
101 	KVM_ARCH_REQ_FLAGS(25, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
102 #define KVM_REQ_TLB_FLUSH_CURRENT	KVM_ARCH_REQ(26)
103 #define KVM_REQ_TLB_FLUSH_GUEST \
104 	KVM_ARCH_REQ_FLAGS(27, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
105 #define KVM_REQ_APF_READY		KVM_ARCH_REQ(28)
106 #define KVM_REQ_MSR_FILTER_CHANGED	KVM_ARCH_REQ(29)
107 #define KVM_REQ_UPDATE_CPU_DIRTY_LOGGING \
108 	KVM_ARCH_REQ_FLAGS(30, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
109 #define KVM_REQ_MMU_FREE_OBSOLETE_ROOTS \
110 	KVM_ARCH_REQ_FLAGS(31, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
111 
112 #define CR0_RESERVED_BITS                                               \
113 	(~(unsigned long)(X86_CR0_PE | X86_CR0_MP | X86_CR0_EM | X86_CR0_TS \
114 			  | X86_CR0_ET | X86_CR0_NE | X86_CR0_WP | X86_CR0_AM \
115 			  | X86_CR0_NW | X86_CR0_CD | X86_CR0_PG))
116 
117 #define CR4_RESERVED_BITS                                               \
118 	(~(unsigned long)(X86_CR4_VME | X86_CR4_PVI | X86_CR4_TSD | X86_CR4_DE\
119 			  | X86_CR4_PSE | X86_CR4_PAE | X86_CR4_MCE     \
120 			  | X86_CR4_PGE | X86_CR4_PCE | X86_CR4_OSFXSR | X86_CR4_PCIDE \
121 			  | X86_CR4_OSXSAVE | X86_CR4_SMEP | X86_CR4_FSGSBASE \
122 			  | X86_CR4_OSXMMEXCPT | X86_CR4_LA57 | X86_CR4_VMXE \
123 			  | X86_CR4_SMAP | X86_CR4_PKE | X86_CR4_UMIP))
124 
125 #define CR8_RESERVED_BITS (~(unsigned long)X86_CR8_TPR)
126 
127 
128 
129 #define INVALID_PAGE (~(hpa_t)0)
130 #define VALID_PAGE(x) ((x) != INVALID_PAGE)
131 
132 #define INVALID_GPA (~(gpa_t)0)
133 
134 /* KVM Hugepage definitions for x86 */
135 #define KVM_MAX_HUGEPAGE_LEVEL	PG_LEVEL_1G
136 #define KVM_NR_PAGE_SIZES	(KVM_MAX_HUGEPAGE_LEVEL - PG_LEVEL_4K + 1)
137 #define KVM_HPAGE_GFN_SHIFT(x)	(((x) - 1) * 9)
138 #define KVM_HPAGE_SHIFT(x)	(PAGE_SHIFT + KVM_HPAGE_GFN_SHIFT(x))
139 #define KVM_HPAGE_SIZE(x)	(1UL << KVM_HPAGE_SHIFT(x))
140 #define KVM_HPAGE_MASK(x)	(~(KVM_HPAGE_SIZE(x) - 1))
141 #define KVM_PAGES_PER_HPAGE(x)	(KVM_HPAGE_SIZE(x) / PAGE_SIZE)
142 
143 #define KVM_MEMSLOT_PAGES_TO_MMU_PAGES_RATIO 50
144 #define KVM_MIN_ALLOC_MMU_PAGES 64UL
145 #define KVM_MMU_HASH_SHIFT 12
146 #define KVM_NUM_MMU_PAGES (1 << KVM_MMU_HASH_SHIFT)
147 #define KVM_MIN_FREE_MMU_PAGES 5
148 #define KVM_REFILL_PAGES 25
149 #define KVM_MAX_CPUID_ENTRIES 256
150 #define KVM_NR_FIXED_MTRR_REGION 88
151 #define KVM_NR_VAR_MTRR 8
152 
153 #define ASYNC_PF_PER_VCPU 64
154 
155 enum kvm_reg {
156 	VCPU_REGS_RAX = __VCPU_REGS_RAX,
157 	VCPU_REGS_RCX = __VCPU_REGS_RCX,
158 	VCPU_REGS_RDX = __VCPU_REGS_RDX,
159 	VCPU_REGS_RBX = __VCPU_REGS_RBX,
160 	VCPU_REGS_RSP = __VCPU_REGS_RSP,
161 	VCPU_REGS_RBP = __VCPU_REGS_RBP,
162 	VCPU_REGS_RSI = __VCPU_REGS_RSI,
163 	VCPU_REGS_RDI = __VCPU_REGS_RDI,
164 #ifdef CONFIG_X86_64
165 	VCPU_REGS_R8  = __VCPU_REGS_R8,
166 	VCPU_REGS_R9  = __VCPU_REGS_R9,
167 	VCPU_REGS_R10 = __VCPU_REGS_R10,
168 	VCPU_REGS_R11 = __VCPU_REGS_R11,
169 	VCPU_REGS_R12 = __VCPU_REGS_R12,
170 	VCPU_REGS_R13 = __VCPU_REGS_R13,
171 	VCPU_REGS_R14 = __VCPU_REGS_R14,
172 	VCPU_REGS_R15 = __VCPU_REGS_R15,
173 #endif
174 	VCPU_REGS_RIP,
175 	NR_VCPU_REGS,
176 
177 	VCPU_EXREG_PDPTR = NR_VCPU_REGS,
178 	VCPU_EXREG_CR0,
179 	VCPU_EXREG_CR3,
180 	VCPU_EXREG_CR4,
181 	VCPU_EXREG_RFLAGS,
182 	VCPU_EXREG_SEGMENTS,
183 	VCPU_EXREG_EXIT_INFO_1,
184 	VCPU_EXREG_EXIT_INFO_2,
185 };
186 
187 enum {
188 	VCPU_SREG_ES,
189 	VCPU_SREG_CS,
190 	VCPU_SREG_SS,
191 	VCPU_SREG_DS,
192 	VCPU_SREG_FS,
193 	VCPU_SREG_GS,
194 	VCPU_SREG_TR,
195 	VCPU_SREG_LDTR,
196 };
197 
198 enum exit_fastpath_completion {
199 	EXIT_FASTPATH_NONE,
200 	EXIT_FASTPATH_REENTER_GUEST,
201 	EXIT_FASTPATH_EXIT_HANDLED,
202 };
203 typedef enum exit_fastpath_completion fastpath_t;
204 
205 struct x86_emulate_ctxt;
206 struct x86_exception;
207 enum x86_intercept;
208 enum x86_intercept_stage;
209 
210 #define KVM_NR_DB_REGS	4
211 
212 #define DR6_BUS_LOCK   (1 << 11)
213 #define DR6_BD		(1 << 13)
214 #define DR6_BS		(1 << 14)
215 #define DR6_BT		(1 << 15)
216 #define DR6_RTM		(1 << 16)
217 /*
218  * DR6_ACTIVE_LOW combines fixed-1 and active-low bits.
219  * We can regard all the bits in DR6_FIXED_1 as active_low bits;
220  * they will never be 0 for now, but when they are defined
221  * in the future it will require no code change.
222  *
223  * DR6_ACTIVE_LOW is also used as the init/reset value for DR6.
224  */
225 #define DR6_ACTIVE_LOW	0xffff0ff0
226 #define DR6_VOLATILE	0x0001e80f
227 #define DR6_FIXED_1	(DR6_ACTIVE_LOW & ~DR6_VOLATILE)
228 
229 #define DR7_BP_EN_MASK	0x000000ff
230 #define DR7_GE		(1 << 9)
231 #define DR7_GD		(1 << 13)
232 #define DR7_FIXED_1	0x00000400
233 #define DR7_VOLATILE	0xffff2bff
234 
235 #define KVM_GUESTDBG_VALID_MASK \
236 	(KVM_GUESTDBG_ENABLE | \
237 	KVM_GUESTDBG_SINGLESTEP | \
238 	KVM_GUESTDBG_USE_HW_BP | \
239 	KVM_GUESTDBG_USE_SW_BP | \
240 	KVM_GUESTDBG_INJECT_BP | \
241 	KVM_GUESTDBG_INJECT_DB | \
242 	KVM_GUESTDBG_BLOCKIRQ)
243 
244 
245 #define PFERR_PRESENT_BIT 0
246 #define PFERR_WRITE_BIT 1
247 #define PFERR_USER_BIT 2
248 #define PFERR_RSVD_BIT 3
249 #define PFERR_FETCH_BIT 4
250 #define PFERR_PK_BIT 5
251 #define PFERR_SGX_BIT 15
252 #define PFERR_GUEST_FINAL_BIT 32
253 #define PFERR_GUEST_PAGE_BIT 33
254 #define PFERR_IMPLICIT_ACCESS_BIT 48
255 
256 #define PFERR_PRESENT_MASK (1U << PFERR_PRESENT_BIT)
257 #define PFERR_WRITE_MASK (1U << PFERR_WRITE_BIT)
258 #define PFERR_USER_MASK (1U << PFERR_USER_BIT)
259 #define PFERR_RSVD_MASK (1U << PFERR_RSVD_BIT)
260 #define PFERR_FETCH_MASK (1U << PFERR_FETCH_BIT)
261 #define PFERR_PK_MASK (1U << PFERR_PK_BIT)
262 #define PFERR_SGX_MASK (1U << PFERR_SGX_BIT)
263 #define PFERR_GUEST_FINAL_MASK (1ULL << PFERR_GUEST_FINAL_BIT)
264 #define PFERR_GUEST_PAGE_MASK (1ULL << PFERR_GUEST_PAGE_BIT)
265 #define PFERR_IMPLICIT_ACCESS (1ULL << PFERR_IMPLICIT_ACCESS_BIT)
266 
267 #define PFERR_NESTED_GUEST_PAGE (PFERR_GUEST_PAGE_MASK |	\
268 				 PFERR_WRITE_MASK |		\
269 				 PFERR_PRESENT_MASK)
270 
271 /* apic attention bits */
272 #define KVM_APIC_CHECK_VAPIC	0
273 /*
274  * The following bit is set with PV-EOI, unset on EOI.
275  * We detect PV-EOI changes by guest by comparing
276  * this bit with PV-EOI in guest memory.
277  * See the implementation in apic_update_pv_eoi.
278  */
279 #define KVM_APIC_PV_EOI_PENDING	1
280 
281 struct kvm_kernel_irq_routing_entry;
282 
283 /*
284  * kvm_mmu_page_role tracks the properties of a shadow page (where shadow page
285  * also includes TDP pages) to determine whether or not a page can be used in
286  * the given MMU context.  This is a subset of the overall kvm_cpu_role to
287  * minimize the size of kvm_memory_slot.arch.gfn_track, i.e. allows allocating
288  * 2 bytes per gfn instead of 4 bytes per gfn.
289  *
290  * Upper-level shadow pages having gptes are tracked for write-protection via
291  * gfn_track.  As above, gfn_track is a 16 bit counter, so KVM must not create
292  * more than 2^16-1 upper-level shadow pages at a single gfn, otherwise
293  * gfn_track will overflow and explosions will ensure.
294  *
295  * A unique shadow page (SP) for a gfn is created if and only if an existing SP
296  * cannot be reused.  The ability to reuse a SP is tracked by its role, which
297  * incorporates various mode bits and properties of the SP.  Roughly speaking,
298  * the number of unique SPs that can theoretically be created is 2^n, where n
299  * is the number of bits that are used to compute the role.
300  *
301  * But, even though there are 19 bits in the mask below, not all combinations
302  * of modes and flags are possible:
303  *
304  *   - invalid shadow pages are not accounted, so the bits are effectively 18
305  *
306  *   - quadrant will only be used if has_4_byte_gpte=1 (non-PAE paging);
307  *     execonly and ad_disabled are only used for nested EPT which has
308  *     has_4_byte_gpte=0.  Therefore, 2 bits are always unused.
309  *
310  *   - the 4 bits of level are effectively limited to the values 2/3/4/5,
311  *     as 4k SPs are not tracked (allowed to go unsync).  In addition non-PAE
312  *     paging has exactly one upper level, making level completely redundant
313  *     when has_4_byte_gpte=1.
314  *
315  *   - on top of this, smep_andnot_wp and smap_andnot_wp are only set if
316  *     cr0_wp=0, therefore these three bits only give rise to 5 possibilities.
317  *
318  * Therefore, the maximum number of possible upper-level shadow pages for a
319  * single gfn is a bit less than 2^13.
320  */
321 union kvm_mmu_page_role {
322 	u32 word;
323 	struct {
324 		unsigned level:4;
325 		unsigned has_4_byte_gpte:1;
326 		unsigned quadrant:2;
327 		unsigned direct:1;
328 		unsigned access:3;
329 		unsigned invalid:1;
330 		unsigned efer_nx:1;
331 		unsigned cr0_wp:1;
332 		unsigned smep_andnot_wp:1;
333 		unsigned smap_andnot_wp:1;
334 		unsigned ad_disabled:1;
335 		unsigned guest_mode:1;
336 		unsigned passthrough:1;
337 		unsigned :5;
338 
339 		/*
340 		 * This is left at the top of the word so that
341 		 * kvm_memslots_for_spte_role can extract it with a
342 		 * simple shift.  While there is room, give it a whole
343 		 * byte so it is also faster to load it from memory.
344 		 */
345 		unsigned smm:8;
346 	};
347 };
348 
349 /*
350  * kvm_mmu_extended_role complements kvm_mmu_page_role, tracking properties
351  * relevant to the current MMU configuration.   When loading CR0, CR4, or EFER,
352  * including on nested transitions, if nothing in the full role changes then
353  * MMU re-configuration can be skipped. @valid bit is set on first usage so we
354  * don't treat all-zero structure as valid data.
355  *
356  * The properties that are tracked in the extended role but not the page role
357  * are for things that either (a) do not affect the validity of the shadow page
358  * or (b) are indirectly reflected in the shadow page's role.  For example,
359  * CR4.PKE only affects permission checks for software walks of the guest page
360  * tables (because KVM doesn't support Protection Keys with shadow paging), and
361  * CR0.PG, CR4.PAE, and CR4.PSE are indirectly reflected in role.level.
362  *
363  * Note, SMEP and SMAP are not redundant with sm*p_andnot_wp in the page role.
364  * If CR0.WP=1, KVM can reuse shadow pages for the guest regardless of SMEP and
365  * SMAP, but the MMU's permission checks for software walks need to be SMEP and
366  * SMAP aware regardless of CR0.WP.
367  */
368 union kvm_mmu_extended_role {
369 	u32 word;
370 	struct {
371 		unsigned int valid:1;
372 		unsigned int execonly:1;
373 		unsigned int cr4_pse:1;
374 		unsigned int cr4_pke:1;
375 		unsigned int cr4_smap:1;
376 		unsigned int cr4_smep:1;
377 		unsigned int cr4_la57:1;
378 		unsigned int efer_lma:1;
379 	};
380 };
381 
382 union kvm_cpu_role {
383 	u64 as_u64;
384 	struct {
385 		union kvm_mmu_page_role base;
386 		union kvm_mmu_extended_role ext;
387 	};
388 };
389 
390 struct kvm_rmap_head {
391 	unsigned long val;
392 };
393 
394 struct kvm_pio_request {
395 	unsigned long linear_rip;
396 	unsigned long count;
397 	int in;
398 	int port;
399 	int size;
400 };
401 
402 #define PT64_ROOT_MAX_LEVEL 5
403 
404 struct rsvd_bits_validate {
405 	u64 rsvd_bits_mask[2][PT64_ROOT_MAX_LEVEL];
406 	u64 bad_mt_xwr;
407 };
408 
409 struct kvm_mmu_root_info {
410 	gpa_t pgd;
411 	hpa_t hpa;
412 };
413 
414 #define KVM_MMU_ROOT_INFO_INVALID \
415 	((struct kvm_mmu_root_info) { .pgd = INVALID_PAGE, .hpa = INVALID_PAGE })
416 
417 #define KVM_MMU_NUM_PREV_ROOTS 3
418 
419 #define KVM_HAVE_MMU_RWLOCK
420 
421 struct kvm_mmu_page;
422 struct kvm_page_fault;
423 
424 /*
425  * x86 supports 4 paging modes (5-level 64-bit, 4-level 64-bit, 3-level 32-bit,
426  * and 2-level 32-bit).  The kvm_mmu structure abstracts the details of the
427  * current mmu mode.
428  */
429 struct kvm_mmu {
430 	unsigned long (*get_guest_pgd)(struct kvm_vcpu *vcpu);
431 	u64 (*get_pdptr)(struct kvm_vcpu *vcpu, int index);
432 	int (*page_fault)(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault);
433 	void (*inject_page_fault)(struct kvm_vcpu *vcpu,
434 				  struct x86_exception *fault);
435 	gpa_t (*gva_to_gpa)(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
436 			    gpa_t gva_or_gpa, u64 access,
437 			    struct x86_exception *exception);
438 	int (*sync_page)(struct kvm_vcpu *vcpu,
439 			 struct kvm_mmu_page *sp);
440 	void (*invlpg)(struct kvm_vcpu *vcpu, gva_t gva, hpa_t root_hpa);
441 	struct kvm_mmu_root_info root;
442 	union kvm_cpu_role cpu_role;
443 	union kvm_mmu_page_role root_role;
444 
445 	/*
446 	* The pkru_mask indicates if protection key checks are needed.  It
447 	* consists of 16 domains indexed by page fault error code bits [4:1],
448 	* with PFEC.RSVD replaced by ACC_USER_MASK from the page tables.
449 	* Each domain has 2 bits which are ANDed with AD and WD from PKRU.
450 	*/
451 	u32 pkru_mask;
452 
453 	struct kvm_mmu_root_info prev_roots[KVM_MMU_NUM_PREV_ROOTS];
454 
455 	/*
456 	 * Bitmap; bit set = permission fault
457 	 * Byte index: page fault error code [4:1]
458 	 * Bit index: pte permissions in ACC_* format
459 	 */
460 	u8 permissions[16];
461 
462 	u64 *pae_root;
463 	u64 *pml4_root;
464 	u64 *pml5_root;
465 
466 	/*
467 	 * check zero bits on shadow page table entries, these
468 	 * bits include not only hardware reserved bits but also
469 	 * the bits spte never used.
470 	 */
471 	struct rsvd_bits_validate shadow_zero_check;
472 
473 	struct rsvd_bits_validate guest_rsvd_check;
474 
475 	u64 pdptrs[4]; /* pae */
476 };
477 
478 struct kvm_tlb_range {
479 	u64 start_gfn;
480 	u64 pages;
481 };
482 
483 enum pmc_type {
484 	KVM_PMC_GP = 0,
485 	KVM_PMC_FIXED,
486 };
487 
488 struct kvm_pmc {
489 	enum pmc_type type;
490 	u8 idx;
491 	u64 counter;
492 	u64 eventsel;
493 	struct perf_event *perf_event;
494 	struct kvm_vcpu *vcpu;
495 	/*
496 	 * eventsel value for general purpose counters,
497 	 * ctrl value for fixed counters.
498 	 */
499 	u64 current_config;
500 	bool is_paused;
501 	bool intr;
502 };
503 
504 /* More counters may conflict with other existing Architectural MSRs */
505 #define KVM_INTEL_PMC_MAX_GENERIC	8
506 #define MSR_ARCH_PERFMON_PERFCTR_MAX	(MSR_ARCH_PERFMON_PERFCTR0 + KVM_INTEL_PMC_MAX_GENERIC - 1)
507 #define MSR_ARCH_PERFMON_EVENTSEL_MAX	(MSR_ARCH_PERFMON_EVENTSEL0 + KVM_INTEL_PMC_MAX_GENERIC - 1)
508 #define KVM_PMC_MAX_FIXED	3
509 #define KVM_AMD_PMC_MAX_GENERIC	6
510 struct kvm_pmu {
511 	unsigned nr_arch_gp_counters;
512 	unsigned nr_arch_fixed_counters;
513 	unsigned available_event_types;
514 	u64 fixed_ctr_ctrl;
515 	u64 fixed_ctr_ctrl_mask;
516 	u64 global_ctrl;
517 	u64 global_status;
518 	u64 counter_bitmask[2];
519 	u64 global_ctrl_mask;
520 	u64 global_ovf_ctrl_mask;
521 	u64 reserved_bits;
522 	u64 raw_event_mask;
523 	u8 version;
524 	struct kvm_pmc gp_counters[KVM_INTEL_PMC_MAX_GENERIC];
525 	struct kvm_pmc fixed_counters[KVM_PMC_MAX_FIXED];
526 	struct irq_work irq_work;
527 	DECLARE_BITMAP(reprogram_pmi, X86_PMC_IDX_MAX);
528 	DECLARE_BITMAP(all_valid_pmc_idx, X86_PMC_IDX_MAX);
529 	DECLARE_BITMAP(pmc_in_use, X86_PMC_IDX_MAX);
530 
531 	u64 ds_area;
532 	u64 pebs_enable;
533 	u64 pebs_enable_mask;
534 	u64 pebs_data_cfg;
535 	u64 pebs_data_cfg_mask;
536 
537 	/*
538 	 * If a guest counter is cross-mapped to host counter with different
539 	 * index, its PEBS capability will be temporarily disabled.
540 	 *
541 	 * The user should make sure that this mask is updated
542 	 * after disabling interrupts and before perf_guest_get_msrs();
543 	 */
544 	u64 host_cross_mapped_mask;
545 
546 	/*
547 	 * The gate to release perf_events not marked in
548 	 * pmc_in_use only once in a vcpu time slice.
549 	 */
550 	bool need_cleanup;
551 
552 	/*
553 	 * The total number of programmed perf_events and it helps to avoid
554 	 * redundant check before cleanup if guest don't use vPMU at all.
555 	 */
556 	u8 event_count;
557 };
558 
559 struct kvm_pmu_ops;
560 
561 enum {
562 	KVM_DEBUGREG_BP_ENABLED = 1,
563 	KVM_DEBUGREG_WONT_EXIT = 2,
564 };
565 
566 struct kvm_mtrr_range {
567 	u64 base;
568 	u64 mask;
569 	struct list_head node;
570 };
571 
572 struct kvm_mtrr {
573 	struct kvm_mtrr_range var_ranges[KVM_NR_VAR_MTRR];
574 	mtrr_type fixed_ranges[KVM_NR_FIXED_MTRR_REGION];
575 	u64 deftype;
576 
577 	struct list_head head;
578 };
579 
580 /* Hyper-V SynIC timer */
581 struct kvm_vcpu_hv_stimer {
582 	struct hrtimer timer;
583 	int index;
584 	union hv_stimer_config config;
585 	u64 count;
586 	u64 exp_time;
587 	struct hv_message msg;
588 	bool msg_pending;
589 };
590 
591 /* Hyper-V synthetic interrupt controller (SynIC)*/
592 struct kvm_vcpu_hv_synic {
593 	u64 version;
594 	u64 control;
595 	u64 msg_page;
596 	u64 evt_page;
597 	atomic64_t sint[HV_SYNIC_SINT_COUNT];
598 	atomic_t sint_to_gsi[HV_SYNIC_SINT_COUNT];
599 	DECLARE_BITMAP(auto_eoi_bitmap, 256);
600 	DECLARE_BITMAP(vec_bitmap, 256);
601 	bool active;
602 	bool dont_zero_synic_pages;
603 };
604 
605 /* Hyper-V per vcpu emulation context */
606 struct kvm_vcpu_hv {
607 	struct kvm_vcpu *vcpu;
608 	u32 vp_index;
609 	u64 hv_vapic;
610 	s64 runtime_offset;
611 	struct kvm_vcpu_hv_synic synic;
612 	struct kvm_hyperv_exit exit;
613 	struct kvm_vcpu_hv_stimer stimer[HV_SYNIC_STIMER_COUNT];
614 	DECLARE_BITMAP(stimer_pending_bitmap, HV_SYNIC_STIMER_COUNT);
615 	bool enforce_cpuid;
616 	struct {
617 		u32 features_eax; /* HYPERV_CPUID_FEATURES.EAX */
618 		u32 features_ebx; /* HYPERV_CPUID_FEATURES.EBX */
619 		u32 features_edx; /* HYPERV_CPUID_FEATURES.EDX */
620 		u32 enlightenments_eax; /* HYPERV_CPUID_ENLIGHTMENT_INFO.EAX */
621 		u32 enlightenments_ebx; /* HYPERV_CPUID_ENLIGHTMENT_INFO.EBX */
622 		u32 syndbg_cap_eax; /* HYPERV_CPUID_SYNDBG_PLATFORM_CAPABILITIES.EAX */
623 		u32 nested_eax; /* HYPERV_CPUID_NESTED_FEATURES.EAX */
624 		u32 nested_ebx; /* HYPERV_CPUID_NESTED_FEATURES.EBX */
625 	} cpuid_cache;
626 };
627 
628 /* Xen HVM per vcpu emulation context */
629 struct kvm_vcpu_xen {
630 	u64 hypercall_rip;
631 	u32 current_runstate;
632 	u8 upcall_vector;
633 	struct gfn_to_pfn_cache vcpu_info_cache;
634 	struct gfn_to_pfn_cache vcpu_time_info_cache;
635 	struct gfn_to_pfn_cache runstate_cache;
636 	u64 last_steal;
637 	u64 runstate_entry_time;
638 	u64 runstate_times[4];
639 	unsigned long evtchn_pending_sel;
640 	u32 vcpu_id; /* The Xen / ACPI vCPU ID */
641 	u32 timer_virq;
642 	u64 timer_expires; /* In guest epoch */
643 	atomic_t timer_pending;
644 	struct hrtimer timer;
645 	int poll_evtchn;
646 	struct timer_list poll_timer;
647 };
648 
649 struct kvm_queued_exception {
650 	bool pending;
651 	bool injected;
652 	bool has_error_code;
653 	u8 vector;
654 	u32 error_code;
655 	unsigned long payload;
656 	bool has_payload;
657 };
658 
659 struct kvm_vcpu_arch {
660 	/*
661 	 * rip and regs accesses must go through
662 	 * kvm_{register,rip}_{read,write} functions.
663 	 */
664 	unsigned long regs[NR_VCPU_REGS];
665 	u32 regs_avail;
666 	u32 regs_dirty;
667 
668 	unsigned long cr0;
669 	unsigned long cr0_guest_owned_bits;
670 	unsigned long cr2;
671 	unsigned long cr3;
672 	unsigned long cr4;
673 	unsigned long cr4_guest_owned_bits;
674 	unsigned long cr4_guest_rsvd_bits;
675 	unsigned long cr8;
676 	u32 host_pkru;
677 	u32 pkru;
678 	u32 hflags;
679 	u64 efer;
680 	u64 apic_base;
681 	struct kvm_lapic *apic;    /* kernel irqchip context */
682 	bool load_eoi_exitmap_pending;
683 	DECLARE_BITMAP(ioapic_handled_vectors, 256);
684 	unsigned long apic_attention;
685 	int32_t apic_arb_prio;
686 	int mp_state;
687 	u64 ia32_misc_enable_msr;
688 	u64 smbase;
689 	u64 smi_count;
690 	bool at_instruction_boundary;
691 	bool tpr_access_reporting;
692 	bool xsaves_enabled;
693 	bool xfd_no_write_intercept;
694 	u64 ia32_xss;
695 	u64 microcode_version;
696 	u64 arch_capabilities;
697 	u64 perf_capabilities;
698 
699 	/*
700 	 * Paging state of the vcpu
701 	 *
702 	 * If the vcpu runs in guest mode with two level paging this still saves
703 	 * the paging mode of the l1 guest. This context is always used to
704 	 * handle faults.
705 	 */
706 	struct kvm_mmu *mmu;
707 
708 	/* Non-nested MMU for L1 */
709 	struct kvm_mmu root_mmu;
710 
711 	/* L1 MMU when running nested */
712 	struct kvm_mmu guest_mmu;
713 
714 	/*
715 	 * Paging state of an L2 guest (used for nested npt)
716 	 *
717 	 * This context will save all necessary information to walk page tables
718 	 * of an L2 guest. This context is only initialized for page table
719 	 * walking and not for faulting since we never handle l2 page faults on
720 	 * the host.
721 	 */
722 	struct kvm_mmu nested_mmu;
723 
724 	/*
725 	 * Pointer to the mmu context currently used for
726 	 * gva_to_gpa translations.
727 	 */
728 	struct kvm_mmu *walk_mmu;
729 
730 	struct kvm_mmu_memory_cache mmu_pte_list_desc_cache;
731 	struct kvm_mmu_memory_cache mmu_shadow_page_cache;
732 	struct kvm_mmu_memory_cache mmu_shadowed_info_cache;
733 	struct kvm_mmu_memory_cache mmu_page_header_cache;
734 
735 	/*
736 	 * QEMU userspace and the guest each have their own FPU state.
737 	 * In vcpu_run, we switch between the user and guest FPU contexts.
738 	 * While running a VCPU, the VCPU thread will have the guest FPU
739 	 * context.
740 	 *
741 	 * Note that while the PKRU state lives inside the fpu registers,
742 	 * it is switched out separately at VMENTER and VMEXIT time. The
743 	 * "guest_fpstate" state here contains the guest FPU context, with the
744 	 * host PRKU bits.
745 	 */
746 	struct fpu_guest guest_fpu;
747 
748 	u64 xcr0;
749 	u64 guest_supported_xcr0;
750 
751 	struct kvm_pio_request pio;
752 	void *pio_data;
753 	void *sev_pio_data;
754 	unsigned sev_pio_count;
755 
756 	u8 event_exit_inst_len;
757 
758 	bool exception_from_userspace;
759 
760 	/* Exceptions to be injected to the guest. */
761 	struct kvm_queued_exception exception;
762 	/* Exception VM-Exits to be synthesized to L1. */
763 	struct kvm_queued_exception exception_vmexit;
764 
765 	struct kvm_queued_interrupt {
766 		bool injected;
767 		bool soft;
768 		u8 nr;
769 	} interrupt;
770 
771 	int halt_request; /* real mode on Intel only */
772 
773 	int cpuid_nent;
774 	struct kvm_cpuid_entry2 *cpuid_entries;
775 	u32 kvm_cpuid_base;
776 
777 	u64 reserved_gpa_bits;
778 	int maxphyaddr;
779 
780 	/* emulate context */
781 
782 	struct x86_emulate_ctxt *emulate_ctxt;
783 	bool emulate_regs_need_sync_to_vcpu;
784 	bool emulate_regs_need_sync_from_vcpu;
785 	int (*complete_userspace_io)(struct kvm_vcpu *vcpu);
786 
787 	gpa_t time;
788 	struct pvclock_vcpu_time_info hv_clock;
789 	unsigned int hw_tsc_khz;
790 	struct gfn_to_pfn_cache pv_time;
791 	/* set guest stopped flag in pvclock flags field */
792 	bool pvclock_set_guest_stopped_request;
793 
794 	struct {
795 		u8 preempted;
796 		u64 msr_val;
797 		u64 last_steal;
798 		struct gfn_to_hva_cache cache;
799 	} st;
800 
801 	u64 l1_tsc_offset;
802 	u64 tsc_offset; /* current tsc offset */
803 	u64 last_guest_tsc;
804 	u64 last_host_tsc;
805 	u64 tsc_offset_adjustment;
806 	u64 this_tsc_nsec;
807 	u64 this_tsc_write;
808 	u64 this_tsc_generation;
809 	bool tsc_catchup;
810 	bool tsc_always_catchup;
811 	s8 virtual_tsc_shift;
812 	u32 virtual_tsc_mult;
813 	u32 virtual_tsc_khz;
814 	s64 ia32_tsc_adjust_msr;
815 	u64 msr_ia32_power_ctl;
816 	u64 l1_tsc_scaling_ratio;
817 	u64 tsc_scaling_ratio; /* current scaling ratio */
818 
819 	atomic_t nmi_queued;  /* unprocessed asynchronous NMIs */
820 	unsigned nmi_pending; /* NMI queued after currently running handler */
821 	bool nmi_injected;    /* Trying to inject an NMI this entry */
822 	bool smi_pending;    /* SMI queued after currently running handler */
823 	u8 handling_intr_from_guest;
824 
825 	struct kvm_mtrr mtrr_state;
826 	u64 pat;
827 
828 	unsigned switch_db_regs;
829 	unsigned long db[KVM_NR_DB_REGS];
830 	unsigned long dr6;
831 	unsigned long dr7;
832 	unsigned long eff_db[KVM_NR_DB_REGS];
833 	unsigned long guest_debug_dr7;
834 	u64 msr_platform_info;
835 	u64 msr_misc_features_enables;
836 
837 	u64 mcg_cap;
838 	u64 mcg_status;
839 	u64 mcg_ctl;
840 	u64 mcg_ext_ctl;
841 	u64 *mce_banks;
842 	u64 *mci_ctl2_banks;
843 
844 	/* Cache MMIO info */
845 	u64 mmio_gva;
846 	unsigned mmio_access;
847 	gfn_t mmio_gfn;
848 	u64 mmio_gen;
849 
850 	struct kvm_pmu pmu;
851 
852 	/* used for guest single stepping over the given code position */
853 	unsigned long singlestep_rip;
854 
855 	bool hyperv_enabled;
856 	struct kvm_vcpu_hv *hyperv;
857 	struct kvm_vcpu_xen xen;
858 
859 	cpumask_var_t wbinvd_dirty_mask;
860 
861 	unsigned long last_retry_eip;
862 	unsigned long last_retry_addr;
863 
864 	struct {
865 		bool halted;
866 		gfn_t gfns[ASYNC_PF_PER_VCPU];
867 		struct gfn_to_hva_cache data;
868 		u64 msr_en_val; /* MSR_KVM_ASYNC_PF_EN */
869 		u64 msr_int_val; /* MSR_KVM_ASYNC_PF_INT */
870 		u16 vec;
871 		u32 id;
872 		bool send_user_only;
873 		u32 host_apf_flags;
874 		bool delivery_as_pf_vmexit;
875 		bool pageready_pending;
876 	} apf;
877 
878 	/* OSVW MSRs (AMD only) */
879 	struct {
880 		u64 length;
881 		u64 status;
882 	} osvw;
883 
884 	struct {
885 		u64 msr_val;
886 		struct gfn_to_hva_cache data;
887 	} pv_eoi;
888 
889 	u64 msr_kvm_poll_control;
890 
891 	/*
892 	 * Indicates the guest is trying to write a gfn that contains one or
893 	 * more of the PTEs used to translate the write itself, i.e. the access
894 	 * is changing its own translation in the guest page tables.  KVM exits
895 	 * to userspace if emulation of the faulting instruction fails and this
896 	 * flag is set, as KVM cannot make forward progress.
897 	 *
898 	 * If emulation fails for a write to guest page tables, KVM unprotects
899 	 * (zaps) the shadow page for the target gfn and resumes the guest to
900 	 * retry the non-emulatable instruction (on hardware).  Unprotecting the
901 	 * gfn doesn't allow forward progress for a self-changing access because
902 	 * doing so also zaps the translation for the gfn, i.e. retrying the
903 	 * instruction will hit a !PRESENT fault, which results in a new shadow
904 	 * page and sends KVM back to square one.
905 	 */
906 	bool write_fault_to_shadow_pgtable;
907 
908 	/* set at EPT violation at this point */
909 	unsigned long exit_qualification;
910 
911 	/* pv related host specific info */
912 	struct {
913 		bool pv_unhalted;
914 	} pv;
915 
916 	int pending_ioapic_eoi;
917 	int pending_external_vector;
918 
919 	/* be preempted when it's in kernel-mode(cpl=0) */
920 	bool preempted_in_kernel;
921 
922 	/* Flush the L1 Data cache for L1TF mitigation on VMENTER */
923 	bool l1tf_flush_l1d;
924 
925 	/* Host CPU on which VM-entry was most recently attempted */
926 	int last_vmentry_cpu;
927 
928 	/* AMD MSRC001_0015 Hardware Configuration */
929 	u64 msr_hwcr;
930 
931 	/* pv related cpuid info */
932 	struct {
933 		/*
934 		 * value of the eax register in the KVM_CPUID_FEATURES CPUID
935 		 * leaf.
936 		 */
937 		u32 features;
938 
939 		/*
940 		 * indicates whether pv emulation should be disabled if features
941 		 * are not present in the guest's cpuid
942 		 */
943 		bool enforce;
944 	} pv_cpuid;
945 
946 	/* Protected Guests */
947 	bool guest_state_protected;
948 
949 	/*
950 	 * Set when PDPTS were loaded directly by the userspace without
951 	 * reading the guest memory
952 	 */
953 	bool pdptrs_from_userspace;
954 
955 #if IS_ENABLED(CONFIG_HYPERV)
956 	hpa_t hv_root_tdp;
957 #endif
958 };
959 
960 struct kvm_lpage_info {
961 	int disallow_lpage;
962 };
963 
964 struct kvm_arch_memory_slot {
965 	struct kvm_rmap_head *rmap[KVM_NR_PAGE_SIZES];
966 	struct kvm_lpage_info *lpage_info[KVM_NR_PAGE_SIZES - 1];
967 	unsigned short *gfn_track[KVM_PAGE_TRACK_MAX];
968 };
969 
970 /*
971  * We use as the mode the number of bits allocated in the LDR for the
972  * logical processor ID.  It happens that these are all powers of two.
973  * This makes it is very easy to detect cases where the APICs are
974  * configured for multiple modes; in that case, we cannot use the map and
975  * hence cannot use kvm_irq_delivery_to_apic_fast either.
976  */
977 #define KVM_APIC_MODE_XAPIC_CLUSTER          4
978 #define KVM_APIC_MODE_XAPIC_FLAT             8
979 #define KVM_APIC_MODE_X2APIC                16
980 
981 struct kvm_apic_map {
982 	struct rcu_head rcu;
983 	u8 mode;
984 	u32 max_apic_id;
985 	union {
986 		struct kvm_lapic *xapic_flat_map[8];
987 		struct kvm_lapic *xapic_cluster_map[16][4];
988 	};
989 	struct kvm_lapic *phys_map[];
990 };
991 
992 /* Hyper-V synthetic debugger (SynDbg)*/
993 struct kvm_hv_syndbg {
994 	struct {
995 		u64 control;
996 		u64 status;
997 		u64 send_page;
998 		u64 recv_page;
999 		u64 pending_page;
1000 	} control;
1001 	u64 options;
1002 };
1003 
1004 /* Current state of Hyper-V TSC page clocksource */
1005 enum hv_tsc_page_status {
1006 	/* TSC page was not set up or disabled */
1007 	HV_TSC_PAGE_UNSET = 0,
1008 	/* TSC page MSR was written by the guest, update pending */
1009 	HV_TSC_PAGE_GUEST_CHANGED,
1010 	/* TSC page update was triggered from the host side */
1011 	HV_TSC_PAGE_HOST_CHANGED,
1012 	/* TSC page was properly set up and is currently active  */
1013 	HV_TSC_PAGE_SET,
1014 	/* TSC page was set up with an inaccessible GPA */
1015 	HV_TSC_PAGE_BROKEN,
1016 };
1017 
1018 /* Hyper-V emulation context */
1019 struct kvm_hv {
1020 	struct mutex hv_lock;
1021 	u64 hv_guest_os_id;
1022 	u64 hv_hypercall;
1023 	u64 hv_tsc_page;
1024 	enum hv_tsc_page_status hv_tsc_page_status;
1025 
1026 	/* Hyper-v based guest crash (NT kernel bugcheck) parameters */
1027 	u64 hv_crash_param[HV_X64_MSR_CRASH_PARAMS];
1028 	u64 hv_crash_ctl;
1029 
1030 	struct ms_hyperv_tsc_page tsc_ref;
1031 
1032 	struct idr conn_to_evt;
1033 
1034 	u64 hv_reenlightenment_control;
1035 	u64 hv_tsc_emulation_control;
1036 	u64 hv_tsc_emulation_status;
1037 
1038 	/* How many vCPUs have VP index != vCPU index */
1039 	atomic_t num_mismatched_vp_indexes;
1040 
1041 	/*
1042 	 * How many SynICs use 'AutoEOI' feature
1043 	 * (protected by arch.apicv_update_lock)
1044 	 */
1045 	unsigned int synic_auto_eoi_used;
1046 
1047 	struct hv_partition_assist_pg *hv_pa_pg;
1048 	struct kvm_hv_syndbg hv_syndbg;
1049 };
1050 
1051 struct msr_bitmap_range {
1052 	u32 flags;
1053 	u32 nmsrs;
1054 	u32 base;
1055 	unsigned long *bitmap;
1056 };
1057 
1058 /* Xen emulation context */
1059 struct kvm_xen {
1060 	u32 xen_version;
1061 	bool long_mode;
1062 	u8 upcall_vector;
1063 	struct gfn_to_pfn_cache shinfo_cache;
1064 	struct idr evtchn_ports;
1065 	unsigned long poll_mask[BITS_TO_LONGS(KVM_MAX_VCPUS)];
1066 };
1067 
1068 enum kvm_irqchip_mode {
1069 	KVM_IRQCHIP_NONE,
1070 	KVM_IRQCHIP_KERNEL,       /* created with KVM_CREATE_IRQCHIP */
1071 	KVM_IRQCHIP_SPLIT,        /* created with KVM_CAP_SPLIT_IRQCHIP */
1072 };
1073 
1074 struct kvm_x86_msr_filter {
1075 	u8 count;
1076 	bool default_allow:1;
1077 	struct msr_bitmap_range ranges[16];
1078 };
1079 
1080 enum kvm_apicv_inhibit {
1081 
1082 	/********************************************************************/
1083 	/* INHIBITs that are relevant to both Intel's APICv and AMD's AVIC. */
1084 	/********************************************************************/
1085 
1086 	/*
1087 	 * APIC acceleration is disabled by a module parameter
1088 	 * and/or not supported in hardware.
1089 	 */
1090 	APICV_INHIBIT_REASON_DISABLE,
1091 
1092 	/*
1093 	 * APIC acceleration is inhibited because AutoEOI feature is
1094 	 * being used by a HyperV guest.
1095 	 */
1096 	APICV_INHIBIT_REASON_HYPERV,
1097 
1098 	/*
1099 	 * APIC acceleration is inhibited because the userspace didn't yet
1100 	 * enable the kernel/split irqchip.
1101 	 */
1102 	APICV_INHIBIT_REASON_ABSENT,
1103 
1104 	/* APIC acceleration is inhibited because KVM_GUESTDBG_BLOCKIRQ
1105 	 * (out of band, debug measure of blocking all interrupts on this vCPU)
1106 	 * was enabled, to avoid AVIC/APICv bypassing it.
1107 	 */
1108 	APICV_INHIBIT_REASON_BLOCKIRQ,
1109 
1110 	/*
1111 	 * For simplicity, the APIC acceleration is inhibited
1112 	 * first time either APIC ID or APIC base are changed by the guest
1113 	 * from their reset values.
1114 	 */
1115 	APICV_INHIBIT_REASON_APIC_ID_MODIFIED,
1116 	APICV_INHIBIT_REASON_APIC_BASE_MODIFIED,
1117 
1118 	/******************************************************/
1119 	/* INHIBITs that are relevant only to the AMD's AVIC. */
1120 	/******************************************************/
1121 
1122 	/*
1123 	 * AVIC is inhibited on a vCPU because it runs a nested guest.
1124 	 *
1125 	 * This is needed because unlike APICv, the peers of this vCPU
1126 	 * cannot use the doorbell mechanism to signal interrupts via AVIC when
1127 	 * a vCPU runs nested.
1128 	 */
1129 	APICV_INHIBIT_REASON_NESTED,
1130 
1131 	/*
1132 	 * On SVM, the wait for the IRQ window is implemented with pending vIRQ,
1133 	 * which cannot be injected when the AVIC is enabled, thus AVIC
1134 	 * is inhibited while KVM waits for IRQ window.
1135 	 */
1136 	APICV_INHIBIT_REASON_IRQWIN,
1137 
1138 	/*
1139 	 * PIT (i8254) 're-inject' mode, relies on EOI intercept,
1140 	 * which AVIC doesn't support for edge triggered interrupts.
1141 	 */
1142 	APICV_INHIBIT_REASON_PIT_REINJ,
1143 
1144 	/*
1145 	 * AVIC is disabled because SEV doesn't support it.
1146 	 */
1147 	APICV_INHIBIT_REASON_SEV,
1148 };
1149 
1150 struct kvm_arch {
1151 	unsigned long n_used_mmu_pages;
1152 	unsigned long n_requested_mmu_pages;
1153 	unsigned long n_max_mmu_pages;
1154 	unsigned int indirect_shadow_pages;
1155 	u8 mmu_valid_gen;
1156 	struct hlist_head mmu_page_hash[KVM_NUM_MMU_PAGES];
1157 	struct list_head active_mmu_pages;
1158 	struct list_head zapped_obsolete_pages;
1159 	struct list_head lpage_disallowed_mmu_pages;
1160 	struct kvm_page_track_notifier_node mmu_sp_tracker;
1161 	struct kvm_page_track_notifier_head track_notifier_head;
1162 	/*
1163 	 * Protects marking pages unsync during page faults, as TDP MMU page
1164 	 * faults only take mmu_lock for read.  For simplicity, the unsync
1165 	 * pages lock is always taken when marking pages unsync regardless of
1166 	 * whether mmu_lock is held for read or write.
1167 	 */
1168 	spinlock_t mmu_unsync_pages_lock;
1169 
1170 	struct list_head assigned_dev_head;
1171 	struct iommu_domain *iommu_domain;
1172 	bool iommu_noncoherent;
1173 #define __KVM_HAVE_ARCH_NONCOHERENT_DMA
1174 	atomic_t noncoherent_dma_count;
1175 #define __KVM_HAVE_ARCH_ASSIGNED_DEVICE
1176 	atomic_t assigned_device_count;
1177 	struct kvm_pic *vpic;
1178 	struct kvm_ioapic *vioapic;
1179 	struct kvm_pit *vpit;
1180 	atomic_t vapics_in_nmi_mode;
1181 	struct mutex apic_map_lock;
1182 	struct kvm_apic_map __rcu *apic_map;
1183 	atomic_t apic_map_dirty;
1184 
1185 	/* Protects apic_access_memslot_enabled and apicv_inhibit_reasons */
1186 	struct rw_semaphore apicv_update_lock;
1187 
1188 	bool apic_access_memslot_enabled;
1189 	unsigned long apicv_inhibit_reasons;
1190 
1191 	gpa_t wall_clock;
1192 
1193 	bool mwait_in_guest;
1194 	bool hlt_in_guest;
1195 	bool pause_in_guest;
1196 	bool cstate_in_guest;
1197 
1198 	unsigned long irq_sources_bitmap;
1199 	s64 kvmclock_offset;
1200 
1201 	/*
1202 	 * This also protects nr_vcpus_matched_tsc which is read from a
1203 	 * preemption-disabled region, so it must be a raw spinlock.
1204 	 */
1205 	raw_spinlock_t tsc_write_lock;
1206 	u64 last_tsc_nsec;
1207 	u64 last_tsc_write;
1208 	u32 last_tsc_khz;
1209 	u64 last_tsc_offset;
1210 	u64 cur_tsc_nsec;
1211 	u64 cur_tsc_write;
1212 	u64 cur_tsc_offset;
1213 	u64 cur_tsc_generation;
1214 	int nr_vcpus_matched_tsc;
1215 
1216 	u32 default_tsc_khz;
1217 
1218 	seqcount_raw_spinlock_t pvclock_sc;
1219 	bool use_master_clock;
1220 	u64 master_kernel_ns;
1221 	u64 master_cycle_now;
1222 	struct delayed_work kvmclock_update_work;
1223 	struct delayed_work kvmclock_sync_work;
1224 
1225 	struct kvm_xen_hvm_config xen_hvm_config;
1226 
1227 	/* reads protected by irq_srcu, writes by irq_lock */
1228 	struct hlist_head mask_notifier_list;
1229 
1230 	struct kvm_hv hyperv;
1231 	struct kvm_xen xen;
1232 
1233 	bool backwards_tsc_observed;
1234 	bool boot_vcpu_runs_old_kvmclock;
1235 	u32 bsp_vcpu_id;
1236 
1237 	u64 disabled_quirks;
1238 	int cpu_dirty_logging_count;
1239 
1240 	enum kvm_irqchip_mode irqchip_mode;
1241 	u8 nr_reserved_ioapic_pins;
1242 
1243 	bool disabled_lapic_found;
1244 
1245 	bool x2apic_format;
1246 	bool x2apic_broadcast_quirk_disabled;
1247 
1248 	bool guest_can_read_msr_platform_info;
1249 	bool exception_payload_enabled;
1250 
1251 	bool triple_fault_event;
1252 
1253 	bool bus_lock_detection_enabled;
1254 	bool enable_pmu;
1255 
1256 	u32 notify_window;
1257 	u32 notify_vmexit_flags;
1258 	/*
1259 	 * If exit_on_emulation_error is set, and the in-kernel instruction
1260 	 * emulator fails to emulate an instruction, allow userspace
1261 	 * the opportunity to look at it.
1262 	 */
1263 	bool exit_on_emulation_error;
1264 
1265 	/* Deflect RDMSR and WRMSR to user space when they trigger a #GP */
1266 	u32 user_space_msr_mask;
1267 	struct kvm_x86_msr_filter __rcu *msr_filter;
1268 
1269 	u32 hypercall_exit_enabled;
1270 
1271 	/* Guest can access the SGX PROVISIONKEY. */
1272 	bool sgx_provisioning_allowed;
1273 
1274 	struct kvm_pmu_event_filter __rcu *pmu_event_filter;
1275 	struct task_struct *nx_lpage_recovery_thread;
1276 
1277 #ifdef CONFIG_X86_64
1278 	/*
1279 	 * Whether the TDP MMU is enabled for this VM. This contains a
1280 	 * snapshot of the TDP MMU module parameter from when the VM was
1281 	 * created and remains unchanged for the life of the VM. If this is
1282 	 * true, TDP MMU handler functions will run for various MMU
1283 	 * operations.
1284 	 */
1285 	bool tdp_mmu_enabled;
1286 
1287 	/*
1288 	 * List of kvm_mmu_page structs being used as roots.
1289 	 * All kvm_mmu_page structs in the list should have
1290 	 * tdp_mmu_page set.
1291 	 *
1292 	 * For reads, this list is protected by:
1293 	 *	the MMU lock in read mode + RCU or
1294 	 *	the MMU lock in write mode
1295 	 *
1296 	 * For writes, this list is protected by:
1297 	 *	the MMU lock in read mode + the tdp_mmu_pages_lock or
1298 	 *	the MMU lock in write mode
1299 	 *
1300 	 * Roots will remain in the list until their tdp_mmu_root_count
1301 	 * drops to zero, at which point the thread that decremented the
1302 	 * count to zero should removed the root from the list and clean
1303 	 * it up, freeing the root after an RCU grace period.
1304 	 */
1305 	struct list_head tdp_mmu_roots;
1306 
1307 	/*
1308 	 * List of kvm_mmu_page structs not being used as roots.
1309 	 * All kvm_mmu_page structs in the list should have
1310 	 * tdp_mmu_page set and a tdp_mmu_root_count of 0.
1311 	 */
1312 	struct list_head tdp_mmu_pages;
1313 
1314 	/*
1315 	 * Protects accesses to the following fields when the MMU lock
1316 	 * is held in read mode:
1317 	 *  - tdp_mmu_roots (above)
1318 	 *  - tdp_mmu_pages (above)
1319 	 *  - the link field of kvm_mmu_page structs used by the TDP MMU
1320 	 *  - lpage_disallowed_mmu_pages
1321 	 *  - the lpage_disallowed_link field of kvm_mmu_page structs used
1322 	 *    by the TDP MMU
1323 	 * It is acceptable, but not necessary, to acquire this lock when
1324 	 * the thread holds the MMU lock in write mode.
1325 	 */
1326 	spinlock_t tdp_mmu_pages_lock;
1327 	struct workqueue_struct *tdp_mmu_zap_wq;
1328 #endif /* CONFIG_X86_64 */
1329 
1330 	/*
1331 	 * If set, at least one shadow root has been allocated. This flag
1332 	 * is used as one input when determining whether certain memslot
1333 	 * related allocations are necessary.
1334 	 */
1335 	bool shadow_root_allocated;
1336 
1337 #if IS_ENABLED(CONFIG_HYPERV)
1338 	hpa_t	hv_root_tdp;
1339 	spinlock_t hv_root_tdp_lock;
1340 #endif
1341 	/*
1342 	 * VM-scope maximum vCPU ID. Used to determine the size of structures
1343 	 * that increase along with the maximum vCPU ID, in which case, using
1344 	 * the global KVM_MAX_VCPU_IDS may lead to significant memory waste.
1345 	 */
1346 	u32 max_vcpu_ids;
1347 
1348 	bool disable_nx_huge_pages;
1349 
1350 	/*
1351 	 * Memory caches used to allocate shadow pages when performing eager
1352 	 * page splitting. No need for a shadowed_info_cache since eager page
1353 	 * splitting only allocates direct shadow pages.
1354 	 *
1355 	 * Protected by kvm->slots_lock.
1356 	 */
1357 	struct kvm_mmu_memory_cache split_shadow_page_cache;
1358 	struct kvm_mmu_memory_cache split_page_header_cache;
1359 
1360 	/*
1361 	 * Memory cache used to allocate pte_list_desc structs while splitting
1362 	 * huge pages. In the worst case, to split one huge page, 512
1363 	 * pte_list_desc structs are needed to add each lower level leaf sptep
1364 	 * to the rmap plus 1 to extend the parent_ptes rmap of the lower level
1365 	 * page table.
1366 	 *
1367 	 * Protected by kvm->slots_lock.
1368 	 */
1369 #define SPLIT_DESC_CACHE_MIN_NR_OBJECTS (SPTE_ENT_PER_PAGE + 1)
1370 	struct kvm_mmu_memory_cache split_desc_cache;
1371 };
1372 
1373 struct kvm_vm_stat {
1374 	struct kvm_vm_stat_generic generic;
1375 	u64 mmu_shadow_zapped;
1376 	u64 mmu_pte_write;
1377 	u64 mmu_pde_zapped;
1378 	u64 mmu_flooded;
1379 	u64 mmu_recycled;
1380 	u64 mmu_cache_miss;
1381 	u64 mmu_unsync;
1382 	union {
1383 		struct {
1384 			atomic64_t pages_4k;
1385 			atomic64_t pages_2m;
1386 			atomic64_t pages_1g;
1387 		};
1388 		atomic64_t pages[KVM_NR_PAGE_SIZES];
1389 	};
1390 	u64 nx_lpage_splits;
1391 	u64 max_mmu_page_hash_collisions;
1392 	u64 max_mmu_rmap_size;
1393 };
1394 
1395 struct kvm_vcpu_stat {
1396 	struct kvm_vcpu_stat_generic generic;
1397 	u64 pf_taken;
1398 	u64 pf_fixed;
1399 	u64 pf_emulate;
1400 	u64 pf_spurious;
1401 	u64 pf_fast;
1402 	u64 pf_mmio_spte_created;
1403 	u64 pf_guest;
1404 	u64 tlb_flush;
1405 	u64 invlpg;
1406 
1407 	u64 exits;
1408 	u64 io_exits;
1409 	u64 mmio_exits;
1410 	u64 signal_exits;
1411 	u64 irq_window_exits;
1412 	u64 nmi_window_exits;
1413 	u64 l1d_flush;
1414 	u64 halt_exits;
1415 	u64 request_irq_exits;
1416 	u64 irq_exits;
1417 	u64 host_state_reload;
1418 	u64 fpu_reload;
1419 	u64 insn_emulation;
1420 	u64 insn_emulation_fail;
1421 	u64 hypercalls;
1422 	u64 irq_injections;
1423 	u64 nmi_injections;
1424 	u64 req_event;
1425 	u64 nested_run;
1426 	u64 directed_yield_attempted;
1427 	u64 directed_yield_successful;
1428 	u64 preemption_reported;
1429 	u64 preemption_other;
1430 	u64 guest_mode;
1431 	u64 notify_window_exits;
1432 };
1433 
1434 struct x86_instruction_info;
1435 
1436 struct msr_data {
1437 	bool host_initiated;
1438 	u32 index;
1439 	u64 data;
1440 };
1441 
1442 struct kvm_lapic_irq {
1443 	u32 vector;
1444 	u16 delivery_mode;
1445 	u16 dest_mode;
1446 	bool level;
1447 	u16 trig_mode;
1448 	u32 shorthand;
1449 	u32 dest_id;
1450 	bool msi_redir_hint;
1451 };
1452 
1453 static inline u16 kvm_lapic_irq_dest_mode(bool dest_mode_logical)
1454 {
1455 	return dest_mode_logical ? APIC_DEST_LOGICAL : APIC_DEST_PHYSICAL;
1456 }
1457 
1458 struct kvm_x86_ops {
1459 	const char *name;
1460 
1461 	int (*hardware_enable)(void);
1462 	void (*hardware_disable)(void);
1463 	void (*hardware_unsetup)(void);
1464 	bool (*has_emulated_msr)(struct kvm *kvm, u32 index);
1465 	void (*vcpu_after_set_cpuid)(struct kvm_vcpu *vcpu);
1466 
1467 	unsigned int vm_size;
1468 	int (*vm_init)(struct kvm *kvm);
1469 	void (*vm_destroy)(struct kvm *kvm);
1470 
1471 	/* Create, but do not attach this VCPU */
1472 	int (*vcpu_precreate)(struct kvm *kvm);
1473 	int (*vcpu_create)(struct kvm_vcpu *vcpu);
1474 	void (*vcpu_free)(struct kvm_vcpu *vcpu);
1475 	void (*vcpu_reset)(struct kvm_vcpu *vcpu, bool init_event);
1476 
1477 	void (*prepare_switch_to_guest)(struct kvm_vcpu *vcpu);
1478 	void (*vcpu_load)(struct kvm_vcpu *vcpu, int cpu);
1479 	void (*vcpu_put)(struct kvm_vcpu *vcpu);
1480 
1481 	void (*update_exception_bitmap)(struct kvm_vcpu *vcpu);
1482 	int (*get_msr)(struct kvm_vcpu *vcpu, struct msr_data *msr);
1483 	int (*set_msr)(struct kvm_vcpu *vcpu, struct msr_data *msr);
1484 	u64 (*get_segment_base)(struct kvm_vcpu *vcpu, int seg);
1485 	void (*get_segment)(struct kvm_vcpu *vcpu,
1486 			    struct kvm_segment *var, int seg);
1487 	int (*get_cpl)(struct kvm_vcpu *vcpu);
1488 	void (*set_segment)(struct kvm_vcpu *vcpu,
1489 			    struct kvm_segment *var, int seg);
1490 	void (*get_cs_db_l_bits)(struct kvm_vcpu *vcpu, int *db, int *l);
1491 	void (*set_cr0)(struct kvm_vcpu *vcpu, unsigned long cr0);
1492 	void (*post_set_cr3)(struct kvm_vcpu *vcpu, unsigned long cr3);
1493 	bool (*is_valid_cr4)(struct kvm_vcpu *vcpu, unsigned long cr0);
1494 	void (*set_cr4)(struct kvm_vcpu *vcpu, unsigned long cr4);
1495 	int (*set_efer)(struct kvm_vcpu *vcpu, u64 efer);
1496 	void (*get_idt)(struct kvm_vcpu *vcpu, struct desc_ptr *dt);
1497 	void (*set_idt)(struct kvm_vcpu *vcpu, struct desc_ptr *dt);
1498 	void (*get_gdt)(struct kvm_vcpu *vcpu, struct desc_ptr *dt);
1499 	void (*set_gdt)(struct kvm_vcpu *vcpu, struct desc_ptr *dt);
1500 	void (*sync_dirty_debug_regs)(struct kvm_vcpu *vcpu);
1501 	void (*set_dr7)(struct kvm_vcpu *vcpu, unsigned long value);
1502 	void (*cache_reg)(struct kvm_vcpu *vcpu, enum kvm_reg reg);
1503 	unsigned long (*get_rflags)(struct kvm_vcpu *vcpu);
1504 	void (*set_rflags)(struct kvm_vcpu *vcpu, unsigned long rflags);
1505 	bool (*get_if_flag)(struct kvm_vcpu *vcpu);
1506 
1507 	void (*flush_tlb_all)(struct kvm_vcpu *vcpu);
1508 	void (*flush_tlb_current)(struct kvm_vcpu *vcpu);
1509 	int  (*tlb_remote_flush)(struct kvm *kvm);
1510 	int  (*tlb_remote_flush_with_range)(struct kvm *kvm,
1511 			struct kvm_tlb_range *range);
1512 
1513 	/*
1514 	 * Flush any TLB entries associated with the given GVA.
1515 	 * Does not need to flush GPA->HPA mappings.
1516 	 * Can potentially get non-canonical addresses through INVLPGs, which
1517 	 * the implementation may choose to ignore if appropriate.
1518 	 */
1519 	void (*flush_tlb_gva)(struct kvm_vcpu *vcpu, gva_t addr);
1520 
1521 	/*
1522 	 * Flush any TLB entries created by the guest.  Like tlb_flush_gva(),
1523 	 * does not need to flush GPA->HPA mappings.
1524 	 */
1525 	void (*flush_tlb_guest)(struct kvm_vcpu *vcpu);
1526 
1527 	int (*vcpu_pre_run)(struct kvm_vcpu *vcpu);
1528 	enum exit_fastpath_completion (*vcpu_run)(struct kvm_vcpu *vcpu);
1529 	int (*handle_exit)(struct kvm_vcpu *vcpu,
1530 		enum exit_fastpath_completion exit_fastpath);
1531 	int (*skip_emulated_instruction)(struct kvm_vcpu *vcpu);
1532 	void (*update_emulated_instruction)(struct kvm_vcpu *vcpu);
1533 	void (*set_interrupt_shadow)(struct kvm_vcpu *vcpu, int mask);
1534 	u32 (*get_interrupt_shadow)(struct kvm_vcpu *vcpu);
1535 	void (*patch_hypercall)(struct kvm_vcpu *vcpu,
1536 				unsigned char *hypercall_addr);
1537 	void (*inject_irq)(struct kvm_vcpu *vcpu, bool reinjected);
1538 	void (*inject_nmi)(struct kvm_vcpu *vcpu);
1539 	void (*inject_exception)(struct kvm_vcpu *vcpu);
1540 	void (*cancel_injection)(struct kvm_vcpu *vcpu);
1541 	int (*interrupt_allowed)(struct kvm_vcpu *vcpu, bool for_injection);
1542 	int (*nmi_allowed)(struct kvm_vcpu *vcpu, bool for_injection);
1543 	bool (*get_nmi_mask)(struct kvm_vcpu *vcpu);
1544 	void (*set_nmi_mask)(struct kvm_vcpu *vcpu, bool masked);
1545 	void (*enable_nmi_window)(struct kvm_vcpu *vcpu);
1546 	void (*enable_irq_window)(struct kvm_vcpu *vcpu);
1547 	void (*update_cr8_intercept)(struct kvm_vcpu *vcpu, int tpr, int irr);
1548 	bool (*check_apicv_inhibit_reasons)(enum kvm_apicv_inhibit reason);
1549 	void (*refresh_apicv_exec_ctrl)(struct kvm_vcpu *vcpu);
1550 	void (*hwapic_irr_update)(struct kvm_vcpu *vcpu, int max_irr);
1551 	void (*hwapic_isr_update)(int isr);
1552 	bool (*guest_apic_has_interrupt)(struct kvm_vcpu *vcpu);
1553 	void (*load_eoi_exitmap)(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap);
1554 	void (*set_virtual_apic_mode)(struct kvm_vcpu *vcpu);
1555 	void (*set_apic_access_page_addr)(struct kvm_vcpu *vcpu);
1556 	void (*deliver_interrupt)(struct kvm_lapic *apic, int delivery_mode,
1557 				  int trig_mode, int vector);
1558 	int (*sync_pir_to_irr)(struct kvm_vcpu *vcpu);
1559 	int (*set_tss_addr)(struct kvm *kvm, unsigned int addr);
1560 	int (*set_identity_map_addr)(struct kvm *kvm, u64 ident_addr);
1561 	u8 (*get_mt_mask)(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio);
1562 
1563 	void (*load_mmu_pgd)(struct kvm_vcpu *vcpu, hpa_t root_hpa,
1564 			     int root_level);
1565 
1566 	bool (*has_wbinvd_exit)(void);
1567 
1568 	u64 (*get_l2_tsc_offset)(struct kvm_vcpu *vcpu);
1569 	u64 (*get_l2_tsc_multiplier)(struct kvm_vcpu *vcpu);
1570 	void (*write_tsc_offset)(struct kvm_vcpu *vcpu, u64 offset);
1571 	void (*write_tsc_multiplier)(struct kvm_vcpu *vcpu, u64 multiplier);
1572 
1573 	/*
1574 	 * Retrieve somewhat arbitrary exit information.  Intended to
1575 	 * be used only from within tracepoints or error paths.
1576 	 */
1577 	void (*get_exit_info)(struct kvm_vcpu *vcpu, u32 *reason,
1578 			      u64 *info1, u64 *info2,
1579 			      u32 *exit_int_info, u32 *exit_int_info_err_code);
1580 
1581 	int (*check_intercept)(struct kvm_vcpu *vcpu,
1582 			       struct x86_instruction_info *info,
1583 			       enum x86_intercept_stage stage,
1584 			       struct x86_exception *exception);
1585 	void (*handle_exit_irqoff)(struct kvm_vcpu *vcpu);
1586 
1587 	void (*request_immediate_exit)(struct kvm_vcpu *vcpu);
1588 
1589 	void (*sched_in)(struct kvm_vcpu *kvm, int cpu);
1590 
1591 	/*
1592 	 * Size of the CPU's dirty log buffer, i.e. VMX's PML buffer.  A zero
1593 	 * value indicates CPU dirty logging is unsupported or disabled.
1594 	 */
1595 	int cpu_dirty_log_size;
1596 	void (*update_cpu_dirty_logging)(struct kvm_vcpu *vcpu);
1597 
1598 	const struct kvm_x86_nested_ops *nested_ops;
1599 
1600 	void (*vcpu_blocking)(struct kvm_vcpu *vcpu);
1601 	void (*vcpu_unblocking)(struct kvm_vcpu *vcpu);
1602 
1603 	int (*pi_update_irte)(struct kvm *kvm, unsigned int host_irq,
1604 			      uint32_t guest_irq, bool set);
1605 	void (*pi_start_assignment)(struct kvm *kvm);
1606 	void (*apicv_post_state_restore)(struct kvm_vcpu *vcpu);
1607 	bool (*dy_apicv_has_pending_interrupt)(struct kvm_vcpu *vcpu);
1608 
1609 	int (*set_hv_timer)(struct kvm_vcpu *vcpu, u64 guest_deadline_tsc,
1610 			    bool *expired);
1611 	void (*cancel_hv_timer)(struct kvm_vcpu *vcpu);
1612 
1613 	void (*setup_mce)(struct kvm_vcpu *vcpu);
1614 
1615 	int (*smi_allowed)(struct kvm_vcpu *vcpu, bool for_injection);
1616 	int (*enter_smm)(struct kvm_vcpu *vcpu, char *smstate);
1617 	int (*leave_smm)(struct kvm_vcpu *vcpu, const char *smstate);
1618 	void (*enable_smi_window)(struct kvm_vcpu *vcpu);
1619 
1620 	int (*mem_enc_ioctl)(struct kvm *kvm, void __user *argp);
1621 	int (*mem_enc_register_region)(struct kvm *kvm, struct kvm_enc_region *argp);
1622 	int (*mem_enc_unregister_region)(struct kvm *kvm, struct kvm_enc_region *argp);
1623 	int (*vm_copy_enc_context_from)(struct kvm *kvm, unsigned int source_fd);
1624 	int (*vm_move_enc_context_from)(struct kvm *kvm, unsigned int source_fd);
1625 	void (*guest_memory_reclaimed)(struct kvm *kvm);
1626 
1627 	int (*get_msr_feature)(struct kvm_msr_entry *entry);
1628 
1629 	bool (*can_emulate_instruction)(struct kvm_vcpu *vcpu, int emul_type,
1630 					void *insn, int insn_len);
1631 
1632 	bool (*apic_init_signal_blocked)(struct kvm_vcpu *vcpu);
1633 	int (*enable_direct_tlbflush)(struct kvm_vcpu *vcpu);
1634 
1635 	void (*migrate_timers)(struct kvm_vcpu *vcpu);
1636 	void (*msr_filter_changed)(struct kvm_vcpu *vcpu);
1637 	int (*complete_emulated_msr)(struct kvm_vcpu *vcpu, int err);
1638 
1639 	void (*vcpu_deliver_sipi_vector)(struct kvm_vcpu *vcpu, u8 vector);
1640 
1641 	/*
1642 	 * Returns vCPU specific APICv inhibit reasons
1643 	 */
1644 	unsigned long (*vcpu_get_apicv_inhibit_reasons)(struct kvm_vcpu *vcpu);
1645 };
1646 
1647 struct kvm_x86_nested_ops {
1648 	void (*leave_nested)(struct kvm_vcpu *vcpu);
1649 	bool (*is_exception_vmexit)(struct kvm_vcpu *vcpu, u8 vector,
1650 				    u32 error_code);
1651 	int (*check_events)(struct kvm_vcpu *vcpu);
1652 	bool (*has_events)(struct kvm_vcpu *vcpu);
1653 	void (*triple_fault)(struct kvm_vcpu *vcpu);
1654 	int (*get_state)(struct kvm_vcpu *vcpu,
1655 			 struct kvm_nested_state __user *user_kvm_nested_state,
1656 			 unsigned user_data_size);
1657 	int (*set_state)(struct kvm_vcpu *vcpu,
1658 			 struct kvm_nested_state __user *user_kvm_nested_state,
1659 			 struct kvm_nested_state *kvm_state);
1660 	bool (*get_nested_state_pages)(struct kvm_vcpu *vcpu);
1661 	int (*write_log_dirty)(struct kvm_vcpu *vcpu, gpa_t l2_gpa);
1662 
1663 	int (*enable_evmcs)(struct kvm_vcpu *vcpu,
1664 			    uint16_t *vmcs_version);
1665 	uint16_t (*get_evmcs_version)(struct kvm_vcpu *vcpu);
1666 };
1667 
1668 struct kvm_x86_init_ops {
1669 	int (*cpu_has_kvm_support)(void);
1670 	int (*disabled_by_bios)(void);
1671 	int (*check_processor_compatibility)(void);
1672 	int (*hardware_setup)(void);
1673 	unsigned int (*handle_intel_pt_intr)(void);
1674 
1675 	struct kvm_x86_ops *runtime_ops;
1676 	struct kvm_pmu_ops *pmu_ops;
1677 };
1678 
1679 struct kvm_arch_async_pf {
1680 	u32 token;
1681 	gfn_t gfn;
1682 	unsigned long cr3;
1683 	bool direct_map;
1684 };
1685 
1686 extern u32 __read_mostly kvm_nr_uret_msrs;
1687 extern u64 __read_mostly host_efer;
1688 extern bool __read_mostly allow_smaller_maxphyaddr;
1689 extern bool __read_mostly enable_apicv;
1690 extern struct kvm_x86_ops kvm_x86_ops;
1691 
1692 #define KVM_X86_OP(func) \
1693 	DECLARE_STATIC_CALL(kvm_x86_##func, *(((struct kvm_x86_ops *)0)->func));
1694 #define KVM_X86_OP_OPTIONAL KVM_X86_OP
1695 #define KVM_X86_OP_OPTIONAL_RET0 KVM_X86_OP
1696 #include <asm/kvm-x86-ops.h>
1697 
1698 #define __KVM_HAVE_ARCH_VM_ALLOC
1699 static inline struct kvm *kvm_arch_alloc_vm(void)
1700 {
1701 	return __vmalloc(kvm_x86_ops.vm_size, GFP_KERNEL_ACCOUNT | __GFP_ZERO);
1702 }
1703 
1704 #define __KVM_HAVE_ARCH_VM_FREE
1705 void kvm_arch_free_vm(struct kvm *kvm);
1706 
1707 #define __KVM_HAVE_ARCH_FLUSH_REMOTE_TLB
1708 static inline int kvm_arch_flush_remote_tlb(struct kvm *kvm)
1709 {
1710 	if (kvm_x86_ops.tlb_remote_flush &&
1711 	    !static_call(kvm_x86_tlb_remote_flush)(kvm))
1712 		return 0;
1713 	else
1714 		return -ENOTSUPP;
1715 }
1716 
1717 #define kvm_arch_pmi_in_guest(vcpu) \
1718 	((vcpu) && (vcpu)->arch.handling_intr_from_guest)
1719 
1720 void __init kvm_mmu_x86_module_init(void);
1721 int kvm_mmu_vendor_module_init(void);
1722 void kvm_mmu_vendor_module_exit(void);
1723 
1724 void kvm_mmu_destroy(struct kvm_vcpu *vcpu);
1725 int kvm_mmu_create(struct kvm_vcpu *vcpu);
1726 int kvm_mmu_init_vm(struct kvm *kvm);
1727 void kvm_mmu_uninit_vm(struct kvm *kvm);
1728 
1729 void kvm_mmu_after_set_cpuid(struct kvm_vcpu *vcpu);
1730 void kvm_mmu_reset_context(struct kvm_vcpu *vcpu);
1731 void kvm_mmu_slot_remove_write_access(struct kvm *kvm,
1732 				      const struct kvm_memory_slot *memslot,
1733 				      int start_level);
1734 void kvm_mmu_slot_try_split_huge_pages(struct kvm *kvm,
1735 				       const struct kvm_memory_slot *memslot,
1736 				       int target_level);
1737 void kvm_mmu_try_split_huge_pages(struct kvm *kvm,
1738 				  const struct kvm_memory_slot *memslot,
1739 				  u64 start, u64 end,
1740 				  int target_level);
1741 void kvm_mmu_zap_collapsible_sptes(struct kvm *kvm,
1742 				   const struct kvm_memory_slot *memslot);
1743 void kvm_mmu_slot_leaf_clear_dirty(struct kvm *kvm,
1744 				   const struct kvm_memory_slot *memslot);
1745 void kvm_mmu_zap_all(struct kvm *kvm);
1746 void kvm_mmu_invalidate_mmio_sptes(struct kvm *kvm, u64 gen);
1747 void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned long kvm_nr_mmu_pages);
1748 
1749 int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3);
1750 
1751 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
1752 			  const void *val, int bytes);
1753 
1754 struct kvm_irq_mask_notifier {
1755 	void (*func)(struct kvm_irq_mask_notifier *kimn, bool masked);
1756 	int irq;
1757 	struct hlist_node link;
1758 };
1759 
1760 void kvm_register_irq_mask_notifier(struct kvm *kvm, int irq,
1761 				    struct kvm_irq_mask_notifier *kimn);
1762 void kvm_unregister_irq_mask_notifier(struct kvm *kvm, int irq,
1763 				      struct kvm_irq_mask_notifier *kimn);
1764 void kvm_fire_mask_notifiers(struct kvm *kvm, unsigned irqchip, unsigned pin,
1765 			     bool mask);
1766 
1767 extern bool tdp_enabled;
1768 
1769 u64 vcpu_tsc_khz(struct kvm_vcpu *vcpu);
1770 
1771 /*
1772  * EMULTYPE_NO_DECODE - Set when re-emulating an instruction (after completing
1773  *			userspace I/O) to indicate that the emulation context
1774  *			should be reused as is, i.e. skip initialization of
1775  *			emulation context, instruction fetch and decode.
1776  *
1777  * EMULTYPE_TRAP_UD - Set when emulating an intercepted #UD from hardware.
1778  *		      Indicates that only select instructions (tagged with
1779  *		      EmulateOnUD) should be emulated (to minimize the emulator
1780  *		      attack surface).  See also EMULTYPE_TRAP_UD_FORCED.
1781  *
1782  * EMULTYPE_SKIP - Set when emulating solely to skip an instruction, i.e. to
1783  *		   decode the instruction length.  For use *only* by
1784  *		   kvm_x86_ops.skip_emulated_instruction() implementations if
1785  *		   EMULTYPE_COMPLETE_USER_EXIT is not set.
1786  *
1787  * EMULTYPE_ALLOW_RETRY_PF - Set when the emulator should resume the guest to
1788  *			     retry native execution under certain conditions,
1789  *			     Can only be set in conjunction with EMULTYPE_PF.
1790  *
1791  * EMULTYPE_TRAP_UD_FORCED - Set when emulating an intercepted #UD that was
1792  *			     triggered by KVM's magic "force emulation" prefix,
1793  *			     which is opt in via module param (off by default).
1794  *			     Bypasses EmulateOnUD restriction despite emulating
1795  *			     due to an intercepted #UD (see EMULTYPE_TRAP_UD).
1796  *			     Used to test the full emulator from userspace.
1797  *
1798  * EMULTYPE_VMWARE_GP - Set when emulating an intercepted #GP for VMware
1799  *			backdoor emulation, which is opt in via module param.
1800  *			VMware backdoor emulation handles select instructions
1801  *			and reinjects the #GP for all other cases.
1802  *
1803  * EMULTYPE_PF - Set when emulating MMIO by way of an intercepted #PF, in which
1804  *		 case the CR2/GPA value pass on the stack is valid.
1805  *
1806  * EMULTYPE_COMPLETE_USER_EXIT - Set when the emulator should update interruptibility
1807  *				 state and inject single-step #DBs after skipping
1808  *				 an instruction (after completing userspace I/O).
1809  */
1810 #define EMULTYPE_NO_DECODE	    (1 << 0)
1811 #define EMULTYPE_TRAP_UD	    (1 << 1)
1812 #define EMULTYPE_SKIP		    (1 << 2)
1813 #define EMULTYPE_ALLOW_RETRY_PF	    (1 << 3)
1814 #define EMULTYPE_TRAP_UD_FORCED	    (1 << 4)
1815 #define EMULTYPE_VMWARE_GP	    (1 << 5)
1816 #define EMULTYPE_PF		    (1 << 6)
1817 #define EMULTYPE_COMPLETE_USER_EXIT (1 << 7)
1818 
1819 int kvm_emulate_instruction(struct kvm_vcpu *vcpu, int emulation_type);
1820 int kvm_emulate_instruction_from_buffer(struct kvm_vcpu *vcpu,
1821 					void *insn, int insn_len);
1822 void __kvm_prepare_emulation_failure_exit(struct kvm_vcpu *vcpu,
1823 					  u64 *data, u8 ndata);
1824 void kvm_prepare_emulation_failure_exit(struct kvm_vcpu *vcpu);
1825 
1826 void kvm_enable_efer_bits(u64);
1827 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer);
1828 int __kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data, bool host_initiated);
1829 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data);
1830 int kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data);
1831 int kvm_emulate_rdmsr(struct kvm_vcpu *vcpu);
1832 int kvm_emulate_wrmsr(struct kvm_vcpu *vcpu);
1833 int kvm_emulate_as_nop(struct kvm_vcpu *vcpu);
1834 int kvm_emulate_invd(struct kvm_vcpu *vcpu);
1835 int kvm_emulate_mwait(struct kvm_vcpu *vcpu);
1836 int kvm_handle_invalid_op(struct kvm_vcpu *vcpu);
1837 int kvm_emulate_monitor(struct kvm_vcpu *vcpu);
1838 
1839 int kvm_fast_pio(struct kvm_vcpu *vcpu, int size, unsigned short port, int in);
1840 int kvm_emulate_cpuid(struct kvm_vcpu *vcpu);
1841 int kvm_emulate_halt(struct kvm_vcpu *vcpu);
1842 int kvm_emulate_halt_noskip(struct kvm_vcpu *vcpu);
1843 int kvm_emulate_ap_reset_hold(struct kvm_vcpu *vcpu);
1844 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu);
1845 
1846 void kvm_get_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg);
1847 int kvm_load_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector, int seg);
1848 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector);
1849 
1850 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
1851 		    int reason, bool has_error_code, u32 error_code);
1852 
1853 void kvm_post_set_cr0(struct kvm_vcpu *vcpu, unsigned long old_cr0, unsigned long cr0);
1854 void kvm_post_set_cr4(struct kvm_vcpu *vcpu, unsigned long old_cr4, unsigned long cr4);
1855 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0);
1856 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3);
1857 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4);
1858 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8);
1859 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val);
1860 void kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val);
1861 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu);
1862 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw);
1863 int kvm_emulate_xsetbv(struct kvm_vcpu *vcpu);
1864 
1865 int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr);
1866 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr);
1867 
1868 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu);
1869 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags);
1870 int kvm_emulate_rdpmc(struct kvm_vcpu *vcpu);
1871 
1872 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr);
1873 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code);
1874 void kvm_queue_exception_p(struct kvm_vcpu *vcpu, unsigned nr, unsigned long payload);
1875 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr);
1876 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code);
1877 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault);
1878 void kvm_inject_emulated_page_fault(struct kvm_vcpu *vcpu,
1879 				    struct x86_exception *fault);
1880 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl);
1881 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr);
1882 
1883 static inline int __kvm_irq_line_state(unsigned long *irq_state,
1884 				       int irq_source_id, int level)
1885 {
1886 	/* Logical OR for level trig interrupt */
1887 	if (level)
1888 		__set_bit(irq_source_id, irq_state);
1889 	else
1890 		__clear_bit(irq_source_id, irq_state);
1891 
1892 	return !!(*irq_state);
1893 }
1894 
1895 #define KVM_MMU_ROOT_CURRENT		BIT(0)
1896 #define KVM_MMU_ROOT_PREVIOUS(i)	BIT(1+i)
1897 #define KVM_MMU_ROOTS_ALL		(~0UL)
1898 
1899 int kvm_pic_set_irq(struct kvm_pic *pic, int irq, int irq_source_id, int level);
1900 void kvm_pic_clear_all(struct kvm_pic *pic, int irq_source_id);
1901 
1902 void kvm_inject_nmi(struct kvm_vcpu *vcpu);
1903 
1904 void kvm_update_dr7(struct kvm_vcpu *vcpu);
1905 
1906 int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn);
1907 void kvm_mmu_free_roots(struct kvm *kvm, struct kvm_mmu *mmu,
1908 			ulong roots_to_free);
1909 void kvm_mmu_free_guest_mode_roots(struct kvm *kvm, struct kvm_mmu *mmu);
1910 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
1911 			      struct x86_exception *exception);
1912 gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva,
1913 			       struct x86_exception *exception);
1914 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
1915 			       struct x86_exception *exception);
1916 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
1917 				struct x86_exception *exception);
1918 
1919 bool kvm_apicv_activated(struct kvm *kvm);
1920 bool kvm_vcpu_apicv_activated(struct kvm_vcpu *vcpu);
1921 void kvm_vcpu_update_apicv(struct kvm_vcpu *vcpu);
1922 void __kvm_set_or_clear_apicv_inhibit(struct kvm *kvm,
1923 				      enum kvm_apicv_inhibit reason, bool set);
1924 void kvm_set_or_clear_apicv_inhibit(struct kvm *kvm,
1925 				    enum kvm_apicv_inhibit reason, bool set);
1926 
1927 static inline void kvm_set_apicv_inhibit(struct kvm *kvm,
1928 					 enum kvm_apicv_inhibit reason)
1929 {
1930 	kvm_set_or_clear_apicv_inhibit(kvm, reason, true);
1931 }
1932 
1933 static inline void kvm_clear_apicv_inhibit(struct kvm *kvm,
1934 					   enum kvm_apicv_inhibit reason)
1935 {
1936 	kvm_set_or_clear_apicv_inhibit(kvm, reason, false);
1937 }
1938 
1939 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu);
1940 
1941 int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, u64 error_code,
1942 		       void *insn, int insn_len);
1943 void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva);
1944 void kvm_mmu_invalidate_gva(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
1945 			    gva_t gva, hpa_t root_hpa);
1946 void kvm_mmu_invpcid_gva(struct kvm_vcpu *vcpu, gva_t gva, unsigned long pcid);
1947 void kvm_mmu_new_pgd(struct kvm_vcpu *vcpu, gpa_t new_pgd);
1948 
1949 void kvm_configure_mmu(bool enable_tdp, int tdp_forced_root_level,
1950 		       int tdp_max_root_level, int tdp_huge_page_level);
1951 
1952 static inline u16 kvm_read_ldt(void)
1953 {
1954 	u16 ldt;
1955 	asm("sldt %0" : "=g"(ldt));
1956 	return ldt;
1957 }
1958 
1959 static inline void kvm_load_ldt(u16 sel)
1960 {
1961 	asm("lldt %0" : : "rm"(sel));
1962 }
1963 
1964 #ifdef CONFIG_X86_64
1965 static inline unsigned long read_msr(unsigned long msr)
1966 {
1967 	u64 value;
1968 
1969 	rdmsrl(msr, value);
1970 	return value;
1971 }
1972 #endif
1973 
1974 static inline void kvm_inject_gp(struct kvm_vcpu *vcpu, u32 error_code)
1975 {
1976 	kvm_queue_exception_e(vcpu, GP_VECTOR, error_code);
1977 }
1978 
1979 #define TSS_IOPB_BASE_OFFSET 0x66
1980 #define TSS_BASE_SIZE 0x68
1981 #define TSS_IOPB_SIZE (65536 / 8)
1982 #define TSS_REDIRECTION_SIZE (256 / 8)
1983 #define RMODE_TSS_SIZE							\
1984 	(TSS_BASE_SIZE + TSS_REDIRECTION_SIZE + TSS_IOPB_SIZE + 1)
1985 
1986 enum {
1987 	TASK_SWITCH_CALL = 0,
1988 	TASK_SWITCH_IRET = 1,
1989 	TASK_SWITCH_JMP = 2,
1990 	TASK_SWITCH_GATE = 3,
1991 };
1992 
1993 #define HF_GIF_MASK		(1 << 0)
1994 #define HF_NMI_MASK		(1 << 3)
1995 #define HF_IRET_MASK		(1 << 4)
1996 #define HF_GUEST_MASK		(1 << 5) /* VCPU is in guest-mode */
1997 #define HF_SMM_MASK		(1 << 6)
1998 #define HF_SMM_INSIDE_NMI_MASK	(1 << 7)
1999 
2000 #define __KVM_VCPU_MULTIPLE_ADDRESS_SPACE
2001 #define KVM_ADDRESS_SPACE_NUM 2
2002 
2003 #define kvm_arch_vcpu_memslots_id(vcpu) ((vcpu)->arch.hflags & HF_SMM_MASK ? 1 : 0)
2004 #define kvm_memslots_for_spte_role(kvm, role) __kvm_memslots(kvm, (role).smm)
2005 
2006 #define KVM_ARCH_WANT_MMU_NOTIFIER
2007 
2008 int kvm_cpu_has_injectable_intr(struct kvm_vcpu *v);
2009 int kvm_cpu_has_interrupt(struct kvm_vcpu *vcpu);
2010 int kvm_cpu_has_extint(struct kvm_vcpu *v);
2011 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu);
2012 int kvm_cpu_get_interrupt(struct kvm_vcpu *v);
2013 void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event);
2014 
2015 int kvm_pv_send_ipi(struct kvm *kvm, unsigned long ipi_bitmap_low,
2016 		    unsigned long ipi_bitmap_high, u32 min,
2017 		    unsigned long icr, int op_64_bit);
2018 
2019 int kvm_add_user_return_msr(u32 msr);
2020 int kvm_find_user_return_msr(u32 msr);
2021 int kvm_set_user_return_msr(unsigned index, u64 val, u64 mask);
2022 
2023 static inline bool kvm_is_supported_user_return_msr(u32 msr)
2024 {
2025 	return kvm_find_user_return_msr(msr) >= 0;
2026 }
2027 
2028 u64 kvm_scale_tsc(u64 tsc, u64 ratio);
2029 u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc);
2030 u64 kvm_calc_nested_tsc_offset(u64 l1_offset, u64 l2_offset, u64 l2_multiplier);
2031 u64 kvm_calc_nested_tsc_multiplier(u64 l1_multiplier, u64 l2_multiplier);
2032 
2033 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu);
2034 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip);
2035 
2036 void kvm_make_scan_ioapic_request(struct kvm *kvm);
2037 void kvm_make_scan_ioapic_request_mask(struct kvm *kvm,
2038 				       unsigned long *vcpu_bitmap);
2039 
2040 bool kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
2041 				     struct kvm_async_pf *work);
2042 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
2043 				 struct kvm_async_pf *work);
2044 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu,
2045 			       struct kvm_async_pf *work);
2046 void kvm_arch_async_page_present_queued(struct kvm_vcpu *vcpu);
2047 bool kvm_arch_can_dequeue_async_page_present(struct kvm_vcpu *vcpu);
2048 extern bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn);
2049 
2050 int kvm_skip_emulated_instruction(struct kvm_vcpu *vcpu);
2051 int kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err);
2052 void __kvm_request_immediate_exit(struct kvm_vcpu *vcpu);
2053 
2054 void __user *__x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa,
2055 				     u32 size);
2056 bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu);
2057 bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu);
2058 
2059 bool kvm_intr_is_single_vcpu(struct kvm *kvm, struct kvm_lapic_irq *irq,
2060 			     struct kvm_vcpu **dest_vcpu);
2061 
2062 void kvm_set_msi_irq(struct kvm *kvm, struct kvm_kernel_irq_routing_entry *e,
2063 		     struct kvm_lapic_irq *irq);
2064 
2065 static inline bool kvm_irq_is_postable(struct kvm_lapic_irq *irq)
2066 {
2067 	/* We can only post Fixed and LowPrio IRQs */
2068 	return (irq->delivery_mode == APIC_DM_FIXED ||
2069 		irq->delivery_mode == APIC_DM_LOWEST);
2070 }
2071 
2072 static inline void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu)
2073 {
2074 	static_call_cond(kvm_x86_vcpu_blocking)(vcpu);
2075 }
2076 
2077 static inline void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu)
2078 {
2079 	static_call_cond(kvm_x86_vcpu_unblocking)(vcpu);
2080 }
2081 
2082 static inline int kvm_cpu_get_apicid(int mps_cpu)
2083 {
2084 #ifdef CONFIG_X86_LOCAL_APIC
2085 	return default_cpu_present_to_apicid(mps_cpu);
2086 #else
2087 	WARN_ON_ONCE(1);
2088 	return BAD_APICID;
2089 #endif
2090 }
2091 
2092 #define put_smstate(type, buf, offset, val)                      \
2093 	*(type *)((buf) + (offset) - 0x7e00) = val
2094 
2095 #define GET_SMSTATE(type, buf, offset)		\
2096 	(*(type *)((buf) + (offset) - 0x7e00))
2097 
2098 int kvm_cpu_dirty_log_size(void);
2099 
2100 int memslot_rmap_alloc(struct kvm_memory_slot *slot, unsigned long npages);
2101 
2102 #define KVM_CLOCK_VALID_FLAGS						\
2103 	(KVM_CLOCK_TSC_STABLE | KVM_CLOCK_REALTIME | KVM_CLOCK_HOST_TSC)
2104 
2105 #define KVM_X86_VALID_QUIRKS			\
2106 	(KVM_X86_QUIRK_LINT0_REENABLED |	\
2107 	 KVM_X86_QUIRK_CD_NW_CLEARED |		\
2108 	 KVM_X86_QUIRK_LAPIC_MMIO_HOLE |	\
2109 	 KVM_X86_QUIRK_OUT_7E_INC_RIP |		\
2110 	 KVM_X86_QUIRK_MISC_ENABLE_NO_MWAIT |	\
2111 	 KVM_X86_QUIRK_FIX_HYPERCALL_INSN |	\
2112 	 KVM_X86_QUIRK_MWAIT_NEVER_UD_FAULTS)
2113 
2114 #endif /* _ASM_X86_KVM_HOST_H */
2115