xref: /openbmc/linux/arch/x86/include/asm/kvm_host.h (revision 6c33a6f4)
1 /* SPDX-License-Identifier: GPL-2.0-only */
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  *
5  * This header defines architecture specific interfaces, x86 version
6  */
7 
8 #ifndef _ASM_X86_KVM_HOST_H
9 #define _ASM_X86_KVM_HOST_H
10 
11 #include <linux/types.h>
12 #include <linux/mm.h>
13 #include <linux/mmu_notifier.h>
14 #include <linux/tracepoint.h>
15 #include <linux/cpumask.h>
16 #include <linux/irq_work.h>
17 #include <linux/irq.h>
18 
19 #include <linux/kvm.h>
20 #include <linux/kvm_para.h>
21 #include <linux/kvm_types.h>
22 #include <linux/perf_event.h>
23 #include <linux/pvclock_gtod.h>
24 #include <linux/clocksource.h>
25 #include <linux/irqbypass.h>
26 #include <linux/hyperv.h>
27 
28 #include <asm/apic.h>
29 #include <asm/pvclock-abi.h>
30 #include <asm/desc.h>
31 #include <asm/mtrr.h>
32 #include <asm/msr-index.h>
33 #include <asm/asm.h>
34 #include <asm/kvm_page_track.h>
35 #include <asm/kvm_vcpu_regs.h>
36 #include <asm/hyperv-tlfs.h>
37 
38 #define __KVM_HAVE_ARCH_VCPU_DEBUGFS
39 
40 #define KVM_MAX_VCPUS 288
41 #define KVM_SOFT_MAX_VCPUS 240
42 #define KVM_MAX_VCPU_ID 1023
43 #define KVM_USER_MEM_SLOTS 509
44 /* memory slots that are not exposed to userspace */
45 #define KVM_PRIVATE_MEM_SLOTS 3
46 #define KVM_MEM_SLOTS_NUM (KVM_USER_MEM_SLOTS + KVM_PRIVATE_MEM_SLOTS)
47 
48 #define KVM_HALT_POLL_NS_DEFAULT 200000
49 
50 #define KVM_IRQCHIP_NUM_PINS  KVM_IOAPIC_NUM_PINS
51 
52 /* x86-specific vcpu->requests bit members */
53 #define KVM_REQ_MIGRATE_TIMER		KVM_ARCH_REQ(0)
54 #define KVM_REQ_REPORT_TPR_ACCESS	KVM_ARCH_REQ(1)
55 #define KVM_REQ_TRIPLE_FAULT		KVM_ARCH_REQ(2)
56 #define KVM_REQ_MMU_SYNC		KVM_ARCH_REQ(3)
57 #define KVM_REQ_CLOCK_UPDATE		KVM_ARCH_REQ(4)
58 #define KVM_REQ_LOAD_CR3		KVM_ARCH_REQ(5)
59 #define KVM_REQ_EVENT			KVM_ARCH_REQ(6)
60 #define KVM_REQ_APF_HALT		KVM_ARCH_REQ(7)
61 #define KVM_REQ_STEAL_UPDATE		KVM_ARCH_REQ(8)
62 #define KVM_REQ_NMI			KVM_ARCH_REQ(9)
63 #define KVM_REQ_PMU			KVM_ARCH_REQ(10)
64 #define KVM_REQ_PMI			KVM_ARCH_REQ(11)
65 #define KVM_REQ_SMI			KVM_ARCH_REQ(12)
66 #define KVM_REQ_MASTERCLOCK_UPDATE	KVM_ARCH_REQ(13)
67 #define KVM_REQ_MCLOCK_INPROGRESS \
68 	KVM_ARCH_REQ_FLAGS(14, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
69 #define KVM_REQ_SCAN_IOAPIC \
70 	KVM_ARCH_REQ_FLAGS(15, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
71 #define KVM_REQ_GLOBAL_CLOCK_UPDATE	KVM_ARCH_REQ(16)
72 #define KVM_REQ_APIC_PAGE_RELOAD \
73 	KVM_ARCH_REQ_FLAGS(17, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
74 #define KVM_REQ_HV_CRASH		KVM_ARCH_REQ(18)
75 #define KVM_REQ_IOAPIC_EOI_EXIT		KVM_ARCH_REQ(19)
76 #define KVM_REQ_HV_RESET		KVM_ARCH_REQ(20)
77 #define KVM_REQ_HV_EXIT			KVM_ARCH_REQ(21)
78 #define KVM_REQ_HV_STIMER		KVM_ARCH_REQ(22)
79 #define KVM_REQ_LOAD_EOI_EXITMAP	KVM_ARCH_REQ(23)
80 #define KVM_REQ_GET_VMCS12_PAGES	KVM_ARCH_REQ(24)
81 #define KVM_REQ_APICV_UPDATE \
82 	KVM_ARCH_REQ_FLAGS(25, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
83 
84 #define CR0_RESERVED_BITS                                               \
85 	(~(unsigned long)(X86_CR0_PE | X86_CR0_MP | X86_CR0_EM | X86_CR0_TS \
86 			  | X86_CR0_ET | X86_CR0_NE | X86_CR0_WP | X86_CR0_AM \
87 			  | X86_CR0_NW | X86_CR0_CD | X86_CR0_PG))
88 
89 #define CR4_RESERVED_BITS                                               \
90 	(~(unsigned long)(X86_CR4_VME | X86_CR4_PVI | X86_CR4_TSD | X86_CR4_DE\
91 			  | X86_CR4_PSE | X86_CR4_PAE | X86_CR4_MCE     \
92 			  | X86_CR4_PGE | X86_CR4_PCE | X86_CR4_OSFXSR | X86_CR4_PCIDE \
93 			  | X86_CR4_OSXSAVE | X86_CR4_SMEP | X86_CR4_FSGSBASE \
94 			  | X86_CR4_OSXMMEXCPT | X86_CR4_LA57 | X86_CR4_VMXE \
95 			  | X86_CR4_SMAP | X86_CR4_PKE | X86_CR4_UMIP))
96 
97 #define CR8_RESERVED_BITS (~(unsigned long)X86_CR8_TPR)
98 
99 
100 
101 #define INVALID_PAGE (~(hpa_t)0)
102 #define VALID_PAGE(x) ((x) != INVALID_PAGE)
103 
104 #define UNMAPPED_GVA (~(gpa_t)0)
105 
106 /* KVM Hugepage definitions for x86 */
107 enum {
108 	PT_PAGE_TABLE_LEVEL   = 1,
109 	PT_DIRECTORY_LEVEL    = 2,
110 	PT_PDPE_LEVEL         = 3,
111 	/* set max level to the biggest one */
112 	PT_MAX_HUGEPAGE_LEVEL = PT_PDPE_LEVEL,
113 };
114 #define KVM_NR_PAGE_SIZES	(PT_MAX_HUGEPAGE_LEVEL - \
115 				 PT_PAGE_TABLE_LEVEL + 1)
116 #define KVM_HPAGE_GFN_SHIFT(x)	(((x) - 1) * 9)
117 #define KVM_HPAGE_SHIFT(x)	(PAGE_SHIFT + KVM_HPAGE_GFN_SHIFT(x))
118 #define KVM_HPAGE_SIZE(x)	(1UL << KVM_HPAGE_SHIFT(x))
119 #define KVM_HPAGE_MASK(x)	(~(KVM_HPAGE_SIZE(x) - 1))
120 #define KVM_PAGES_PER_HPAGE(x)	(KVM_HPAGE_SIZE(x) / PAGE_SIZE)
121 
122 static inline gfn_t gfn_to_index(gfn_t gfn, gfn_t base_gfn, int level)
123 {
124 	/* KVM_HPAGE_GFN_SHIFT(PT_PAGE_TABLE_LEVEL) must be 0. */
125 	return (gfn >> KVM_HPAGE_GFN_SHIFT(level)) -
126 		(base_gfn >> KVM_HPAGE_GFN_SHIFT(level));
127 }
128 
129 #define KVM_PERMILLE_MMU_PAGES 20
130 #define KVM_MIN_ALLOC_MMU_PAGES 64UL
131 #define KVM_MMU_HASH_SHIFT 12
132 #define KVM_NUM_MMU_PAGES (1 << KVM_MMU_HASH_SHIFT)
133 #define KVM_MIN_FREE_MMU_PAGES 5
134 #define KVM_REFILL_PAGES 25
135 #define KVM_MAX_CPUID_ENTRIES 80
136 #define KVM_NR_FIXED_MTRR_REGION 88
137 #define KVM_NR_VAR_MTRR 8
138 
139 #define ASYNC_PF_PER_VCPU 64
140 
141 enum kvm_reg {
142 	VCPU_REGS_RAX = __VCPU_REGS_RAX,
143 	VCPU_REGS_RCX = __VCPU_REGS_RCX,
144 	VCPU_REGS_RDX = __VCPU_REGS_RDX,
145 	VCPU_REGS_RBX = __VCPU_REGS_RBX,
146 	VCPU_REGS_RSP = __VCPU_REGS_RSP,
147 	VCPU_REGS_RBP = __VCPU_REGS_RBP,
148 	VCPU_REGS_RSI = __VCPU_REGS_RSI,
149 	VCPU_REGS_RDI = __VCPU_REGS_RDI,
150 #ifdef CONFIG_X86_64
151 	VCPU_REGS_R8  = __VCPU_REGS_R8,
152 	VCPU_REGS_R9  = __VCPU_REGS_R9,
153 	VCPU_REGS_R10 = __VCPU_REGS_R10,
154 	VCPU_REGS_R11 = __VCPU_REGS_R11,
155 	VCPU_REGS_R12 = __VCPU_REGS_R12,
156 	VCPU_REGS_R13 = __VCPU_REGS_R13,
157 	VCPU_REGS_R14 = __VCPU_REGS_R14,
158 	VCPU_REGS_R15 = __VCPU_REGS_R15,
159 #endif
160 	VCPU_REGS_RIP,
161 	NR_VCPU_REGS,
162 
163 	VCPU_EXREG_PDPTR = NR_VCPU_REGS,
164 	VCPU_EXREG_CR3,
165 	VCPU_EXREG_RFLAGS,
166 	VCPU_EXREG_SEGMENTS,
167 };
168 
169 enum {
170 	VCPU_SREG_ES,
171 	VCPU_SREG_CS,
172 	VCPU_SREG_SS,
173 	VCPU_SREG_DS,
174 	VCPU_SREG_FS,
175 	VCPU_SREG_GS,
176 	VCPU_SREG_TR,
177 	VCPU_SREG_LDTR,
178 };
179 
180 enum exit_fastpath_completion {
181 	EXIT_FASTPATH_NONE,
182 	EXIT_FASTPATH_SKIP_EMUL_INS,
183 };
184 
185 #include <asm/kvm_emulate.h>
186 
187 #define KVM_NR_MEM_OBJS 40
188 
189 #define KVM_NR_DB_REGS	4
190 
191 #define DR6_BD		(1 << 13)
192 #define DR6_BS		(1 << 14)
193 #define DR6_BT		(1 << 15)
194 #define DR6_RTM		(1 << 16)
195 #define DR6_FIXED_1	0xfffe0ff0
196 #define DR6_INIT	0xffff0ff0
197 #define DR6_VOLATILE	0x0001e00f
198 
199 #define DR7_BP_EN_MASK	0x000000ff
200 #define DR7_GE		(1 << 9)
201 #define DR7_GD		(1 << 13)
202 #define DR7_FIXED_1	0x00000400
203 #define DR7_VOLATILE	0xffff2bff
204 
205 #define PFERR_PRESENT_BIT 0
206 #define PFERR_WRITE_BIT 1
207 #define PFERR_USER_BIT 2
208 #define PFERR_RSVD_BIT 3
209 #define PFERR_FETCH_BIT 4
210 #define PFERR_PK_BIT 5
211 #define PFERR_GUEST_FINAL_BIT 32
212 #define PFERR_GUEST_PAGE_BIT 33
213 
214 #define PFERR_PRESENT_MASK (1U << PFERR_PRESENT_BIT)
215 #define PFERR_WRITE_MASK (1U << PFERR_WRITE_BIT)
216 #define PFERR_USER_MASK (1U << PFERR_USER_BIT)
217 #define PFERR_RSVD_MASK (1U << PFERR_RSVD_BIT)
218 #define PFERR_FETCH_MASK (1U << PFERR_FETCH_BIT)
219 #define PFERR_PK_MASK (1U << PFERR_PK_BIT)
220 #define PFERR_GUEST_FINAL_MASK (1ULL << PFERR_GUEST_FINAL_BIT)
221 #define PFERR_GUEST_PAGE_MASK (1ULL << PFERR_GUEST_PAGE_BIT)
222 
223 #define PFERR_NESTED_GUEST_PAGE (PFERR_GUEST_PAGE_MASK |	\
224 				 PFERR_WRITE_MASK |		\
225 				 PFERR_PRESENT_MASK)
226 
227 /* apic attention bits */
228 #define KVM_APIC_CHECK_VAPIC	0
229 /*
230  * The following bit is set with PV-EOI, unset on EOI.
231  * We detect PV-EOI changes by guest by comparing
232  * this bit with PV-EOI in guest memory.
233  * See the implementation in apic_update_pv_eoi.
234  */
235 #define KVM_APIC_PV_EOI_PENDING	1
236 
237 struct kvm_kernel_irq_routing_entry;
238 
239 /*
240  * We don't want allocation failures within the mmu code, so we preallocate
241  * enough memory for a single page fault in a cache.
242  */
243 struct kvm_mmu_memory_cache {
244 	int nobjs;
245 	void *objects[KVM_NR_MEM_OBJS];
246 };
247 
248 /*
249  * the pages used as guest page table on soft mmu are tracked by
250  * kvm_memory_slot.arch.gfn_track which is 16 bits, so the role bits used
251  * by indirect shadow page can not be more than 15 bits.
252  *
253  * Currently, we used 14 bits that are @level, @gpte_is_8_bytes, @quadrant, @access,
254  * @nxe, @cr0_wp, @smep_andnot_wp and @smap_andnot_wp.
255  */
256 union kvm_mmu_page_role {
257 	u32 word;
258 	struct {
259 		unsigned level:4;
260 		unsigned gpte_is_8_bytes:1;
261 		unsigned quadrant:2;
262 		unsigned direct:1;
263 		unsigned access:3;
264 		unsigned invalid:1;
265 		unsigned nxe:1;
266 		unsigned cr0_wp:1;
267 		unsigned smep_andnot_wp:1;
268 		unsigned smap_andnot_wp:1;
269 		unsigned ad_disabled:1;
270 		unsigned guest_mode:1;
271 		unsigned :6;
272 
273 		/*
274 		 * This is left at the top of the word so that
275 		 * kvm_memslots_for_spte_role can extract it with a
276 		 * simple shift.  While there is room, give it a whole
277 		 * byte so it is also faster to load it from memory.
278 		 */
279 		unsigned smm:8;
280 	};
281 };
282 
283 union kvm_mmu_extended_role {
284 /*
285  * This structure complements kvm_mmu_page_role caching everything needed for
286  * MMU configuration. If nothing in both these structures changed, MMU
287  * re-configuration can be skipped. @valid bit is set on first usage so we don't
288  * treat all-zero structure as valid data.
289  */
290 	u32 word;
291 	struct {
292 		unsigned int valid:1;
293 		unsigned int execonly:1;
294 		unsigned int cr0_pg:1;
295 		unsigned int cr4_pae:1;
296 		unsigned int cr4_pse:1;
297 		unsigned int cr4_pke:1;
298 		unsigned int cr4_smap:1;
299 		unsigned int cr4_smep:1;
300 		unsigned int cr4_la57:1;
301 		unsigned int maxphyaddr:6;
302 	};
303 };
304 
305 union kvm_mmu_role {
306 	u64 as_u64;
307 	struct {
308 		union kvm_mmu_page_role base;
309 		union kvm_mmu_extended_role ext;
310 	};
311 };
312 
313 struct kvm_rmap_head {
314 	unsigned long val;
315 };
316 
317 struct kvm_mmu_page {
318 	struct list_head link;
319 	struct hlist_node hash_link;
320 	struct list_head lpage_disallowed_link;
321 
322 	bool unsync;
323 	u8 mmu_valid_gen;
324 	bool mmio_cached;
325 	bool lpage_disallowed; /* Can't be replaced by an equiv large page */
326 
327 	/*
328 	 * The following two entries are used to key the shadow page in the
329 	 * hash table.
330 	 */
331 	union kvm_mmu_page_role role;
332 	gfn_t gfn;
333 
334 	u64 *spt;
335 	/* hold the gfn of each spte inside spt */
336 	gfn_t *gfns;
337 	int root_count;          /* Currently serving as active root */
338 	unsigned int unsync_children;
339 	struct kvm_rmap_head parent_ptes; /* rmap pointers to parent sptes */
340 	DECLARE_BITMAP(unsync_child_bitmap, 512);
341 
342 #ifdef CONFIG_X86_32
343 	/*
344 	 * Used out of the mmu-lock to avoid reading spte values while an
345 	 * update is in progress; see the comments in __get_spte_lockless().
346 	 */
347 	int clear_spte_count;
348 #endif
349 
350 	/* Number of writes since the last time traversal visited this page.  */
351 	atomic_t write_flooding_count;
352 };
353 
354 struct kvm_pio_request {
355 	unsigned long linear_rip;
356 	unsigned long count;
357 	int in;
358 	int port;
359 	int size;
360 };
361 
362 #define PT64_ROOT_MAX_LEVEL 5
363 
364 struct rsvd_bits_validate {
365 	u64 rsvd_bits_mask[2][PT64_ROOT_MAX_LEVEL];
366 	u64 bad_mt_xwr;
367 };
368 
369 struct kvm_mmu_root_info {
370 	gpa_t cr3;
371 	hpa_t hpa;
372 };
373 
374 #define KVM_MMU_ROOT_INFO_INVALID \
375 	((struct kvm_mmu_root_info) { .cr3 = INVALID_PAGE, .hpa = INVALID_PAGE })
376 
377 #define KVM_MMU_NUM_PREV_ROOTS 3
378 
379 /*
380  * x86 supports 4 paging modes (5-level 64-bit, 4-level 64-bit, 3-level 32-bit,
381  * and 2-level 32-bit).  The kvm_mmu structure abstracts the details of the
382  * current mmu mode.
383  */
384 struct kvm_mmu {
385 	void (*set_cr3)(struct kvm_vcpu *vcpu, unsigned long root);
386 	unsigned long (*get_cr3)(struct kvm_vcpu *vcpu);
387 	u64 (*get_pdptr)(struct kvm_vcpu *vcpu, int index);
388 	int (*page_fault)(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, u32 err,
389 			  bool prefault);
390 	void (*inject_page_fault)(struct kvm_vcpu *vcpu,
391 				  struct x86_exception *fault);
392 	gpa_t (*gva_to_gpa)(struct kvm_vcpu *vcpu, gpa_t gva_or_gpa,
393 			    u32 access, struct x86_exception *exception);
394 	gpa_t (*translate_gpa)(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access,
395 			       struct x86_exception *exception);
396 	int (*sync_page)(struct kvm_vcpu *vcpu,
397 			 struct kvm_mmu_page *sp);
398 	void (*invlpg)(struct kvm_vcpu *vcpu, gva_t gva, hpa_t root_hpa);
399 	void (*update_pte)(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
400 			   u64 *spte, const void *pte);
401 	hpa_t root_hpa;
402 	gpa_t root_cr3;
403 	union kvm_mmu_role mmu_role;
404 	u8 root_level;
405 	u8 shadow_root_level;
406 	u8 ept_ad;
407 	bool direct_map;
408 	struct kvm_mmu_root_info prev_roots[KVM_MMU_NUM_PREV_ROOTS];
409 
410 	/*
411 	 * Bitmap; bit set = permission fault
412 	 * Byte index: page fault error code [4:1]
413 	 * Bit index: pte permissions in ACC_* format
414 	 */
415 	u8 permissions[16];
416 
417 	/*
418 	* The pkru_mask indicates if protection key checks are needed.  It
419 	* consists of 16 domains indexed by page fault error code bits [4:1],
420 	* with PFEC.RSVD replaced by ACC_USER_MASK from the page tables.
421 	* Each domain has 2 bits which are ANDed with AD and WD from PKRU.
422 	*/
423 	u32 pkru_mask;
424 
425 	u64 *pae_root;
426 	u64 *lm_root;
427 
428 	/*
429 	 * check zero bits on shadow page table entries, these
430 	 * bits include not only hardware reserved bits but also
431 	 * the bits spte never used.
432 	 */
433 	struct rsvd_bits_validate shadow_zero_check;
434 
435 	struct rsvd_bits_validate guest_rsvd_check;
436 
437 	/* Can have large pages at levels 2..last_nonleaf_level-1. */
438 	u8 last_nonleaf_level;
439 
440 	bool nx;
441 
442 	u64 pdptrs[4]; /* pae */
443 };
444 
445 struct kvm_tlb_range {
446 	u64 start_gfn;
447 	u64 pages;
448 };
449 
450 enum pmc_type {
451 	KVM_PMC_GP = 0,
452 	KVM_PMC_FIXED,
453 };
454 
455 struct kvm_pmc {
456 	enum pmc_type type;
457 	u8 idx;
458 	u64 counter;
459 	u64 eventsel;
460 	struct perf_event *perf_event;
461 	struct kvm_vcpu *vcpu;
462 	/*
463 	 * eventsel value for general purpose counters,
464 	 * ctrl value for fixed counters.
465 	 */
466 	u64 current_config;
467 };
468 
469 struct kvm_pmu {
470 	unsigned nr_arch_gp_counters;
471 	unsigned nr_arch_fixed_counters;
472 	unsigned available_event_types;
473 	u64 fixed_ctr_ctrl;
474 	u64 global_ctrl;
475 	u64 global_status;
476 	u64 global_ovf_ctrl;
477 	u64 counter_bitmask[2];
478 	u64 global_ctrl_mask;
479 	u64 global_ovf_ctrl_mask;
480 	u64 reserved_bits;
481 	u8 version;
482 	struct kvm_pmc gp_counters[INTEL_PMC_MAX_GENERIC];
483 	struct kvm_pmc fixed_counters[INTEL_PMC_MAX_FIXED];
484 	struct irq_work irq_work;
485 	DECLARE_BITMAP(reprogram_pmi, X86_PMC_IDX_MAX);
486 	DECLARE_BITMAP(all_valid_pmc_idx, X86_PMC_IDX_MAX);
487 	DECLARE_BITMAP(pmc_in_use, X86_PMC_IDX_MAX);
488 
489 	/*
490 	 * The gate to release perf_events not marked in
491 	 * pmc_in_use only once in a vcpu time slice.
492 	 */
493 	bool need_cleanup;
494 
495 	/*
496 	 * The total number of programmed perf_events and it helps to avoid
497 	 * redundant check before cleanup if guest don't use vPMU at all.
498 	 */
499 	u8 event_count;
500 };
501 
502 struct kvm_pmu_ops;
503 
504 enum {
505 	KVM_DEBUGREG_BP_ENABLED = 1,
506 	KVM_DEBUGREG_WONT_EXIT = 2,
507 	KVM_DEBUGREG_RELOAD = 4,
508 };
509 
510 struct kvm_mtrr_range {
511 	u64 base;
512 	u64 mask;
513 	struct list_head node;
514 };
515 
516 struct kvm_mtrr {
517 	struct kvm_mtrr_range var_ranges[KVM_NR_VAR_MTRR];
518 	mtrr_type fixed_ranges[KVM_NR_FIXED_MTRR_REGION];
519 	u64 deftype;
520 
521 	struct list_head head;
522 };
523 
524 /* Hyper-V SynIC timer */
525 struct kvm_vcpu_hv_stimer {
526 	struct hrtimer timer;
527 	int index;
528 	union hv_stimer_config config;
529 	u64 count;
530 	u64 exp_time;
531 	struct hv_message msg;
532 	bool msg_pending;
533 };
534 
535 /* Hyper-V synthetic interrupt controller (SynIC)*/
536 struct kvm_vcpu_hv_synic {
537 	u64 version;
538 	u64 control;
539 	u64 msg_page;
540 	u64 evt_page;
541 	atomic64_t sint[HV_SYNIC_SINT_COUNT];
542 	atomic_t sint_to_gsi[HV_SYNIC_SINT_COUNT];
543 	DECLARE_BITMAP(auto_eoi_bitmap, 256);
544 	DECLARE_BITMAP(vec_bitmap, 256);
545 	bool active;
546 	bool dont_zero_synic_pages;
547 };
548 
549 /* Hyper-V per vcpu emulation context */
550 struct kvm_vcpu_hv {
551 	u32 vp_index;
552 	u64 hv_vapic;
553 	s64 runtime_offset;
554 	struct kvm_vcpu_hv_synic synic;
555 	struct kvm_hyperv_exit exit;
556 	struct kvm_vcpu_hv_stimer stimer[HV_SYNIC_STIMER_COUNT];
557 	DECLARE_BITMAP(stimer_pending_bitmap, HV_SYNIC_STIMER_COUNT);
558 	cpumask_t tlb_flush;
559 };
560 
561 struct kvm_vcpu_arch {
562 	/*
563 	 * rip and regs accesses must go through
564 	 * kvm_{register,rip}_{read,write} functions.
565 	 */
566 	unsigned long regs[NR_VCPU_REGS];
567 	u32 regs_avail;
568 	u32 regs_dirty;
569 
570 	unsigned long cr0;
571 	unsigned long cr0_guest_owned_bits;
572 	unsigned long cr2;
573 	unsigned long cr3;
574 	unsigned long cr4;
575 	unsigned long cr4_guest_owned_bits;
576 	unsigned long cr8;
577 	u32 pkru;
578 	u32 hflags;
579 	u64 efer;
580 	u64 apic_base;
581 	struct kvm_lapic *apic;    /* kernel irqchip context */
582 	bool apicv_active;
583 	bool load_eoi_exitmap_pending;
584 	DECLARE_BITMAP(ioapic_handled_vectors, 256);
585 	unsigned long apic_attention;
586 	int32_t apic_arb_prio;
587 	int mp_state;
588 	u64 ia32_misc_enable_msr;
589 	u64 smbase;
590 	u64 smi_count;
591 	bool tpr_access_reporting;
592 	bool xsaves_enabled;
593 	u64 ia32_xss;
594 	u64 microcode_version;
595 	u64 arch_capabilities;
596 
597 	/*
598 	 * Paging state of the vcpu
599 	 *
600 	 * If the vcpu runs in guest mode with two level paging this still saves
601 	 * the paging mode of the l1 guest. This context is always used to
602 	 * handle faults.
603 	 */
604 	struct kvm_mmu *mmu;
605 
606 	/* Non-nested MMU for L1 */
607 	struct kvm_mmu root_mmu;
608 
609 	/* L1 MMU when running nested */
610 	struct kvm_mmu guest_mmu;
611 
612 	/*
613 	 * Paging state of an L2 guest (used for nested npt)
614 	 *
615 	 * This context will save all necessary information to walk page tables
616 	 * of an L2 guest. This context is only initialized for page table
617 	 * walking and not for faulting since we never handle l2 page faults on
618 	 * the host.
619 	 */
620 	struct kvm_mmu nested_mmu;
621 
622 	/*
623 	 * Pointer to the mmu context currently used for
624 	 * gva_to_gpa translations.
625 	 */
626 	struct kvm_mmu *walk_mmu;
627 
628 	struct kvm_mmu_memory_cache mmu_pte_list_desc_cache;
629 	struct kvm_mmu_memory_cache mmu_page_cache;
630 	struct kvm_mmu_memory_cache mmu_page_header_cache;
631 
632 	/*
633 	 * QEMU userspace and the guest each have their own FPU state.
634 	 * In vcpu_run, we switch between the user and guest FPU contexts.
635 	 * While running a VCPU, the VCPU thread will have the guest FPU
636 	 * context.
637 	 *
638 	 * Note that while the PKRU state lives inside the fpu registers,
639 	 * it is switched out separately at VMENTER and VMEXIT time. The
640 	 * "guest_fpu" state here contains the guest FPU context, with the
641 	 * host PRKU bits.
642 	 */
643 	struct fpu *user_fpu;
644 	struct fpu *guest_fpu;
645 
646 	u64 xcr0;
647 	u64 guest_supported_xcr0;
648 	u32 guest_xstate_size;
649 
650 	struct kvm_pio_request pio;
651 	void *pio_data;
652 
653 	u8 event_exit_inst_len;
654 
655 	struct kvm_queued_exception {
656 		bool pending;
657 		bool injected;
658 		bool has_error_code;
659 		u8 nr;
660 		u32 error_code;
661 		unsigned long payload;
662 		bool has_payload;
663 		u8 nested_apf;
664 	} exception;
665 
666 	struct kvm_queued_interrupt {
667 		bool injected;
668 		bool soft;
669 		u8 nr;
670 	} interrupt;
671 
672 	int halt_request; /* real mode on Intel only */
673 
674 	int cpuid_nent;
675 	struct kvm_cpuid_entry2 cpuid_entries[KVM_MAX_CPUID_ENTRIES];
676 
677 	int maxphyaddr;
678 
679 	/* emulate context */
680 
681 	struct x86_emulate_ctxt emulate_ctxt;
682 	bool emulate_regs_need_sync_to_vcpu;
683 	bool emulate_regs_need_sync_from_vcpu;
684 	int (*complete_userspace_io)(struct kvm_vcpu *vcpu);
685 
686 	gpa_t time;
687 	struct pvclock_vcpu_time_info hv_clock;
688 	unsigned int hw_tsc_khz;
689 	struct gfn_to_hva_cache pv_time;
690 	bool pv_time_enabled;
691 	/* set guest stopped flag in pvclock flags field */
692 	bool pvclock_set_guest_stopped_request;
693 
694 	struct {
695 		u8 preempted;
696 		u64 msr_val;
697 		u64 last_steal;
698 		struct gfn_to_pfn_cache cache;
699 	} st;
700 
701 	u64 tsc_offset;
702 	u64 last_guest_tsc;
703 	u64 last_host_tsc;
704 	u64 tsc_offset_adjustment;
705 	u64 this_tsc_nsec;
706 	u64 this_tsc_write;
707 	u64 this_tsc_generation;
708 	bool tsc_catchup;
709 	bool tsc_always_catchup;
710 	s8 virtual_tsc_shift;
711 	u32 virtual_tsc_mult;
712 	u32 virtual_tsc_khz;
713 	s64 ia32_tsc_adjust_msr;
714 	u64 msr_ia32_power_ctl;
715 	u64 tsc_scaling_ratio;
716 
717 	atomic_t nmi_queued;  /* unprocessed asynchronous NMIs */
718 	unsigned nmi_pending; /* NMI queued after currently running handler */
719 	bool nmi_injected;    /* Trying to inject an NMI this entry */
720 	bool smi_pending;    /* SMI queued after currently running handler */
721 
722 	struct kvm_mtrr mtrr_state;
723 	u64 pat;
724 
725 	unsigned switch_db_regs;
726 	unsigned long db[KVM_NR_DB_REGS];
727 	unsigned long dr6;
728 	unsigned long dr7;
729 	unsigned long eff_db[KVM_NR_DB_REGS];
730 	unsigned long guest_debug_dr7;
731 	u64 msr_platform_info;
732 	u64 msr_misc_features_enables;
733 
734 	u64 mcg_cap;
735 	u64 mcg_status;
736 	u64 mcg_ctl;
737 	u64 mcg_ext_ctl;
738 	u64 *mce_banks;
739 
740 	/* Cache MMIO info */
741 	u64 mmio_gva;
742 	unsigned mmio_access;
743 	gfn_t mmio_gfn;
744 	u64 mmio_gen;
745 
746 	struct kvm_pmu pmu;
747 
748 	/* used for guest single stepping over the given code position */
749 	unsigned long singlestep_rip;
750 
751 	struct kvm_vcpu_hv hyperv;
752 
753 	cpumask_var_t wbinvd_dirty_mask;
754 
755 	unsigned long last_retry_eip;
756 	unsigned long last_retry_addr;
757 
758 	struct {
759 		bool halted;
760 		gfn_t gfns[roundup_pow_of_two(ASYNC_PF_PER_VCPU)];
761 		struct gfn_to_hva_cache data;
762 		u64 msr_val;
763 		u32 id;
764 		bool send_user_only;
765 		u32 host_apf_reason;
766 		unsigned long nested_apf_token;
767 		bool delivery_as_pf_vmexit;
768 	} apf;
769 
770 	/* OSVW MSRs (AMD only) */
771 	struct {
772 		u64 length;
773 		u64 status;
774 	} osvw;
775 
776 	struct {
777 		u64 msr_val;
778 		struct gfn_to_hva_cache data;
779 	} pv_eoi;
780 
781 	u64 msr_kvm_poll_control;
782 
783 	/*
784 	 * Indicates the guest is trying to write a gfn that contains one or
785 	 * more of the PTEs used to translate the write itself, i.e. the access
786 	 * is changing its own translation in the guest page tables.  KVM exits
787 	 * to userspace if emulation of the faulting instruction fails and this
788 	 * flag is set, as KVM cannot make forward progress.
789 	 *
790 	 * If emulation fails for a write to guest page tables, KVM unprotects
791 	 * (zaps) the shadow page for the target gfn and resumes the guest to
792 	 * retry the non-emulatable instruction (on hardware).  Unprotecting the
793 	 * gfn doesn't allow forward progress for a self-changing access because
794 	 * doing so also zaps the translation for the gfn, i.e. retrying the
795 	 * instruction will hit a !PRESENT fault, which results in a new shadow
796 	 * page and sends KVM back to square one.
797 	 */
798 	bool write_fault_to_shadow_pgtable;
799 
800 	/* set at EPT violation at this point */
801 	unsigned long exit_qualification;
802 
803 	/* pv related host specific info */
804 	struct {
805 		bool pv_unhalted;
806 	} pv;
807 
808 	int pending_ioapic_eoi;
809 	int pending_external_vector;
810 
811 	/* GPA available */
812 	bool gpa_available;
813 	gpa_t gpa_val;
814 
815 	/* be preempted when it's in kernel-mode(cpl=0) */
816 	bool preempted_in_kernel;
817 
818 	/* Flush the L1 Data cache for L1TF mitigation on VMENTER */
819 	bool l1tf_flush_l1d;
820 
821 	/* AMD MSRC001_0015 Hardware Configuration */
822 	u64 msr_hwcr;
823 };
824 
825 struct kvm_lpage_info {
826 	int disallow_lpage;
827 };
828 
829 struct kvm_arch_memory_slot {
830 	struct kvm_rmap_head *rmap[KVM_NR_PAGE_SIZES];
831 	struct kvm_lpage_info *lpage_info[KVM_NR_PAGE_SIZES - 1];
832 	unsigned short *gfn_track[KVM_PAGE_TRACK_MAX];
833 };
834 
835 /*
836  * We use as the mode the number of bits allocated in the LDR for the
837  * logical processor ID.  It happens that these are all powers of two.
838  * This makes it is very easy to detect cases where the APICs are
839  * configured for multiple modes; in that case, we cannot use the map and
840  * hence cannot use kvm_irq_delivery_to_apic_fast either.
841  */
842 #define KVM_APIC_MODE_XAPIC_CLUSTER          4
843 #define KVM_APIC_MODE_XAPIC_FLAT             8
844 #define KVM_APIC_MODE_X2APIC                16
845 
846 struct kvm_apic_map {
847 	struct rcu_head rcu;
848 	u8 mode;
849 	u32 max_apic_id;
850 	union {
851 		struct kvm_lapic *xapic_flat_map[8];
852 		struct kvm_lapic *xapic_cluster_map[16][4];
853 	};
854 	struct kvm_lapic *phys_map[];
855 };
856 
857 /* Hyper-V emulation context */
858 struct kvm_hv {
859 	struct mutex hv_lock;
860 	u64 hv_guest_os_id;
861 	u64 hv_hypercall;
862 	u64 hv_tsc_page;
863 
864 	/* Hyper-v based guest crash (NT kernel bugcheck) parameters */
865 	u64 hv_crash_param[HV_X64_MSR_CRASH_PARAMS];
866 	u64 hv_crash_ctl;
867 
868 	HV_REFERENCE_TSC_PAGE tsc_ref;
869 
870 	struct idr conn_to_evt;
871 
872 	u64 hv_reenlightenment_control;
873 	u64 hv_tsc_emulation_control;
874 	u64 hv_tsc_emulation_status;
875 
876 	/* How many vCPUs have VP index != vCPU index */
877 	atomic_t num_mismatched_vp_indexes;
878 
879 	struct hv_partition_assist_pg *hv_pa_pg;
880 };
881 
882 enum kvm_irqchip_mode {
883 	KVM_IRQCHIP_NONE,
884 	KVM_IRQCHIP_KERNEL,       /* created with KVM_CREATE_IRQCHIP */
885 	KVM_IRQCHIP_SPLIT,        /* created with KVM_CAP_SPLIT_IRQCHIP */
886 };
887 
888 #define APICV_INHIBIT_REASON_DISABLE    0
889 #define APICV_INHIBIT_REASON_HYPERV     1
890 #define APICV_INHIBIT_REASON_NESTED     2
891 #define APICV_INHIBIT_REASON_IRQWIN     3
892 #define APICV_INHIBIT_REASON_PIT_REINJ  4
893 
894 struct kvm_arch {
895 	unsigned long n_used_mmu_pages;
896 	unsigned long n_requested_mmu_pages;
897 	unsigned long n_max_mmu_pages;
898 	unsigned int indirect_shadow_pages;
899 	u8 mmu_valid_gen;
900 	struct hlist_head mmu_page_hash[KVM_NUM_MMU_PAGES];
901 	/*
902 	 * Hash table of struct kvm_mmu_page.
903 	 */
904 	struct list_head active_mmu_pages;
905 	struct list_head zapped_obsolete_pages;
906 	struct list_head lpage_disallowed_mmu_pages;
907 	struct kvm_page_track_notifier_node mmu_sp_tracker;
908 	struct kvm_page_track_notifier_head track_notifier_head;
909 
910 	struct list_head assigned_dev_head;
911 	struct iommu_domain *iommu_domain;
912 	bool iommu_noncoherent;
913 #define __KVM_HAVE_ARCH_NONCOHERENT_DMA
914 	atomic_t noncoherent_dma_count;
915 #define __KVM_HAVE_ARCH_ASSIGNED_DEVICE
916 	atomic_t assigned_device_count;
917 	struct kvm_pic *vpic;
918 	struct kvm_ioapic *vioapic;
919 	struct kvm_pit *vpit;
920 	atomic_t vapics_in_nmi_mode;
921 	struct mutex apic_map_lock;
922 	struct kvm_apic_map *apic_map;
923 
924 	bool apic_access_page_done;
925 	unsigned long apicv_inhibit_reasons;
926 
927 	gpa_t wall_clock;
928 
929 	bool mwait_in_guest;
930 	bool hlt_in_guest;
931 	bool pause_in_guest;
932 	bool cstate_in_guest;
933 
934 	unsigned long irq_sources_bitmap;
935 	s64 kvmclock_offset;
936 	raw_spinlock_t tsc_write_lock;
937 	u64 last_tsc_nsec;
938 	u64 last_tsc_write;
939 	u32 last_tsc_khz;
940 	u64 cur_tsc_nsec;
941 	u64 cur_tsc_write;
942 	u64 cur_tsc_offset;
943 	u64 cur_tsc_generation;
944 	int nr_vcpus_matched_tsc;
945 
946 	spinlock_t pvclock_gtod_sync_lock;
947 	bool use_master_clock;
948 	u64 master_kernel_ns;
949 	u64 master_cycle_now;
950 	struct delayed_work kvmclock_update_work;
951 	struct delayed_work kvmclock_sync_work;
952 
953 	struct kvm_xen_hvm_config xen_hvm_config;
954 
955 	/* reads protected by irq_srcu, writes by irq_lock */
956 	struct hlist_head mask_notifier_list;
957 
958 	struct kvm_hv hyperv;
959 
960 	#ifdef CONFIG_KVM_MMU_AUDIT
961 	int audit_point;
962 	#endif
963 
964 	bool backwards_tsc_observed;
965 	bool boot_vcpu_runs_old_kvmclock;
966 	u32 bsp_vcpu_id;
967 
968 	u64 disabled_quirks;
969 
970 	enum kvm_irqchip_mode irqchip_mode;
971 	u8 nr_reserved_ioapic_pins;
972 
973 	bool disabled_lapic_found;
974 
975 	bool x2apic_format;
976 	bool x2apic_broadcast_quirk_disabled;
977 
978 	bool guest_can_read_msr_platform_info;
979 	bool exception_payload_enabled;
980 
981 	struct kvm_pmu_event_filter *pmu_event_filter;
982 	struct task_struct *nx_lpage_recovery_thread;
983 };
984 
985 struct kvm_vm_stat {
986 	ulong mmu_shadow_zapped;
987 	ulong mmu_pte_write;
988 	ulong mmu_pte_updated;
989 	ulong mmu_pde_zapped;
990 	ulong mmu_flooded;
991 	ulong mmu_recycled;
992 	ulong mmu_cache_miss;
993 	ulong mmu_unsync;
994 	ulong remote_tlb_flush;
995 	ulong lpages;
996 	ulong nx_lpage_splits;
997 	ulong max_mmu_page_hash_collisions;
998 };
999 
1000 struct kvm_vcpu_stat {
1001 	u64 pf_fixed;
1002 	u64 pf_guest;
1003 	u64 tlb_flush;
1004 	u64 invlpg;
1005 
1006 	u64 exits;
1007 	u64 io_exits;
1008 	u64 mmio_exits;
1009 	u64 signal_exits;
1010 	u64 irq_window_exits;
1011 	u64 nmi_window_exits;
1012 	u64 l1d_flush;
1013 	u64 halt_exits;
1014 	u64 halt_successful_poll;
1015 	u64 halt_attempted_poll;
1016 	u64 halt_poll_invalid;
1017 	u64 halt_wakeup;
1018 	u64 request_irq_exits;
1019 	u64 irq_exits;
1020 	u64 host_state_reload;
1021 	u64 fpu_reload;
1022 	u64 insn_emulation;
1023 	u64 insn_emulation_fail;
1024 	u64 hypercalls;
1025 	u64 irq_injections;
1026 	u64 nmi_injections;
1027 	u64 req_event;
1028 };
1029 
1030 struct x86_instruction_info;
1031 
1032 struct msr_data {
1033 	bool host_initiated;
1034 	u32 index;
1035 	u64 data;
1036 };
1037 
1038 struct kvm_lapic_irq {
1039 	u32 vector;
1040 	u16 delivery_mode;
1041 	u16 dest_mode;
1042 	bool level;
1043 	u16 trig_mode;
1044 	u32 shorthand;
1045 	u32 dest_id;
1046 	bool msi_redir_hint;
1047 };
1048 
1049 static inline u16 kvm_lapic_irq_dest_mode(bool dest_mode_logical)
1050 {
1051 	return dest_mode_logical ? APIC_DEST_LOGICAL : APIC_DEST_PHYSICAL;
1052 }
1053 
1054 struct kvm_x86_ops {
1055 	int (*cpu_has_kvm_support)(void);          /* __init */
1056 	int (*disabled_by_bios)(void);             /* __init */
1057 	int (*hardware_enable)(void);
1058 	void (*hardware_disable)(void);
1059 	int (*check_processor_compatibility)(void);/* __init */
1060 	int (*hardware_setup)(void);               /* __init */
1061 	void (*hardware_unsetup)(void);            /* __exit */
1062 	bool (*cpu_has_accelerated_tpr)(void);
1063 	bool (*has_emulated_msr)(int index);
1064 	void (*cpuid_update)(struct kvm_vcpu *vcpu);
1065 
1066 	struct kvm *(*vm_alloc)(void);
1067 	void (*vm_free)(struct kvm *);
1068 	int (*vm_init)(struct kvm *kvm);
1069 	void (*vm_destroy)(struct kvm *kvm);
1070 
1071 	/* Create, but do not attach this VCPU */
1072 	int (*vcpu_create)(struct kvm_vcpu *vcpu);
1073 	void (*vcpu_free)(struct kvm_vcpu *vcpu);
1074 	void (*vcpu_reset)(struct kvm_vcpu *vcpu, bool init_event);
1075 
1076 	void (*prepare_guest_switch)(struct kvm_vcpu *vcpu);
1077 	void (*vcpu_load)(struct kvm_vcpu *vcpu, int cpu);
1078 	void (*vcpu_put)(struct kvm_vcpu *vcpu);
1079 
1080 	void (*update_bp_intercept)(struct kvm_vcpu *vcpu);
1081 	int (*get_msr)(struct kvm_vcpu *vcpu, struct msr_data *msr);
1082 	int (*set_msr)(struct kvm_vcpu *vcpu, struct msr_data *msr);
1083 	u64 (*get_segment_base)(struct kvm_vcpu *vcpu, int seg);
1084 	void (*get_segment)(struct kvm_vcpu *vcpu,
1085 			    struct kvm_segment *var, int seg);
1086 	int (*get_cpl)(struct kvm_vcpu *vcpu);
1087 	void (*set_segment)(struct kvm_vcpu *vcpu,
1088 			    struct kvm_segment *var, int seg);
1089 	void (*get_cs_db_l_bits)(struct kvm_vcpu *vcpu, int *db, int *l);
1090 	void (*decache_cr0_guest_bits)(struct kvm_vcpu *vcpu);
1091 	void (*decache_cr4_guest_bits)(struct kvm_vcpu *vcpu);
1092 	void (*set_cr0)(struct kvm_vcpu *vcpu, unsigned long cr0);
1093 	void (*set_cr3)(struct kvm_vcpu *vcpu, unsigned long cr3);
1094 	int (*set_cr4)(struct kvm_vcpu *vcpu, unsigned long cr4);
1095 	void (*set_efer)(struct kvm_vcpu *vcpu, u64 efer);
1096 	void (*get_idt)(struct kvm_vcpu *vcpu, struct desc_ptr *dt);
1097 	void (*set_idt)(struct kvm_vcpu *vcpu, struct desc_ptr *dt);
1098 	void (*get_gdt)(struct kvm_vcpu *vcpu, struct desc_ptr *dt);
1099 	void (*set_gdt)(struct kvm_vcpu *vcpu, struct desc_ptr *dt);
1100 	u64 (*get_dr6)(struct kvm_vcpu *vcpu);
1101 	void (*set_dr6)(struct kvm_vcpu *vcpu, unsigned long value);
1102 	void (*sync_dirty_debug_regs)(struct kvm_vcpu *vcpu);
1103 	void (*set_dr7)(struct kvm_vcpu *vcpu, unsigned long value);
1104 	void (*cache_reg)(struct kvm_vcpu *vcpu, enum kvm_reg reg);
1105 	unsigned long (*get_rflags)(struct kvm_vcpu *vcpu);
1106 	void (*set_rflags)(struct kvm_vcpu *vcpu, unsigned long rflags);
1107 
1108 	void (*tlb_flush)(struct kvm_vcpu *vcpu, bool invalidate_gpa);
1109 	int  (*tlb_remote_flush)(struct kvm *kvm);
1110 	int  (*tlb_remote_flush_with_range)(struct kvm *kvm,
1111 			struct kvm_tlb_range *range);
1112 
1113 	/*
1114 	 * Flush any TLB entries associated with the given GVA.
1115 	 * Does not need to flush GPA->HPA mappings.
1116 	 * Can potentially get non-canonical addresses through INVLPGs, which
1117 	 * the implementation may choose to ignore if appropriate.
1118 	 */
1119 	void (*tlb_flush_gva)(struct kvm_vcpu *vcpu, gva_t addr);
1120 
1121 	void (*run)(struct kvm_vcpu *vcpu);
1122 	int (*handle_exit)(struct kvm_vcpu *vcpu,
1123 		enum exit_fastpath_completion exit_fastpath);
1124 	int (*skip_emulated_instruction)(struct kvm_vcpu *vcpu);
1125 	void (*update_emulated_instruction)(struct kvm_vcpu *vcpu);
1126 	void (*set_interrupt_shadow)(struct kvm_vcpu *vcpu, int mask);
1127 	u32 (*get_interrupt_shadow)(struct kvm_vcpu *vcpu);
1128 	void (*patch_hypercall)(struct kvm_vcpu *vcpu,
1129 				unsigned char *hypercall_addr);
1130 	void (*set_irq)(struct kvm_vcpu *vcpu);
1131 	void (*set_nmi)(struct kvm_vcpu *vcpu);
1132 	void (*queue_exception)(struct kvm_vcpu *vcpu);
1133 	void (*cancel_injection)(struct kvm_vcpu *vcpu);
1134 	int (*interrupt_allowed)(struct kvm_vcpu *vcpu);
1135 	int (*nmi_allowed)(struct kvm_vcpu *vcpu);
1136 	bool (*get_nmi_mask)(struct kvm_vcpu *vcpu);
1137 	void (*set_nmi_mask)(struct kvm_vcpu *vcpu, bool masked);
1138 	void (*enable_nmi_window)(struct kvm_vcpu *vcpu);
1139 	void (*enable_irq_window)(struct kvm_vcpu *vcpu);
1140 	void (*update_cr8_intercept)(struct kvm_vcpu *vcpu, int tpr, int irr);
1141 	bool (*check_apicv_inhibit_reasons)(ulong bit);
1142 	void (*pre_update_apicv_exec_ctrl)(struct kvm *kvm, bool activate);
1143 	void (*refresh_apicv_exec_ctrl)(struct kvm_vcpu *vcpu);
1144 	void (*hwapic_irr_update)(struct kvm_vcpu *vcpu, int max_irr);
1145 	void (*hwapic_isr_update)(struct kvm_vcpu *vcpu, int isr);
1146 	bool (*guest_apic_has_interrupt)(struct kvm_vcpu *vcpu);
1147 	void (*load_eoi_exitmap)(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap);
1148 	void (*set_virtual_apic_mode)(struct kvm_vcpu *vcpu);
1149 	void (*set_apic_access_page_addr)(struct kvm_vcpu *vcpu, hpa_t hpa);
1150 	int (*deliver_posted_interrupt)(struct kvm_vcpu *vcpu, int vector);
1151 	int (*sync_pir_to_irr)(struct kvm_vcpu *vcpu);
1152 	int (*set_tss_addr)(struct kvm *kvm, unsigned int addr);
1153 	int (*set_identity_map_addr)(struct kvm *kvm, u64 ident_addr);
1154 	int (*get_tdp_level)(struct kvm_vcpu *vcpu);
1155 	u64 (*get_mt_mask)(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio);
1156 	int (*get_lpage_level)(void);
1157 	bool (*rdtscp_supported)(void);
1158 	bool (*invpcid_supported)(void);
1159 
1160 	void (*set_tdp_cr3)(struct kvm_vcpu *vcpu, unsigned long cr3);
1161 
1162 	void (*set_supported_cpuid)(u32 func, struct kvm_cpuid_entry2 *entry);
1163 
1164 	bool (*has_wbinvd_exit)(void);
1165 
1166 	u64 (*read_l1_tsc_offset)(struct kvm_vcpu *vcpu);
1167 	/* Returns actual tsc_offset set in active VMCS */
1168 	u64 (*write_l1_tsc_offset)(struct kvm_vcpu *vcpu, u64 offset);
1169 
1170 	void (*get_exit_info)(struct kvm_vcpu *vcpu, u64 *info1, u64 *info2);
1171 
1172 	int (*check_intercept)(struct kvm_vcpu *vcpu,
1173 			       struct x86_instruction_info *info,
1174 			       enum x86_intercept_stage stage);
1175 	void (*handle_exit_irqoff)(struct kvm_vcpu *vcpu,
1176 		enum exit_fastpath_completion *exit_fastpath);
1177 	bool (*mpx_supported)(void);
1178 	bool (*xsaves_supported)(void);
1179 	bool (*umip_emulated)(void);
1180 	bool (*pt_supported)(void);
1181 	bool (*pku_supported)(void);
1182 
1183 	int (*check_nested_events)(struct kvm_vcpu *vcpu, bool external_intr);
1184 	void (*request_immediate_exit)(struct kvm_vcpu *vcpu);
1185 
1186 	void (*sched_in)(struct kvm_vcpu *kvm, int cpu);
1187 
1188 	/*
1189 	 * Arch-specific dirty logging hooks. These hooks are only supposed to
1190 	 * be valid if the specific arch has hardware-accelerated dirty logging
1191 	 * mechanism. Currently only for PML on VMX.
1192 	 *
1193 	 *  - slot_enable_log_dirty:
1194 	 *	called when enabling log dirty mode for the slot.
1195 	 *  - slot_disable_log_dirty:
1196 	 *	called when disabling log dirty mode for the slot.
1197 	 *	also called when slot is created with log dirty disabled.
1198 	 *  - flush_log_dirty:
1199 	 *	called before reporting dirty_bitmap to userspace.
1200 	 *  - enable_log_dirty_pt_masked:
1201 	 *	called when reenabling log dirty for the GFNs in the mask after
1202 	 *	corresponding bits are cleared in slot->dirty_bitmap.
1203 	 */
1204 	void (*slot_enable_log_dirty)(struct kvm *kvm,
1205 				      struct kvm_memory_slot *slot);
1206 	void (*slot_disable_log_dirty)(struct kvm *kvm,
1207 				       struct kvm_memory_slot *slot);
1208 	void (*flush_log_dirty)(struct kvm *kvm);
1209 	void (*enable_log_dirty_pt_masked)(struct kvm *kvm,
1210 					   struct kvm_memory_slot *slot,
1211 					   gfn_t offset, unsigned long mask);
1212 	int (*write_log_dirty)(struct kvm_vcpu *vcpu);
1213 
1214 	/* pmu operations of sub-arch */
1215 	const struct kvm_pmu_ops *pmu_ops;
1216 
1217 	/*
1218 	 * Architecture specific hooks for vCPU blocking due to
1219 	 * HLT instruction.
1220 	 * Returns for .pre_block():
1221 	 *    - 0 means continue to block the vCPU.
1222 	 *    - 1 means we cannot block the vCPU since some event
1223 	 *        happens during this period, such as, 'ON' bit in
1224 	 *        posted-interrupts descriptor is set.
1225 	 */
1226 	int (*pre_block)(struct kvm_vcpu *vcpu);
1227 	void (*post_block)(struct kvm_vcpu *vcpu);
1228 
1229 	void (*vcpu_blocking)(struct kvm_vcpu *vcpu);
1230 	void (*vcpu_unblocking)(struct kvm_vcpu *vcpu);
1231 
1232 	int (*update_pi_irte)(struct kvm *kvm, unsigned int host_irq,
1233 			      uint32_t guest_irq, bool set);
1234 	void (*apicv_post_state_restore)(struct kvm_vcpu *vcpu);
1235 	bool (*dy_apicv_has_pending_interrupt)(struct kvm_vcpu *vcpu);
1236 
1237 	int (*set_hv_timer)(struct kvm_vcpu *vcpu, u64 guest_deadline_tsc,
1238 			    bool *expired);
1239 	void (*cancel_hv_timer)(struct kvm_vcpu *vcpu);
1240 
1241 	void (*setup_mce)(struct kvm_vcpu *vcpu);
1242 
1243 	int (*get_nested_state)(struct kvm_vcpu *vcpu,
1244 				struct kvm_nested_state __user *user_kvm_nested_state,
1245 				unsigned user_data_size);
1246 	int (*set_nested_state)(struct kvm_vcpu *vcpu,
1247 				struct kvm_nested_state __user *user_kvm_nested_state,
1248 				struct kvm_nested_state *kvm_state);
1249 	bool (*get_vmcs12_pages)(struct kvm_vcpu *vcpu);
1250 
1251 	int (*smi_allowed)(struct kvm_vcpu *vcpu);
1252 	int (*pre_enter_smm)(struct kvm_vcpu *vcpu, char *smstate);
1253 	int (*pre_leave_smm)(struct kvm_vcpu *vcpu, const char *smstate);
1254 	int (*enable_smi_window)(struct kvm_vcpu *vcpu);
1255 
1256 	int (*mem_enc_op)(struct kvm *kvm, void __user *argp);
1257 	int (*mem_enc_reg_region)(struct kvm *kvm, struct kvm_enc_region *argp);
1258 	int (*mem_enc_unreg_region)(struct kvm *kvm, struct kvm_enc_region *argp);
1259 
1260 	int (*get_msr_feature)(struct kvm_msr_entry *entry);
1261 
1262 	int (*nested_enable_evmcs)(struct kvm_vcpu *vcpu,
1263 				   uint16_t *vmcs_version);
1264 	uint16_t (*nested_get_evmcs_version)(struct kvm_vcpu *vcpu);
1265 
1266 	bool (*need_emulation_on_page_fault)(struct kvm_vcpu *vcpu);
1267 
1268 	bool (*apic_init_signal_blocked)(struct kvm_vcpu *vcpu);
1269 	int (*enable_direct_tlbflush)(struct kvm_vcpu *vcpu);
1270 };
1271 
1272 struct kvm_arch_async_pf {
1273 	u32 token;
1274 	gfn_t gfn;
1275 	unsigned long cr3;
1276 	bool direct_map;
1277 };
1278 
1279 extern struct kvm_x86_ops *kvm_x86_ops;
1280 extern struct kmem_cache *x86_fpu_cache;
1281 
1282 #define __KVM_HAVE_ARCH_VM_ALLOC
1283 static inline struct kvm *kvm_arch_alloc_vm(void)
1284 {
1285 	return kvm_x86_ops->vm_alloc();
1286 }
1287 
1288 static inline void kvm_arch_free_vm(struct kvm *kvm)
1289 {
1290 	return kvm_x86_ops->vm_free(kvm);
1291 }
1292 
1293 #define __KVM_HAVE_ARCH_FLUSH_REMOTE_TLB
1294 static inline int kvm_arch_flush_remote_tlb(struct kvm *kvm)
1295 {
1296 	if (kvm_x86_ops->tlb_remote_flush &&
1297 	    !kvm_x86_ops->tlb_remote_flush(kvm))
1298 		return 0;
1299 	else
1300 		return -ENOTSUPP;
1301 }
1302 
1303 int kvm_mmu_module_init(void);
1304 void kvm_mmu_module_exit(void);
1305 
1306 void kvm_mmu_destroy(struct kvm_vcpu *vcpu);
1307 int kvm_mmu_create(struct kvm_vcpu *vcpu);
1308 void kvm_mmu_init_vm(struct kvm *kvm);
1309 void kvm_mmu_uninit_vm(struct kvm *kvm);
1310 void kvm_mmu_set_mask_ptes(u64 user_mask, u64 accessed_mask,
1311 		u64 dirty_mask, u64 nx_mask, u64 x_mask, u64 p_mask,
1312 		u64 acc_track_mask, u64 me_mask);
1313 
1314 void kvm_mmu_reset_context(struct kvm_vcpu *vcpu);
1315 void kvm_mmu_slot_remove_write_access(struct kvm *kvm,
1316 				      struct kvm_memory_slot *memslot);
1317 void kvm_mmu_zap_collapsible_sptes(struct kvm *kvm,
1318 				   const struct kvm_memory_slot *memslot);
1319 void kvm_mmu_slot_leaf_clear_dirty(struct kvm *kvm,
1320 				   struct kvm_memory_slot *memslot);
1321 void kvm_mmu_slot_largepage_remove_write_access(struct kvm *kvm,
1322 					struct kvm_memory_slot *memslot);
1323 void kvm_mmu_slot_set_dirty(struct kvm *kvm,
1324 			    struct kvm_memory_slot *memslot);
1325 void kvm_mmu_clear_dirty_pt_masked(struct kvm *kvm,
1326 				   struct kvm_memory_slot *slot,
1327 				   gfn_t gfn_offset, unsigned long mask);
1328 void kvm_mmu_zap_all(struct kvm *kvm);
1329 void kvm_mmu_invalidate_mmio_sptes(struct kvm *kvm, u64 gen);
1330 unsigned long kvm_mmu_calculate_default_mmu_pages(struct kvm *kvm);
1331 void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned long kvm_nr_mmu_pages);
1332 
1333 int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3);
1334 bool pdptrs_changed(struct kvm_vcpu *vcpu);
1335 
1336 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
1337 			  const void *val, int bytes);
1338 
1339 struct kvm_irq_mask_notifier {
1340 	void (*func)(struct kvm_irq_mask_notifier *kimn, bool masked);
1341 	int irq;
1342 	struct hlist_node link;
1343 };
1344 
1345 void kvm_register_irq_mask_notifier(struct kvm *kvm, int irq,
1346 				    struct kvm_irq_mask_notifier *kimn);
1347 void kvm_unregister_irq_mask_notifier(struct kvm *kvm, int irq,
1348 				      struct kvm_irq_mask_notifier *kimn);
1349 void kvm_fire_mask_notifiers(struct kvm *kvm, unsigned irqchip, unsigned pin,
1350 			     bool mask);
1351 
1352 extern bool tdp_enabled;
1353 
1354 u64 vcpu_tsc_khz(struct kvm_vcpu *vcpu);
1355 
1356 /* control of guest tsc rate supported? */
1357 extern bool kvm_has_tsc_control;
1358 /* maximum supported tsc_khz for guests */
1359 extern u32  kvm_max_guest_tsc_khz;
1360 /* number of bits of the fractional part of the TSC scaling ratio */
1361 extern u8   kvm_tsc_scaling_ratio_frac_bits;
1362 /* maximum allowed value of TSC scaling ratio */
1363 extern u64  kvm_max_tsc_scaling_ratio;
1364 /* 1ull << kvm_tsc_scaling_ratio_frac_bits */
1365 extern u64  kvm_default_tsc_scaling_ratio;
1366 
1367 extern u64 kvm_mce_cap_supported;
1368 
1369 /*
1370  * EMULTYPE_NO_DECODE - Set when re-emulating an instruction (after completing
1371  *			userspace I/O) to indicate that the emulation context
1372  *			should be resued as is, i.e. skip initialization of
1373  *			emulation context, instruction fetch and decode.
1374  *
1375  * EMULTYPE_TRAP_UD - Set when emulating an intercepted #UD from hardware.
1376  *		      Indicates that only select instructions (tagged with
1377  *		      EmulateOnUD) should be emulated (to minimize the emulator
1378  *		      attack surface).  See also EMULTYPE_TRAP_UD_FORCED.
1379  *
1380  * EMULTYPE_SKIP - Set when emulating solely to skip an instruction, i.e. to
1381  *		   decode the instruction length.  For use *only* by
1382  *		   kvm_x86_ops->skip_emulated_instruction() implementations.
1383  *
1384  * EMULTYPE_ALLOW_RETRY - Set when the emulator should resume the guest to
1385  *			  retry native execution under certain conditions.
1386  *
1387  * EMULTYPE_TRAP_UD_FORCED - Set when emulating an intercepted #UD that was
1388  *			     triggered by KVM's magic "force emulation" prefix,
1389  *			     which is opt in via module param (off by default).
1390  *			     Bypasses EmulateOnUD restriction despite emulating
1391  *			     due to an intercepted #UD (see EMULTYPE_TRAP_UD).
1392  *			     Used to test the full emulator from userspace.
1393  *
1394  * EMULTYPE_VMWARE_GP - Set when emulating an intercepted #GP for VMware
1395  *			backdoor emulation, which is opt in via module param.
1396  *			VMware backoor emulation handles select instructions
1397  *			and reinjects the #GP for all other cases.
1398  */
1399 #define EMULTYPE_NO_DECODE	    (1 << 0)
1400 #define EMULTYPE_TRAP_UD	    (1 << 1)
1401 #define EMULTYPE_SKIP		    (1 << 2)
1402 #define EMULTYPE_ALLOW_RETRY	    (1 << 3)
1403 #define EMULTYPE_TRAP_UD_FORCED	    (1 << 4)
1404 #define EMULTYPE_VMWARE_GP	    (1 << 5)
1405 int kvm_emulate_instruction(struct kvm_vcpu *vcpu, int emulation_type);
1406 int kvm_emulate_instruction_from_buffer(struct kvm_vcpu *vcpu,
1407 					void *insn, int insn_len);
1408 
1409 void kvm_enable_efer_bits(u64);
1410 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer);
1411 int __kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data, bool host_initiated);
1412 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data);
1413 int kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data);
1414 int kvm_emulate_rdmsr(struct kvm_vcpu *vcpu);
1415 int kvm_emulate_wrmsr(struct kvm_vcpu *vcpu);
1416 
1417 struct x86_emulate_ctxt;
1418 
1419 int kvm_fast_pio(struct kvm_vcpu *vcpu, int size, unsigned short port, int in);
1420 int kvm_emulate_cpuid(struct kvm_vcpu *vcpu);
1421 int kvm_emulate_halt(struct kvm_vcpu *vcpu);
1422 int kvm_vcpu_halt(struct kvm_vcpu *vcpu);
1423 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu);
1424 
1425 void kvm_get_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg);
1426 int kvm_load_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector, int seg);
1427 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector);
1428 
1429 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
1430 		    int reason, bool has_error_code, u32 error_code);
1431 
1432 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0);
1433 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3);
1434 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4);
1435 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8);
1436 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val);
1437 int kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val);
1438 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu);
1439 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw);
1440 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l);
1441 int kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr);
1442 
1443 int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr);
1444 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr);
1445 
1446 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu);
1447 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags);
1448 bool kvm_rdpmc(struct kvm_vcpu *vcpu);
1449 
1450 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr);
1451 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code);
1452 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr);
1453 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code);
1454 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault);
1455 int kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
1456 			    gfn_t gfn, void *data, int offset, int len,
1457 			    u32 access);
1458 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl);
1459 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr);
1460 
1461 static inline int __kvm_irq_line_state(unsigned long *irq_state,
1462 				       int irq_source_id, int level)
1463 {
1464 	/* Logical OR for level trig interrupt */
1465 	if (level)
1466 		__set_bit(irq_source_id, irq_state);
1467 	else
1468 		__clear_bit(irq_source_id, irq_state);
1469 
1470 	return !!(*irq_state);
1471 }
1472 
1473 #define KVM_MMU_ROOT_CURRENT		BIT(0)
1474 #define KVM_MMU_ROOT_PREVIOUS(i)	BIT(1+i)
1475 #define KVM_MMU_ROOTS_ALL		(~0UL)
1476 
1477 int kvm_pic_set_irq(struct kvm_pic *pic, int irq, int irq_source_id, int level);
1478 void kvm_pic_clear_all(struct kvm_pic *pic, int irq_source_id);
1479 
1480 void kvm_inject_nmi(struct kvm_vcpu *vcpu);
1481 
1482 int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn);
1483 int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva);
1484 void __kvm_mmu_free_some_pages(struct kvm_vcpu *vcpu);
1485 int kvm_mmu_load(struct kvm_vcpu *vcpu);
1486 void kvm_mmu_unload(struct kvm_vcpu *vcpu);
1487 void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu);
1488 void kvm_mmu_free_roots(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
1489 			ulong roots_to_free);
1490 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access,
1491 			   struct x86_exception *exception);
1492 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
1493 			      struct x86_exception *exception);
1494 gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva,
1495 			       struct x86_exception *exception);
1496 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
1497 			       struct x86_exception *exception);
1498 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
1499 				struct x86_exception *exception);
1500 
1501 bool kvm_apicv_activated(struct kvm *kvm);
1502 void kvm_apicv_init(struct kvm *kvm, bool enable);
1503 void kvm_vcpu_update_apicv(struct kvm_vcpu *vcpu);
1504 void kvm_request_apicv_update(struct kvm *kvm, bool activate,
1505 			      unsigned long bit);
1506 
1507 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu);
1508 
1509 int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, u64 error_code,
1510 		       void *insn, int insn_len);
1511 void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva);
1512 void kvm_mmu_invpcid_gva(struct kvm_vcpu *vcpu, gva_t gva, unsigned long pcid);
1513 void kvm_mmu_new_cr3(struct kvm_vcpu *vcpu, gpa_t new_cr3, bool skip_tlb_flush);
1514 
1515 void kvm_enable_tdp(void);
1516 void kvm_disable_tdp(void);
1517 
1518 static inline gpa_t translate_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access,
1519 				  struct x86_exception *exception)
1520 {
1521 	return gpa;
1522 }
1523 
1524 static inline struct kvm_mmu_page *page_header(hpa_t shadow_page)
1525 {
1526 	struct page *page = pfn_to_page(shadow_page >> PAGE_SHIFT);
1527 
1528 	return (struct kvm_mmu_page *)page_private(page);
1529 }
1530 
1531 static inline u16 kvm_read_ldt(void)
1532 {
1533 	u16 ldt;
1534 	asm("sldt %0" : "=g"(ldt));
1535 	return ldt;
1536 }
1537 
1538 static inline void kvm_load_ldt(u16 sel)
1539 {
1540 	asm("lldt %0" : : "rm"(sel));
1541 }
1542 
1543 #ifdef CONFIG_X86_64
1544 static inline unsigned long read_msr(unsigned long msr)
1545 {
1546 	u64 value;
1547 
1548 	rdmsrl(msr, value);
1549 	return value;
1550 }
1551 #endif
1552 
1553 static inline u32 get_rdx_init_val(void)
1554 {
1555 	return 0x600; /* P6 family */
1556 }
1557 
1558 static inline void kvm_inject_gp(struct kvm_vcpu *vcpu, u32 error_code)
1559 {
1560 	kvm_queue_exception_e(vcpu, GP_VECTOR, error_code);
1561 }
1562 
1563 #define TSS_IOPB_BASE_OFFSET 0x66
1564 #define TSS_BASE_SIZE 0x68
1565 #define TSS_IOPB_SIZE (65536 / 8)
1566 #define TSS_REDIRECTION_SIZE (256 / 8)
1567 #define RMODE_TSS_SIZE							\
1568 	(TSS_BASE_SIZE + TSS_REDIRECTION_SIZE + TSS_IOPB_SIZE + 1)
1569 
1570 enum {
1571 	TASK_SWITCH_CALL = 0,
1572 	TASK_SWITCH_IRET = 1,
1573 	TASK_SWITCH_JMP = 2,
1574 	TASK_SWITCH_GATE = 3,
1575 };
1576 
1577 #define HF_GIF_MASK		(1 << 0)
1578 #define HF_HIF_MASK		(1 << 1)
1579 #define HF_VINTR_MASK		(1 << 2)
1580 #define HF_NMI_MASK		(1 << 3)
1581 #define HF_IRET_MASK		(1 << 4)
1582 #define HF_GUEST_MASK		(1 << 5) /* VCPU is in guest-mode */
1583 #define HF_SMM_MASK		(1 << 6)
1584 #define HF_SMM_INSIDE_NMI_MASK	(1 << 7)
1585 
1586 #define __KVM_VCPU_MULTIPLE_ADDRESS_SPACE
1587 #define KVM_ADDRESS_SPACE_NUM 2
1588 
1589 #define kvm_arch_vcpu_memslots_id(vcpu) ((vcpu)->arch.hflags & HF_SMM_MASK ? 1 : 0)
1590 #define kvm_memslots_for_spte_role(kvm, role) __kvm_memslots(kvm, (role).smm)
1591 
1592 asmlinkage void kvm_spurious_fault(void);
1593 
1594 /*
1595  * Hardware virtualization extension instructions may fault if a
1596  * reboot turns off virtualization while processes are running.
1597  * Usually after catching the fault we just panic; during reboot
1598  * instead the instruction is ignored.
1599  */
1600 #define __kvm_handle_fault_on_reboot(insn)				\
1601 	"666: \n\t"							\
1602 	insn "\n\t"							\
1603 	"jmp	668f \n\t"						\
1604 	"667: \n\t"							\
1605 	"call	kvm_spurious_fault \n\t"				\
1606 	"668: \n\t"							\
1607 	_ASM_EXTABLE(666b, 667b)
1608 
1609 #define KVM_ARCH_WANT_MMU_NOTIFIER
1610 int kvm_unmap_hva_range(struct kvm *kvm, unsigned long start, unsigned long end);
1611 int kvm_age_hva(struct kvm *kvm, unsigned long start, unsigned long end);
1612 int kvm_test_age_hva(struct kvm *kvm, unsigned long hva);
1613 int kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte);
1614 int kvm_cpu_has_injectable_intr(struct kvm_vcpu *v);
1615 int kvm_cpu_has_interrupt(struct kvm_vcpu *vcpu);
1616 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu);
1617 int kvm_cpu_get_interrupt(struct kvm_vcpu *v);
1618 void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event);
1619 void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu);
1620 
1621 int kvm_pv_send_ipi(struct kvm *kvm, unsigned long ipi_bitmap_low,
1622 		    unsigned long ipi_bitmap_high, u32 min,
1623 		    unsigned long icr, int op_64_bit);
1624 
1625 void kvm_define_shared_msr(unsigned index, u32 msr);
1626 int kvm_set_shared_msr(unsigned index, u64 val, u64 mask);
1627 
1628 u64 kvm_scale_tsc(struct kvm_vcpu *vcpu, u64 tsc);
1629 u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc);
1630 
1631 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu);
1632 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip);
1633 
1634 void kvm_make_mclock_inprogress_request(struct kvm *kvm);
1635 void kvm_make_scan_ioapic_request(struct kvm *kvm);
1636 void kvm_make_scan_ioapic_request_mask(struct kvm *kvm,
1637 				       unsigned long *vcpu_bitmap);
1638 
1639 void kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
1640 				     struct kvm_async_pf *work);
1641 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
1642 				 struct kvm_async_pf *work);
1643 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu,
1644 			       struct kvm_async_pf *work);
1645 bool kvm_arch_can_inject_async_page_present(struct kvm_vcpu *vcpu);
1646 extern bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn);
1647 
1648 int kvm_skip_emulated_instruction(struct kvm_vcpu *vcpu);
1649 int kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err);
1650 void __kvm_request_immediate_exit(struct kvm_vcpu *vcpu);
1651 
1652 int kvm_is_in_guest(void);
1653 
1654 int __x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, u32 size);
1655 bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu);
1656 bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu);
1657 
1658 bool kvm_intr_is_single_vcpu(struct kvm *kvm, struct kvm_lapic_irq *irq,
1659 			     struct kvm_vcpu **dest_vcpu);
1660 
1661 void kvm_set_msi_irq(struct kvm *kvm, struct kvm_kernel_irq_routing_entry *e,
1662 		     struct kvm_lapic_irq *irq);
1663 
1664 static inline bool kvm_irq_is_postable(struct kvm_lapic_irq *irq)
1665 {
1666 	/* We can only post Fixed and LowPrio IRQs */
1667 	return (irq->delivery_mode == dest_Fixed ||
1668 		irq->delivery_mode == dest_LowestPrio);
1669 }
1670 
1671 static inline void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu)
1672 {
1673 	if (kvm_x86_ops->vcpu_blocking)
1674 		kvm_x86_ops->vcpu_blocking(vcpu);
1675 }
1676 
1677 static inline void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu)
1678 {
1679 	if (kvm_x86_ops->vcpu_unblocking)
1680 		kvm_x86_ops->vcpu_unblocking(vcpu);
1681 }
1682 
1683 static inline void kvm_arch_vcpu_block_finish(struct kvm_vcpu *vcpu) {}
1684 
1685 static inline int kvm_cpu_get_apicid(int mps_cpu)
1686 {
1687 #ifdef CONFIG_X86_LOCAL_APIC
1688 	return default_cpu_present_to_apicid(mps_cpu);
1689 #else
1690 	WARN_ON_ONCE(1);
1691 	return BAD_APICID;
1692 #endif
1693 }
1694 
1695 #define put_smstate(type, buf, offset, val)                      \
1696 	*(type *)((buf) + (offset) - 0x7e00) = val
1697 
1698 #define GET_SMSTATE(type, buf, offset)		\
1699 	(*(type *)((buf) + (offset) - 0x7e00))
1700 
1701 #endif /* _ASM_X86_KVM_HOST_H */
1702