1 /* SPDX-License-Identifier: GPL-2.0-only */ 2 /* 3 * Kernel-based Virtual Machine driver for Linux 4 * 5 * This header defines architecture specific interfaces, x86 version 6 */ 7 8 #ifndef _ASM_X86_KVM_HOST_H 9 #define _ASM_X86_KVM_HOST_H 10 11 #include <linux/types.h> 12 #include <linux/mm.h> 13 #include <linux/mmu_notifier.h> 14 #include <linux/tracepoint.h> 15 #include <linux/cpumask.h> 16 #include <linux/irq_work.h> 17 #include <linux/irq.h> 18 #include <linux/workqueue.h> 19 20 #include <linux/kvm.h> 21 #include <linux/kvm_para.h> 22 #include <linux/kvm_types.h> 23 #include <linux/perf_event.h> 24 #include <linux/pvclock_gtod.h> 25 #include <linux/clocksource.h> 26 #include <linux/irqbypass.h> 27 #include <linux/hyperv.h> 28 #include <linux/kfifo.h> 29 30 #include <asm/apic.h> 31 #include <asm/pvclock-abi.h> 32 #include <asm/desc.h> 33 #include <asm/mtrr.h> 34 #include <asm/msr-index.h> 35 #include <asm/asm.h> 36 #include <asm/kvm_page_track.h> 37 #include <asm/kvm_vcpu_regs.h> 38 #include <asm/hyperv-tlfs.h> 39 40 #define __KVM_HAVE_ARCH_VCPU_DEBUGFS 41 42 #define KVM_MAX_VCPUS 1024 43 44 /* 45 * In x86, the VCPU ID corresponds to the APIC ID, and APIC IDs 46 * might be larger than the actual number of VCPUs because the 47 * APIC ID encodes CPU topology information. 48 * 49 * In the worst case, we'll need less than one extra bit for the 50 * Core ID, and less than one extra bit for the Package (Die) ID, 51 * so ratio of 4 should be enough. 52 */ 53 #define KVM_VCPU_ID_RATIO 4 54 #define KVM_MAX_VCPU_IDS (KVM_MAX_VCPUS * KVM_VCPU_ID_RATIO) 55 56 /* memory slots that are not exposed to userspace */ 57 #define KVM_INTERNAL_MEM_SLOTS 3 58 59 #define KVM_HALT_POLL_NS_DEFAULT 200000 60 61 #define KVM_IRQCHIP_NUM_PINS KVM_IOAPIC_NUM_PINS 62 63 #define KVM_DIRTY_LOG_MANUAL_CAPS (KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE | \ 64 KVM_DIRTY_LOG_INITIALLY_SET) 65 66 #define KVM_BUS_LOCK_DETECTION_VALID_MODE (KVM_BUS_LOCK_DETECTION_OFF | \ 67 KVM_BUS_LOCK_DETECTION_EXIT) 68 69 #define KVM_X86_NOTIFY_VMEXIT_VALID_BITS (KVM_X86_NOTIFY_VMEXIT_ENABLED | \ 70 KVM_X86_NOTIFY_VMEXIT_USER) 71 72 /* x86-specific vcpu->requests bit members */ 73 #define KVM_REQ_MIGRATE_TIMER KVM_ARCH_REQ(0) 74 #define KVM_REQ_REPORT_TPR_ACCESS KVM_ARCH_REQ(1) 75 #define KVM_REQ_TRIPLE_FAULT KVM_ARCH_REQ(2) 76 #define KVM_REQ_MMU_SYNC KVM_ARCH_REQ(3) 77 #define KVM_REQ_CLOCK_UPDATE KVM_ARCH_REQ(4) 78 #define KVM_REQ_LOAD_MMU_PGD KVM_ARCH_REQ(5) 79 #define KVM_REQ_EVENT KVM_ARCH_REQ(6) 80 #define KVM_REQ_APF_HALT KVM_ARCH_REQ(7) 81 #define KVM_REQ_STEAL_UPDATE KVM_ARCH_REQ(8) 82 #define KVM_REQ_NMI KVM_ARCH_REQ(9) 83 #define KVM_REQ_PMU KVM_ARCH_REQ(10) 84 #define KVM_REQ_PMI KVM_ARCH_REQ(11) 85 #ifdef CONFIG_KVM_SMM 86 #define KVM_REQ_SMI KVM_ARCH_REQ(12) 87 #endif 88 #define KVM_REQ_MASTERCLOCK_UPDATE KVM_ARCH_REQ(13) 89 #define KVM_REQ_MCLOCK_INPROGRESS \ 90 KVM_ARCH_REQ_FLAGS(14, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP) 91 #define KVM_REQ_SCAN_IOAPIC \ 92 KVM_ARCH_REQ_FLAGS(15, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP) 93 #define KVM_REQ_GLOBAL_CLOCK_UPDATE KVM_ARCH_REQ(16) 94 #define KVM_REQ_APIC_PAGE_RELOAD \ 95 KVM_ARCH_REQ_FLAGS(17, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP) 96 #define KVM_REQ_HV_CRASH KVM_ARCH_REQ(18) 97 #define KVM_REQ_IOAPIC_EOI_EXIT KVM_ARCH_REQ(19) 98 #define KVM_REQ_HV_RESET KVM_ARCH_REQ(20) 99 #define KVM_REQ_HV_EXIT KVM_ARCH_REQ(21) 100 #define KVM_REQ_HV_STIMER KVM_ARCH_REQ(22) 101 #define KVM_REQ_LOAD_EOI_EXITMAP KVM_ARCH_REQ(23) 102 #define KVM_REQ_GET_NESTED_STATE_PAGES KVM_ARCH_REQ(24) 103 #define KVM_REQ_APICV_UPDATE \ 104 KVM_ARCH_REQ_FLAGS(25, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP) 105 #define KVM_REQ_TLB_FLUSH_CURRENT KVM_ARCH_REQ(26) 106 #define KVM_REQ_TLB_FLUSH_GUEST \ 107 KVM_ARCH_REQ_FLAGS(27, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP) 108 #define KVM_REQ_APF_READY KVM_ARCH_REQ(28) 109 #define KVM_REQ_MSR_FILTER_CHANGED KVM_ARCH_REQ(29) 110 #define KVM_REQ_UPDATE_CPU_DIRTY_LOGGING \ 111 KVM_ARCH_REQ_FLAGS(30, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP) 112 #define KVM_REQ_MMU_FREE_OBSOLETE_ROOTS \ 113 KVM_ARCH_REQ_FLAGS(31, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP) 114 #define KVM_REQ_HV_TLB_FLUSH \ 115 KVM_ARCH_REQ_FLAGS(32, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP) 116 117 #define CR0_RESERVED_BITS \ 118 (~(unsigned long)(X86_CR0_PE | X86_CR0_MP | X86_CR0_EM | X86_CR0_TS \ 119 | X86_CR0_ET | X86_CR0_NE | X86_CR0_WP | X86_CR0_AM \ 120 | X86_CR0_NW | X86_CR0_CD | X86_CR0_PG)) 121 122 #define CR4_RESERVED_BITS \ 123 (~(unsigned long)(X86_CR4_VME | X86_CR4_PVI | X86_CR4_TSD | X86_CR4_DE\ 124 | X86_CR4_PSE | X86_CR4_PAE | X86_CR4_MCE \ 125 | X86_CR4_PGE | X86_CR4_PCE | X86_CR4_OSFXSR | X86_CR4_PCIDE \ 126 | X86_CR4_OSXSAVE | X86_CR4_SMEP | X86_CR4_FSGSBASE \ 127 | X86_CR4_OSXMMEXCPT | X86_CR4_LA57 | X86_CR4_VMXE \ 128 | X86_CR4_SMAP | X86_CR4_PKE | X86_CR4_UMIP)) 129 130 #define CR8_RESERVED_BITS (~(unsigned long)X86_CR8_TPR) 131 132 133 134 #define INVALID_PAGE (~(hpa_t)0) 135 #define VALID_PAGE(x) ((x) != INVALID_PAGE) 136 137 #define INVALID_GPA (~(gpa_t)0) 138 139 /* KVM Hugepage definitions for x86 */ 140 #define KVM_MAX_HUGEPAGE_LEVEL PG_LEVEL_1G 141 #define KVM_NR_PAGE_SIZES (KVM_MAX_HUGEPAGE_LEVEL - PG_LEVEL_4K + 1) 142 #define KVM_HPAGE_GFN_SHIFT(x) (((x) - 1) * 9) 143 #define KVM_HPAGE_SHIFT(x) (PAGE_SHIFT + KVM_HPAGE_GFN_SHIFT(x)) 144 #define KVM_HPAGE_SIZE(x) (1UL << KVM_HPAGE_SHIFT(x)) 145 #define KVM_HPAGE_MASK(x) (~(KVM_HPAGE_SIZE(x) - 1)) 146 #define KVM_PAGES_PER_HPAGE(x) (KVM_HPAGE_SIZE(x) / PAGE_SIZE) 147 148 #define KVM_MEMSLOT_PAGES_TO_MMU_PAGES_RATIO 50 149 #define KVM_MIN_ALLOC_MMU_PAGES 64UL 150 #define KVM_MMU_HASH_SHIFT 12 151 #define KVM_NUM_MMU_PAGES (1 << KVM_MMU_HASH_SHIFT) 152 #define KVM_MIN_FREE_MMU_PAGES 5 153 #define KVM_REFILL_PAGES 25 154 #define KVM_MAX_CPUID_ENTRIES 256 155 #define KVM_NR_FIXED_MTRR_REGION 88 156 #define KVM_NR_VAR_MTRR 8 157 158 #define ASYNC_PF_PER_VCPU 64 159 160 enum kvm_reg { 161 VCPU_REGS_RAX = __VCPU_REGS_RAX, 162 VCPU_REGS_RCX = __VCPU_REGS_RCX, 163 VCPU_REGS_RDX = __VCPU_REGS_RDX, 164 VCPU_REGS_RBX = __VCPU_REGS_RBX, 165 VCPU_REGS_RSP = __VCPU_REGS_RSP, 166 VCPU_REGS_RBP = __VCPU_REGS_RBP, 167 VCPU_REGS_RSI = __VCPU_REGS_RSI, 168 VCPU_REGS_RDI = __VCPU_REGS_RDI, 169 #ifdef CONFIG_X86_64 170 VCPU_REGS_R8 = __VCPU_REGS_R8, 171 VCPU_REGS_R9 = __VCPU_REGS_R9, 172 VCPU_REGS_R10 = __VCPU_REGS_R10, 173 VCPU_REGS_R11 = __VCPU_REGS_R11, 174 VCPU_REGS_R12 = __VCPU_REGS_R12, 175 VCPU_REGS_R13 = __VCPU_REGS_R13, 176 VCPU_REGS_R14 = __VCPU_REGS_R14, 177 VCPU_REGS_R15 = __VCPU_REGS_R15, 178 #endif 179 VCPU_REGS_RIP, 180 NR_VCPU_REGS, 181 182 VCPU_EXREG_PDPTR = NR_VCPU_REGS, 183 VCPU_EXREG_CR0, 184 VCPU_EXREG_CR3, 185 VCPU_EXREG_CR4, 186 VCPU_EXREG_RFLAGS, 187 VCPU_EXREG_SEGMENTS, 188 VCPU_EXREG_EXIT_INFO_1, 189 VCPU_EXREG_EXIT_INFO_2, 190 }; 191 192 enum { 193 VCPU_SREG_ES, 194 VCPU_SREG_CS, 195 VCPU_SREG_SS, 196 VCPU_SREG_DS, 197 VCPU_SREG_FS, 198 VCPU_SREG_GS, 199 VCPU_SREG_TR, 200 VCPU_SREG_LDTR, 201 }; 202 203 enum exit_fastpath_completion { 204 EXIT_FASTPATH_NONE, 205 EXIT_FASTPATH_REENTER_GUEST, 206 EXIT_FASTPATH_EXIT_HANDLED, 207 }; 208 typedef enum exit_fastpath_completion fastpath_t; 209 210 struct x86_emulate_ctxt; 211 struct x86_exception; 212 union kvm_smram; 213 enum x86_intercept; 214 enum x86_intercept_stage; 215 216 #define KVM_NR_DB_REGS 4 217 218 #define DR6_BUS_LOCK (1 << 11) 219 #define DR6_BD (1 << 13) 220 #define DR6_BS (1 << 14) 221 #define DR6_BT (1 << 15) 222 #define DR6_RTM (1 << 16) 223 /* 224 * DR6_ACTIVE_LOW combines fixed-1 and active-low bits. 225 * We can regard all the bits in DR6_FIXED_1 as active_low bits; 226 * they will never be 0 for now, but when they are defined 227 * in the future it will require no code change. 228 * 229 * DR6_ACTIVE_LOW is also used as the init/reset value for DR6. 230 */ 231 #define DR6_ACTIVE_LOW 0xffff0ff0 232 #define DR6_VOLATILE 0x0001e80f 233 #define DR6_FIXED_1 (DR6_ACTIVE_LOW & ~DR6_VOLATILE) 234 235 #define DR7_BP_EN_MASK 0x000000ff 236 #define DR7_GE (1 << 9) 237 #define DR7_GD (1 << 13) 238 #define DR7_FIXED_1 0x00000400 239 #define DR7_VOLATILE 0xffff2bff 240 241 #define KVM_GUESTDBG_VALID_MASK \ 242 (KVM_GUESTDBG_ENABLE | \ 243 KVM_GUESTDBG_SINGLESTEP | \ 244 KVM_GUESTDBG_USE_HW_BP | \ 245 KVM_GUESTDBG_USE_SW_BP | \ 246 KVM_GUESTDBG_INJECT_BP | \ 247 KVM_GUESTDBG_INJECT_DB | \ 248 KVM_GUESTDBG_BLOCKIRQ) 249 250 251 #define PFERR_PRESENT_BIT 0 252 #define PFERR_WRITE_BIT 1 253 #define PFERR_USER_BIT 2 254 #define PFERR_RSVD_BIT 3 255 #define PFERR_FETCH_BIT 4 256 #define PFERR_PK_BIT 5 257 #define PFERR_SGX_BIT 15 258 #define PFERR_GUEST_FINAL_BIT 32 259 #define PFERR_GUEST_PAGE_BIT 33 260 #define PFERR_IMPLICIT_ACCESS_BIT 48 261 262 #define PFERR_PRESENT_MASK BIT(PFERR_PRESENT_BIT) 263 #define PFERR_WRITE_MASK BIT(PFERR_WRITE_BIT) 264 #define PFERR_USER_MASK BIT(PFERR_USER_BIT) 265 #define PFERR_RSVD_MASK BIT(PFERR_RSVD_BIT) 266 #define PFERR_FETCH_MASK BIT(PFERR_FETCH_BIT) 267 #define PFERR_PK_MASK BIT(PFERR_PK_BIT) 268 #define PFERR_SGX_MASK BIT(PFERR_SGX_BIT) 269 #define PFERR_GUEST_FINAL_MASK BIT_ULL(PFERR_GUEST_FINAL_BIT) 270 #define PFERR_GUEST_PAGE_MASK BIT_ULL(PFERR_GUEST_PAGE_BIT) 271 #define PFERR_IMPLICIT_ACCESS BIT_ULL(PFERR_IMPLICIT_ACCESS_BIT) 272 273 #define PFERR_NESTED_GUEST_PAGE (PFERR_GUEST_PAGE_MASK | \ 274 PFERR_WRITE_MASK | \ 275 PFERR_PRESENT_MASK) 276 277 /* apic attention bits */ 278 #define KVM_APIC_CHECK_VAPIC 0 279 /* 280 * The following bit is set with PV-EOI, unset on EOI. 281 * We detect PV-EOI changes by guest by comparing 282 * this bit with PV-EOI in guest memory. 283 * See the implementation in apic_update_pv_eoi. 284 */ 285 #define KVM_APIC_PV_EOI_PENDING 1 286 287 struct kvm_kernel_irq_routing_entry; 288 289 /* 290 * kvm_mmu_page_role tracks the properties of a shadow page (where shadow page 291 * also includes TDP pages) to determine whether or not a page can be used in 292 * the given MMU context. This is a subset of the overall kvm_cpu_role to 293 * minimize the size of kvm_memory_slot.arch.gfn_track, i.e. allows allocating 294 * 2 bytes per gfn instead of 4 bytes per gfn. 295 * 296 * Upper-level shadow pages having gptes are tracked for write-protection via 297 * gfn_track. As above, gfn_track is a 16 bit counter, so KVM must not create 298 * more than 2^16-1 upper-level shadow pages at a single gfn, otherwise 299 * gfn_track will overflow and explosions will ensure. 300 * 301 * A unique shadow page (SP) for a gfn is created if and only if an existing SP 302 * cannot be reused. The ability to reuse a SP is tracked by its role, which 303 * incorporates various mode bits and properties of the SP. Roughly speaking, 304 * the number of unique SPs that can theoretically be created is 2^n, where n 305 * is the number of bits that are used to compute the role. 306 * 307 * But, even though there are 19 bits in the mask below, not all combinations 308 * of modes and flags are possible: 309 * 310 * - invalid shadow pages are not accounted, so the bits are effectively 18 311 * 312 * - quadrant will only be used if has_4_byte_gpte=1 (non-PAE paging); 313 * execonly and ad_disabled are only used for nested EPT which has 314 * has_4_byte_gpte=0. Therefore, 2 bits are always unused. 315 * 316 * - the 4 bits of level are effectively limited to the values 2/3/4/5, 317 * as 4k SPs are not tracked (allowed to go unsync). In addition non-PAE 318 * paging has exactly one upper level, making level completely redundant 319 * when has_4_byte_gpte=1. 320 * 321 * - on top of this, smep_andnot_wp and smap_andnot_wp are only set if 322 * cr0_wp=0, therefore these three bits only give rise to 5 possibilities. 323 * 324 * Therefore, the maximum number of possible upper-level shadow pages for a 325 * single gfn is a bit less than 2^13. 326 */ 327 union kvm_mmu_page_role { 328 u32 word; 329 struct { 330 unsigned level:4; 331 unsigned has_4_byte_gpte:1; 332 unsigned quadrant:2; 333 unsigned direct:1; 334 unsigned access:3; 335 unsigned invalid:1; 336 unsigned efer_nx:1; 337 unsigned cr0_wp:1; 338 unsigned smep_andnot_wp:1; 339 unsigned smap_andnot_wp:1; 340 unsigned ad_disabled:1; 341 unsigned guest_mode:1; 342 unsigned passthrough:1; 343 unsigned :5; 344 345 /* 346 * This is left at the top of the word so that 347 * kvm_memslots_for_spte_role can extract it with a 348 * simple shift. While there is room, give it a whole 349 * byte so it is also faster to load it from memory. 350 */ 351 unsigned smm:8; 352 }; 353 }; 354 355 /* 356 * kvm_mmu_extended_role complements kvm_mmu_page_role, tracking properties 357 * relevant to the current MMU configuration. When loading CR0, CR4, or EFER, 358 * including on nested transitions, if nothing in the full role changes then 359 * MMU re-configuration can be skipped. @valid bit is set on first usage so we 360 * don't treat all-zero structure as valid data. 361 * 362 * The properties that are tracked in the extended role but not the page role 363 * are for things that either (a) do not affect the validity of the shadow page 364 * or (b) are indirectly reflected in the shadow page's role. For example, 365 * CR4.PKE only affects permission checks for software walks of the guest page 366 * tables (because KVM doesn't support Protection Keys with shadow paging), and 367 * CR0.PG, CR4.PAE, and CR4.PSE are indirectly reflected in role.level. 368 * 369 * Note, SMEP and SMAP are not redundant with sm*p_andnot_wp in the page role. 370 * If CR0.WP=1, KVM can reuse shadow pages for the guest regardless of SMEP and 371 * SMAP, but the MMU's permission checks for software walks need to be SMEP and 372 * SMAP aware regardless of CR0.WP. 373 */ 374 union kvm_mmu_extended_role { 375 u32 word; 376 struct { 377 unsigned int valid:1; 378 unsigned int execonly:1; 379 unsigned int cr4_pse:1; 380 unsigned int cr4_pke:1; 381 unsigned int cr4_smap:1; 382 unsigned int cr4_smep:1; 383 unsigned int cr4_la57:1; 384 unsigned int efer_lma:1; 385 }; 386 }; 387 388 union kvm_cpu_role { 389 u64 as_u64; 390 struct { 391 union kvm_mmu_page_role base; 392 union kvm_mmu_extended_role ext; 393 }; 394 }; 395 396 struct kvm_rmap_head { 397 unsigned long val; 398 }; 399 400 struct kvm_pio_request { 401 unsigned long linear_rip; 402 unsigned long count; 403 int in; 404 int port; 405 int size; 406 }; 407 408 #define PT64_ROOT_MAX_LEVEL 5 409 410 struct rsvd_bits_validate { 411 u64 rsvd_bits_mask[2][PT64_ROOT_MAX_LEVEL]; 412 u64 bad_mt_xwr; 413 }; 414 415 struct kvm_mmu_root_info { 416 gpa_t pgd; 417 hpa_t hpa; 418 }; 419 420 #define KVM_MMU_ROOT_INFO_INVALID \ 421 ((struct kvm_mmu_root_info) { .pgd = INVALID_PAGE, .hpa = INVALID_PAGE }) 422 423 #define KVM_MMU_NUM_PREV_ROOTS 3 424 425 #define KVM_HAVE_MMU_RWLOCK 426 427 struct kvm_mmu_page; 428 struct kvm_page_fault; 429 430 /* 431 * x86 supports 4 paging modes (5-level 64-bit, 4-level 64-bit, 3-level 32-bit, 432 * and 2-level 32-bit). The kvm_mmu structure abstracts the details of the 433 * current mmu mode. 434 */ 435 struct kvm_mmu { 436 unsigned long (*get_guest_pgd)(struct kvm_vcpu *vcpu); 437 u64 (*get_pdptr)(struct kvm_vcpu *vcpu, int index); 438 int (*page_fault)(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault); 439 void (*inject_page_fault)(struct kvm_vcpu *vcpu, 440 struct x86_exception *fault); 441 gpa_t (*gva_to_gpa)(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, 442 gpa_t gva_or_gpa, u64 access, 443 struct x86_exception *exception); 444 int (*sync_page)(struct kvm_vcpu *vcpu, 445 struct kvm_mmu_page *sp); 446 void (*invlpg)(struct kvm_vcpu *vcpu, gva_t gva, hpa_t root_hpa); 447 struct kvm_mmu_root_info root; 448 union kvm_cpu_role cpu_role; 449 union kvm_mmu_page_role root_role; 450 451 /* 452 * The pkru_mask indicates if protection key checks are needed. It 453 * consists of 16 domains indexed by page fault error code bits [4:1], 454 * with PFEC.RSVD replaced by ACC_USER_MASK from the page tables. 455 * Each domain has 2 bits which are ANDed with AD and WD from PKRU. 456 */ 457 u32 pkru_mask; 458 459 struct kvm_mmu_root_info prev_roots[KVM_MMU_NUM_PREV_ROOTS]; 460 461 /* 462 * Bitmap; bit set = permission fault 463 * Byte index: page fault error code [4:1] 464 * Bit index: pte permissions in ACC_* format 465 */ 466 u8 permissions[16]; 467 468 u64 *pae_root; 469 u64 *pml4_root; 470 u64 *pml5_root; 471 472 /* 473 * check zero bits on shadow page table entries, these 474 * bits include not only hardware reserved bits but also 475 * the bits spte never used. 476 */ 477 struct rsvd_bits_validate shadow_zero_check; 478 479 struct rsvd_bits_validate guest_rsvd_check; 480 481 u64 pdptrs[4]; /* pae */ 482 }; 483 484 struct kvm_tlb_range { 485 u64 start_gfn; 486 u64 pages; 487 }; 488 489 enum pmc_type { 490 KVM_PMC_GP = 0, 491 KVM_PMC_FIXED, 492 }; 493 494 struct kvm_pmc { 495 enum pmc_type type; 496 u8 idx; 497 bool is_paused; 498 bool intr; 499 u64 counter; 500 u64 prev_counter; 501 u64 eventsel; 502 struct perf_event *perf_event; 503 struct kvm_vcpu *vcpu; 504 /* 505 * only for creating or reusing perf_event, 506 * eventsel value for general purpose counters, 507 * ctrl value for fixed counters. 508 */ 509 u64 current_config; 510 }; 511 512 /* More counters may conflict with other existing Architectural MSRs */ 513 #define KVM_INTEL_PMC_MAX_GENERIC 8 514 #define MSR_ARCH_PERFMON_PERFCTR_MAX (MSR_ARCH_PERFMON_PERFCTR0 + KVM_INTEL_PMC_MAX_GENERIC - 1) 515 #define MSR_ARCH_PERFMON_EVENTSEL_MAX (MSR_ARCH_PERFMON_EVENTSEL0 + KVM_INTEL_PMC_MAX_GENERIC - 1) 516 #define KVM_PMC_MAX_FIXED 3 517 #define KVM_AMD_PMC_MAX_GENERIC 6 518 struct kvm_pmu { 519 unsigned nr_arch_gp_counters; 520 unsigned nr_arch_fixed_counters; 521 unsigned available_event_types; 522 u64 fixed_ctr_ctrl; 523 u64 fixed_ctr_ctrl_mask; 524 u64 global_ctrl; 525 u64 global_status; 526 u64 counter_bitmask[2]; 527 u64 global_ctrl_mask; 528 u64 global_ovf_ctrl_mask; 529 u64 reserved_bits; 530 u64 raw_event_mask; 531 u8 version; 532 struct kvm_pmc gp_counters[KVM_INTEL_PMC_MAX_GENERIC]; 533 struct kvm_pmc fixed_counters[KVM_PMC_MAX_FIXED]; 534 struct irq_work irq_work; 535 536 /* 537 * Overlay the bitmap with a 64-bit atomic so that all bits can be 538 * set in a single access, e.g. to reprogram all counters when the PMU 539 * filter changes. 540 */ 541 union { 542 DECLARE_BITMAP(reprogram_pmi, X86_PMC_IDX_MAX); 543 atomic64_t __reprogram_pmi; 544 }; 545 DECLARE_BITMAP(all_valid_pmc_idx, X86_PMC_IDX_MAX); 546 DECLARE_BITMAP(pmc_in_use, X86_PMC_IDX_MAX); 547 548 u64 ds_area; 549 u64 pebs_enable; 550 u64 pebs_enable_mask; 551 u64 pebs_data_cfg; 552 u64 pebs_data_cfg_mask; 553 554 /* 555 * If a guest counter is cross-mapped to host counter with different 556 * index, its PEBS capability will be temporarily disabled. 557 * 558 * The user should make sure that this mask is updated 559 * after disabling interrupts and before perf_guest_get_msrs(); 560 */ 561 u64 host_cross_mapped_mask; 562 563 /* 564 * The gate to release perf_events not marked in 565 * pmc_in_use only once in a vcpu time slice. 566 */ 567 bool need_cleanup; 568 569 /* 570 * The total number of programmed perf_events and it helps to avoid 571 * redundant check before cleanup if guest don't use vPMU at all. 572 */ 573 u8 event_count; 574 }; 575 576 struct kvm_pmu_ops; 577 578 enum { 579 KVM_DEBUGREG_BP_ENABLED = 1, 580 KVM_DEBUGREG_WONT_EXIT = 2, 581 }; 582 583 struct kvm_mtrr_range { 584 u64 base; 585 u64 mask; 586 struct list_head node; 587 }; 588 589 struct kvm_mtrr { 590 struct kvm_mtrr_range var_ranges[KVM_NR_VAR_MTRR]; 591 mtrr_type fixed_ranges[KVM_NR_FIXED_MTRR_REGION]; 592 u64 deftype; 593 594 struct list_head head; 595 }; 596 597 /* Hyper-V SynIC timer */ 598 struct kvm_vcpu_hv_stimer { 599 struct hrtimer timer; 600 int index; 601 union hv_stimer_config config; 602 u64 count; 603 u64 exp_time; 604 struct hv_message msg; 605 bool msg_pending; 606 }; 607 608 /* Hyper-V synthetic interrupt controller (SynIC)*/ 609 struct kvm_vcpu_hv_synic { 610 u64 version; 611 u64 control; 612 u64 msg_page; 613 u64 evt_page; 614 atomic64_t sint[HV_SYNIC_SINT_COUNT]; 615 atomic_t sint_to_gsi[HV_SYNIC_SINT_COUNT]; 616 DECLARE_BITMAP(auto_eoi_bitmap, 256); 617 DECLARE_BITMAP(vec_bitmap, 256); 618 bool active; 619 bool dont_zero_synic_pages; 620 }; 621 622 /* The maximum number of entries on the TLB flush fifo. */ 623 #define KVM_HV_TLB_FLUSH_FIFO_SIZE (16) 624 /* 625 * Note: the following 'magic' entry is made up by KVM to avoid putting 626 * anything besides GVA on the TLB flush fifo. It is theoretically possible 627 * to observe a request to flush 4095 PFNs starting from 0xfffffffffffff000 628 * which will look identical. KVM's action to 'flush everything' instead of 629 * flushing these particular addresses is, however, fully legitimate as 630 * flushing more than requested is always OK. 631 */ 632 #define KVM_HV_TLB_FLUSHALL_ENTRY ((u64)-1) 633 634 enum hv_tlb_flush_fifos { 635 HV_L1_TLB_FLUSH_FIFO, 636 HV_L2_TLB_FLUSH_FIFO, 637 HV_NR_TLB_FLUSH_FIFOS, 638 }; 639 640 struct kvm_vcpu_hv_tlb_flush_fifo { 641 spinlock_t write_lock; 642 DECLARE_KFIFO(entries, u64, KVM_HV_TLB_FLUSH_FIFO_SIZE); 643 }; 644 645 /* Hyper-V per vcpu emulation context */ 646 struct kvm_vcpu_hv { 647 struct kvm_vcpu *vcpu; 648 u32 vp_index; 649 u64 hv_vapic; 650 s64 runtime_offset; 651 struct kvm_vcpu_hv_synic synic; 652 struct kvm_hyperv_exit exit; 653 struct kvm_vcpu_hv_stimer stimer[HV_SYNIC_STIMER_COUNT]; 654 DECLARE_BITMAP(stimer_pending_bitmap, HV_SYNIC_STIMER_COUNT); 655 bool enforce_cpuid; 656 struct { 657 u32 features_eax; /* HYPERV_CPUID_FEATURES.EAX */ 658 u32 features_ebx; /* HYPERV_CPUID_FEATURES.EBX */ 659 u32 features_edx; /* HYPERV_CPUID_FEATURES.EDX */ 660 u32 enlightenments_eax; /* HYPERV_CPUID_ENLIGHTMENT_INFO.EAX */ 661 u32 enlightenments_ebx; /* HYPERV_CPUID_ENLIGHTMENT_INFO.EBX */ 662 u32 syndbg_cap_eax; /* HYPERV_CPUID_SYNDBG_PLATFORM_CAPABILITIES.EAX */ 663 u32 nested_eax; /* HYPERV_CPUID_NESTED_FEATURES.EAX */ 664 u32 nested_ebx; /* HYPERV_CPUID_NESTED_FEATURES.EBX */ 665 } cpuid_cache; 666 667 struct kvm_vcpu_hv_tlb_flush_fifo tlb_flush_fifo[HV_NR_TLB_FLUSH_FIFOS]; 668 669 /* Preallocated buffer for handling hypercalls passing sparse vCPU set */ 670 u64 sparse_banks[HV_MAX_SPARSE_VCPU_BANKS]; 671 672 struct hv_vp_assist_page vp_assist_page; 673 674 struct { 675 u64 pa_page_gpa; 676 u64 vm_id; 677 u32 vp_id; 678 } nested; 679 }; 680 681 /* Xen HVM per vcpu emulation context */ 682 struct kvm_vcpu_xen { 683 u64 hypercall_rip; 684 u32 current_runstate; 685 u8 upcall_vector; 686 struct gfn_to_pfn_cache vcpu_info_cache; 687 struct gfn_to_pfn_cache vcpu_time_info_cache; 688 struct gfn_to_pfn_cache runstate_cache; 689 struct gfn_to_pfn_cache runstate2_cache; 690 u64 last_steal; 691 u64 runstate_entry_time; 692 u64 runstate_times[4]; 693 unsigned long evtchn_pending_sel; 694 u32 vcpu_id; /* The Xen / ACPI vCPU ID */ 695 u32 timer_virq; 696 u64 timer_expires; /* In guest epoch */ 697 atomic_t timer_pending; 698 struct hrtimer timer; 699 int poll_evtchn; 700 struct timer_list poll_timer; 701 }; 702 703 struct kvm_queued_exception { 704 bool pending; 705 bool injected; 706 bool has_error_code; 707 u8 vector; 708 u32 error_code; 709 unsigned long payload; 710 bool has_payload; 711 }; 712 713 struct kvm_vcpu_arch { 714 /* 715 * rip and regs accesses must go through 716 * kvm_{register,rip}_{read,write} functions. 717 */ 718 unsigned long regs[NR_VCPU_REGS]; 719 u32 regs_avail; 720 u32 regs_dirty; 721 722 unsigned long cr0; 723 unsigned long cr0_guest_owned_bits; 724 unsigned long cr2; 725 unsigned long cr3; 726 unsigned long cr4; 727 unsigned long cr4_guest_owned_bits; 728 unsigned long cr4_guest_rsvd_bits; 729 unsigned long cr8; 730 u32 host_pkru; 731 u32 pkru; 732 u32 hflags; 733 u64 efer; 734 u64 apic_base; 735 struct kvm_lapic *apic; /* kernel irqchip context */ 736 bool load_eoi_exitmap_pending; 737 DECLARE_BITMAP(ioapic_handled_vectors, 256); 738 unsigned long apic_attention; 739 int32_t apic_arb_prio; 740 int mp_state; 741 u64 ia32_misc_enable_msr; 742 u64 smbase; 743 u64 smi_count; 744 bool at_instruction_boundary; 745 bool tpr_access_reporting; 746 bool xsaves_enabled; 747 bool xfd_no_write_intercept; 748 u64 ia32_xss; 749 u64 microcode_version; 750 u64 arch_capabilities; 751 u64 perf_capabilities; 752 753 /* 754 * Paging state of the vcpu 755 * 756 * If the vcpu runs in guest mode with two level paging this still saves 757 * the paging mode of the l1 guest. This context is always used to 758 * handle faults. 759 */ 760 struct kvm_mmu *mmu; 761 762 /* Non-nested MMU for L1 */ 763 struct kvm_mmu root_mmu; 764 765 /* L1 MMU when running nested */ 766 struct kvm_mmu guest_mmu; 767 768 /* 769 * Paging state of an L2 guest (used for nested npt) 770 * 771 * This context will save all necessary information to walk page tables 772 * of an L2 guest. This context is only initialized for page table 773 * walking and not for faulting since we never handle l2 page faults on 774 * the host. 775 */ 776 struct kvm_mmu nested_mmu; 777 778 /* 779 * Pointer to the mmu context currently used for 780 * gva_to_gpa translations. 781 */ 782 struct kvm_mmu *walk_mmu; 783 784 struct kvm_mmu_memory_cache mmu_pte_list_desc_cache; 785 struct kvm_mmu_memory_cache mmu_shadow_page_cache; 786 struct kvm_mmu_memory_cache mmu_shadowed_info_cache; 787 struct kvm_mmu_memory_cache mmu_page_header_cache; 788 789 /* 790 * QEMU userspace and the guest each have their own FPU state. 791 * In vcpu_run, we switch between the user and guest FPU contexts. 792 * While running a VCPU, the VCPU thread will have the guest FPU 793 * context. 794 * 795 * Note that while the PKRU state lives inside the fpu registers, 796 * it is switched out separately at VMENTER and VMEXIT time. The 797 * "guest_fpstate" state here contains the guest FPU context, with the 798 * host PRKU bits. 799 */ 800 struct fpu_guest guest_fpu; 801 802 u64 xcr0; 803 u64 guest_supported_xcr0; 804 805 struct kvm_pio_request pio; 806 void *pio_data; 807 void *sev_pio_data; 808 unsigned sev_pio_count; 809 810 u8 event_exit_inst_len; 811 812 bool exception_from_userspace; 813 814 /* Exceptions to be injected to the guest. */ 815 struct kvm_queued_exception exception; 816 /* Exception VM-Exits to be synthesized to L1. */ 817 struct kvm_queued_exception exception_vmexit; 818 819 struct kvm_queued_interrupt { 820 bool injected; 821 bool soft; 822 u8 nr; 823 } interrupt; 824 825 int halt_request; /* real mode on Intel only */ 826 827 int cpuid_nent; 828 struct kvm_cpuid_entry2 *cpuid_entries; 829 u32 kvm_cpuid_base; 830 831 u64 reserved_gpa_bits; 832 int maxphyaddr; 833 834 /* emulate context */ 835 836 struct x86_emulate_ctxt *emulate_ctxt; 837 bool emulate_regs_need_sync_to_vcpu; 838 bool emulate_regs_need_sync_from_vcpu; 839 int (*complete_userspace_io)(struct kvm_vcpu *vcpu); 840 841 gpa_t time; 842 struct pvclock_vcpu_time_info hv_clock; 843 unsigned int hw_tsc_khz; 844 struct gfn_to_pfn_cache pv_time; 845 /* set guest stopped flag in pvclock flags field */ 846 bool pvclock_set_guest_stopped_request; 847 848 struct { 849 u8 preempted; 850 u64 msr_val; 851 u64 last_steal; 852 struct gfn_to_hva_cache cache; 853 } st; 854 855 u64 l1_tsc_offset; 856 u64 tsc_offset; /* current tsc offset */ 857 u64 last_guest_tsc; 858 u64 last_host_tsc; 859 u64 tsc_offset_adjustment; 860 u64 this_tsc_nsec; 861 u64 this_tsc_write; 862 u64 this_tsc_generation; 863 bool tsc_catchup; 864 bool tsc_always_catchup; 865 s8 virtual_tsc_shift; 866 u32 virtual_tsc_mult; 867 u32 virtual_tsc_khz; 868 s64 ia32_tsc_adjust_msr; 869 u64 msr_ia32_power_ctl; 870 u64 l1_tsc_scaling_ratio; 871 u64 tsc_scaling_ratio; /* current scaling ratio */ 872 873 atomic_t nmi_queued; /* unprocessed asynchronous NMIs */ 874 unsigned nmi_pending; /* NMI queued after currently running handler */ 875 bool nmi_injected; /* Trying to inject an NMI this entry */ 876 bool smi_pending; /* SMI queued after currently running handler */ 877 u8 handling_intr_from_guest; 878 879 struct kvm_mtrr mtrr_state; 880 u64 pat; 881 882 unsigned switch_db_regs; 883 unsigned long db[KVM_NR_DB_REGS]; 884 unsigned long dr6; 885 unsigned long dr7; 886 unsigned long eff_db[KVM_NR_DB_REGS]; 887 unsigned long guest_debug_dr7; 888 u64 msr_platform_info; 889 u64 msr_misc_features_enables; 890 891 u64 mcg_cap; 892 u64 mcg_status; 893 u64 mcg_ctl; 894 u64 mcg_ext_ctl; 895 u64 *mce_banks; 896 u64 *mci_ctl2_banks; 897 898 /* Cache MMIO info */ 899 u64 mmio_gva; 900 unsigned mmio_access; 901 gfn_t mmio_gfn; 902 u64 mmio_gen; 903 904 struct kvm_pmu pmu; 905 906 /* used for guest single stepping over the given code position */ 907 unsigned long singlestep_rip; 908 909 bool hyperv_enabled; 910 struct kvm_vcpu_hv *hyperv; 911 struct kvm_vcpu_xen xen; 912 913 cpumask_var_t wbinvd_dirty_mask; 914 915 unsigned long last_retry_eip; 916 unsigned long last_retry_addr; 917 918 struct { 919 bool halted; 920 gfn_t gfns[ASYNC_PF_PER_VCPU]; 921 struct gfn_to_hva_cache data; 922 u64 msr_en_val; /* MSR_KVM_ASYNC_PF_EN */ 923 u64 msr_int_val; /* MSR_KVM_ASYNC_PF_INT */ 924 u16 vec; 925 u32 id; 926 bool send_user_only; 927 u32 host_apf_flags; 928 bool delivery_as_pf_vmexit; 929 bool pageready_pending; 930 } apf; 931 932 /* OSVW MSRs (AMD only) */ 933 struct { 934 u64 length; 935 u64 status; 936 } osvw; 937 938 struct { 939 u64 msr_val; 940 struct gfn_to_hva_cache data; 941 } pv_eoi; 942 943 u64 msr_kvm_poll_control; 944 945 /* 946 * Indicates the guest is trying to write a gfn that contains one or 947 * more of the PTEs used to translate the write itself, i.e. the access 948 * is changing its own translation in the guest page tables. KVM exits 949 * to userspace if emulation of the faulting instruction fails and this 950 * flag is set, as KVM cannot make forward progress. 951 * 952 * If emulation fails for a write to guest page tables, KVM unprotects 953 * (zaps) the shadow page for the target gfn and resumes the guest to 954 * retry the non-emulatable instruction (on hardware). Unprotecting the 955 * gfn doesn't allow forward progress for a self-changing access because 956 * doing so also zaps the translation for the gfn, i.e. retrying the 957 * instruction will hit a !PRESENT fault, which results in a new shadow 958 * page and sends KVM back to square one. 959 */ 960 bool write_fault_to_shadow_pgtable; 961 962 /* set at EPT violation at this point */ 963 unsigned long exit_qualification; 964 965 /* pv related host specific info */ 966 struct { 967 bool pv_unhalted; 968 } pv; 969 970 int pending_ioapic_eoi; 971 int pending_external_vector; 972 973 /* be preempted when it's in kernel-mode(cpl=0) */ 974 bool preempted_in_kernel; 975 976 /* Flush the L1 Data cache for L1TF mitigation on VMENTER */ 977 bool l1tf_flush_l1d; 978 979 /* Host CPU on which VM-entry was most recently attempted */ 980 int last_vmentry_cpu; 981 982 /* AMD MSRC001_0015 Hardware Configuration */ 983 u64 msr_hwcr; 984 985 /* pv related cpuid info */ 986 struct { 987 /* 988 * value of the eax register in the KVM_CPUID_FEATURES CPUID 989 * leaf. 990 */ 991 u32 features; 992 993 /* 994 * indicates whether pv emulation should be disabled if features 995 * are not present in the guest's cpuid 996 */ 997 bool enforce; 998 } pv_cpuid; 999 1000 /* Protected Guests */ 1001 bool guest_state_protected; 1002 1003 /* 1004 * Set when PDPTS were loaded directly by the userspace without 1005 * reading the guest memory 1006 */ 1007 bool pdptrs_from_userspace; 1008 1009 #if IS_ENABLED(CONFIG_HYPERV) 1010 hpa_t hv_root_tdp; 1011 #endif 1012 }; 1013 1014 struct kvm_lpage_info { 1015 int disallow_lpage; 1016 }; 1017 1018 struct kvm_arch_memory_slot { 1019 struct kvm_rmap_head *rmap[KVM_NR_PAGE_SIZES]; 1020 struct kvm_lpage_info *lpage_info[KVM_NR_PAGE_SIZES - 1]; 1021 unsigned short *gfn_track[KVM_PAGE_TRACK_MAX]; 1022 }; 1023 1024 /* 1025 * We use as the mode the number of bits allocated in the LDR for the 1026 * logical processor ID. It happens that these are all powers of two. 1027 * This makes it is very easy to detect cases where the APICs are 1028 * configured for multiple modes; in that case, we cannot use the map and 1029 * hence cannot use kvm_irq_delivery_to_apic_fast either. 1030 */ 1031 #define KVM_APIC_MODE_XAPIC_CLUSTER 4 1032 #define KVM_APIC_MODE_XAPIC_FLAT 8 1033 #define KVM_APIC_MODE_X2APIC 16 1034 1035 struct kvm_apic_map { 1036 struct rcu_head rcu; 1037 u8 mode; 1038 u32 max_apic_id; 1039 union { 1040 struct kvm_lapic *xapic_flat_map[8]; 1041 struct kvm_lapic *xapic_cluster_map[16][4]; 1042 }; 1043 struct kvm_lapic *phys_map[]; 1044 }; 1045 1046 /* Hyper-V synthetic debugger (SynDbg)*/ 1047 struct kvm_hv_syndbg { 1048 struct { 1049 u64 control; 1050 u64 status; 1051 u64 send_page; 1052 u64 recv_page; 1053 u64 pending_page; 1054 } control; 1055 u64 options; 1056 }; 1057 1058 /* Current state of Hyper-V TSC page clocksource */ 1059 enum hv_tsc_page_status { 1060 /* TSC page was not set up or disabled */ 1061 HV_TSC_PAGE_UNSET = 0, 1062 /* TSC page MSR was written by the guest, update pending */ 1063 HV_TSC_PAGE_GUEST_CHANGED, 1064 /* TSC page update was triggered from the host side */ 1065 HV_TSC_PAGE_HOST_CHANGED, 1066 /* TSC page was properly set up and is currently active */ 1067 HV_TSC_PAGE_SET, 1068 /* TSC page was set up with an inaccessible GPA */ 1069 HV_TSC_PAGE_BROKEN, 1070 }; 1071 1072 /* Hyper-V emulation context */ 1073 struct kvm_hv { 1074 struct mutex hv_lock; 1075 u64 hv_guest_os_id; 1076 u64 hv_hypercall; 1077 u64 hv_tsc_page; 1078 enum hv_tsc_page_status hv_tsc_page_status; 1079 1080 /* Hyper-v based guest crash (NT kernel bugcheck) parameters */ 1081 u64 hv_crash_param[HV_X64_MSR_CRASH_PARAMS]; 1082 u64 hv_crash_ctl; 1083 1084 struct ms_hyperv_tsc_page tsc_ref; 1085 1086 struct idr conn_to_evt; 1087 1088 u64 hv_reenlightenment_control; 1089 u64 hv_tsc_emulation_control; 1090 u64 hv_tsc_emulation_status; 1091 1092 /* How many vCPUs have VP index != vCPU index */ 1093 atomic_t num_mismatched_vp_indexes; 1094 1095 /* 1096 * How many SynICs use 'AutoEOI' feature 1097 * (protected by arch.apicv_update_lock) 1098 */ 1099 unsigned int synic_auto_eoi_used; 1100 1101 struct hv_partition_assist_pg *hv_pa_pg; 1102 struct kvm_hv_syndbg hv_syndbg; 1103 }; 1104 1105 struct msr_bitmap_range { 1106 u32 flags; 1107 u32 nmsrs; 1108 u32 base; 1109 unsigned long *bitmap; 1110 }; 1111 1112 /* Xen emulation context */ 1113 struct kvm_xen { 1114 u32 xen_version; 1115 bool long_mode; 1116 bool runstate_update_flag; 1117 u8 upcall_vector; 1118 struct gfn_to_pfn_cache shinfo_cache; 1119 struct idr evtchn_ports; 1120 unsigned long poll_mask[BITS_TO_LONGS(KVM_MAX_VCPUS)]; 1121 }; 1122 1123 enum kvm_irqchip_mode { 1124 KVM_IRQCHIP_NONE, 1125 KVM_IRQCHIP_KERNEL, /* created with KVM_CREATE_IRQCHIP */ 1126 KVM_IRQCHIP_SPLIT, /* created with KVM_CAP_SPLIT_IRQCHIP */ 1127 }; 1128 1129 struct kvm_x86_msr_filter { 1130 u8 count; 1131 bool default_allow:1; 1132 struct msr_bitmap_range ranges[16]; 1133 }; 1134 1135 enum kvm_apicv_inhibit { 1136 1137 /********************************************************************/ 1138 /* INHIBITs that are relevant to both Intel's APICv and AMD's AVIC. */ 1139 /********************************************************************/ 1140 1141 /* 1142 * APIC acceleration is disabled by a module parameter 1143 * and/or not supported in hardware. 1144 */ 1145 APICV_INHIBIT_REASON_DISABLE, 1146 1147 /* 1148 * APIC acceleration is inhibited because AutoEOI feature is 1149 * being used by a HyperV guest. 1150 */ 1151 APICV_INHIBIT_REASON_HYPERV, 1152 1153 /* 1154 * APIC acceleration is inhibited because the userspace didn't yet 1155 * enable the kernel/split irqchip. 1156 */ 1157 APICV_INHIBIT_REASON_ABSENT, 1158 1159 /* APIC acceleration is inhibited because KVM_GUESTDBG_BLOCKIRQ 1160 * (out of band, debug measure of blocking all interrupts on this vCPU) 1161 * was enabled, to avoid AVIC/APICv bypassing it. 1162 */ 1163 APICV_INHIBIT_REASON_BLOCKIRQ, 1164 1165 /* 1166 * For simplicity, the APIC acceleration is inhibited 1167 * first time either APIC ID or APIC base are changed by the guest 1168 * from their reset values. 1169 */ 1170 APICV_INHIBIT_REASON_APIC_ID_MODIFIED, 1171 APICV_INHIBIT_REASON_APIC_BASE_MODIFIED, 1172 1173 /******************************************************/ 1174 /* INHIBITs that are relevant only to the AMD's AVIC. */ 1175 /******************************************************/ 1176 1177 /* 1178 * AVIC is inhibited on a vCPU because it runs a nested guest. 1179 * 1180 * This is needed because unlike APICv, the peers of this vCPU 1181 * cannot use the doorbell mechanism to signal interrupts via AVIC when 1182 * a vCPU runs nested. 1183 */ 1184 APICV_INHIBIT_REASON_NESTED, 1185 1186 /* 1187 * On SVM, the wait for the IRQ window is implemented with pending vIRQ, 1188 * which cannot be injected when the AVIC is enabled, thus AVIC 1189 * is inhibited while KVM waits for IRQ window. 1190 */ 1191 APICV_INHIBIT_REASON_IRQWIN, 1192 1193 /* 1194 * PIT (i8254) 're-inject' mode, relies on EOI intercept, 1195 * which AVIC doesn't support for edge triggered interrupts. 1196 */ 1197 APICV_INHIBIT_REASON_PIT_REINJ, 1198 1199 /* 1200 * AVIC is disabled because SEV doesn't support it. 1201 */ 1202 APICV_INHIBIT_REASON_SEV, 1203 }; 1204 1205 struct kvm_arch { 1206 unsigned long n_used_mmu_pages; 1207 unsigned long n_requested_mmu_pages; 1208 unsigned long n_max_mmu_pages; 1209 unsigned int indirect_shadow_pages; 1210 u8 mmu_valid_gen; 1211 struct hlist_head mmu_page_hash[KVM_NUM_MMU_PAGES]; 1212 struct list_head active_mmu_pages; 1213 struct list_head zapped_obsolete_pages; 1214 /* 1215 * A list of kvm_mmu_page structs that, if zapped, could possibly be 1216 * replaced by an NX huge page. A shadow page is on this list if its 1217 * existence disallows an NX huge page (nx_huge_page_disallowed is set) 1218 * and there are no other conditions that prevent a huge page, e.g. 1219 * the backing host page is huge, dirtly logging is not enabled for its 1220 * memslot, etc... Note, zapping shadow pages on this list doesn't 1221 * guarantee an NX huge page will be created in its stead, e.g. if the 1222 * guest attempts to execute from the region then KVM obviously can't 1223 * create an NX huge page (without hanging the guest). 1224 */ 1225 struct list_head possible_nx_huge_pages; 1226 struct kvm_page_track_notifier_node mmu_sp_tracker; 1227 struct kvm_page_track_notifier_head track_notifier_head; 1228 /* 1229 * Protects marking pages unsync during page faults, as TDP MMU page 1230 * faults only take mmu_lock for read. For simplicity, the unsync 1231 * pages lock is always taken when marking pages unsync regardless of 1232 * whether mmu_lock is held for read or write. 1233 */ 1234 spinlock_t mmu_unsync_pages_lock; 1235 1236 struct list_head assigned_dev_head; 1237 struct iommu_domain *iommu_domain; 1238 bool iommu_noncoherent; 1239 #define __KVM_HAVE_ARCH_NONCOHERENT_DMA 1240 atomic_t noncoherent_dma_count; 1241 #define __KVM_HAVE_ARCH_ASSIGNED_DEVICE 1242 atomic_t assigned_device_count; 1243 struct kvm_pic *vpic; 1244 struct kvm_ioapic *vioapic; 1245 struct kvm_pit *vpit; 1246 atomic_t vapics_in_nmi_mode; 1247 struct mutex apic_map_lock; 1248 struct kvm_apic_map __rcu *apic_map; 1249 atomic_t apic_map_dirty; 1250 1251 /* Protects apic_access_memslot_enabled and apicv_inhibit_reasons */ 1252 struct rw_semaphore apicv_update_lock; 1253 1254 bool apic_access_memslot_enabled; 1255 unsigned long apicv_inhibit_reasons; 1256 1257 gpa_t wall_clock; 1258 1259 bool mwait_in_guest; 1260 bool hlt_in_guest; 1261 bool pause_in_guest; 1262 bool cstate_in_guest; 1263 1264 unsigned long irq_sources_bitmap; 1265 s64 kvmclock_offset; 1266 1267 /* 1268 * This also protects nr_vcpus_matched_tsc which is read from a 1269 * preemption-disabled region, so it must be a raw spinlock. 1270 */ 1271 raw_spinlock_t tsc_write_lock; 1272 u64 last_tsc_nsec; 1273 u64 last_tsc_write; 1274 u32 last_tsc_khz; 1275 u64 last_tsc_offset; 1276 u64 cur_tsc_nsec; 1277 u64 cur_tsc_write; 1278 u64 cur_tsc_offset; 1279 u64 cur_tsc_generation; 1280 int nr_vcpus_matched_tsc; 1281 1282 u32 default_tsc_khz; 1283 1284 seqcount_raw_spinlock_t pvclock_sc; 1285 bool use_master_clock; 1286 u64 master_kernel_ns; 1287 u64 master_cycle_now; 1288 struct delayed_work kvmclock_update_work; 1289 struct delayed_work kvmclock_sync_work; 1290 1291 struct kvm_xen_hvm_config xen_hvm_config; 1292 1293 /* reads protected by irq_srcu, writes by irq_lock */ 1294 struct hlist_head mask_notifier_list; 1295 1296 struct kvm_hv hyperv; 1297 struct kvm_xen xen; 1298 1299 bool backwards_tsc_observed; 1300 bool boot_vcpu_runs_old_kvmclock; 1301 u32 bsp_vcpu_id; 1302 1303 u64 disabled_quirks; 1304 int cpu_dirty_logging_count; 1305 1306 enum kvm_irqchip_mode irqchip_mode; 1307 u8 nr_reserved_ioapic_pins; 1308 1309 bool disabled_lapic_found; 1310 1311 bool x2apic_format; 1312 bool x2apic_broadcast_quirk_disabled; 1313 1314 bool guest_can_read_msr_platform_info; 1315 bool exception_payload_enabled; 1316 1317 bool triple_fault_event; 1318 1319 bool bus_lock_detection_enabled; 1320 bool enable_pmu; 1321 1322 u32 notify_window; 1323 u32 notify_vmexit_flags; 1324 /* 1325 * If exit_on_emulation_error is set, and the in-kernel instruction 1326 * emulator fails to emulate an instruction, allow userspace 1327 * the opportunity to look at it. 1328 */ 1329 bool exit_on_emulation_error; 1330 1331 /* Deflect RDMSR and WRMSR to user space when they trigger a #GP */ 1332 u32 user_space_msr_mask; 1333 struct kvm_x86_msr_filter __rcu *msr_filter; 1334 1335 u32 hypercall_exit_enabled; 1336 1337 /* Guest can access the SGX PROVISIONKEY. */ 1338 bool sgx_provisioning_allowed; 1339 1340 struct kvm_pmu_event_filter __rcu *pmu_event_filter; 1341 struct task_struct *nx_huge_page_recovery_thread; 1342 1343 #ifdef CONFIG_X86_64 1344 /* 1345 * Whether the TDP MMU is enabled for this VM. This contains a 1346 * snapshot of the TDP MMU module parameter from when the VM was 1347 * created and remains unchanged for the life of the VM. If this is 1348 * true, TDP MMU handler functions will run for various MMU 1349 * operations. 1350 */ 1351 bool tdp_mmu_enabled; 1352 1353 /* The number of TDP MMU pages across all roots. */ 1354 atomic64_t tdp_mmu_pages; 1355 1356 /* 1357 * List of kvm_mmu_page structs being used as roots. 1358 * All kvm_mmu_page structs in the list should have 1359 * tdp_mmu_page set. 1360 * 1361 * For reads, this list is protected by: 1362 * the MMU lock in read mode + RCU or 1363 * the MMU lock in write mode 1364 * 1365 * For writes, this list is protected by: 1366 * the MMU lock in read mode + the tdp_mmu_pages_lock or 1367 * the MMU lock in write mode 1368 * 1369 * Roots will remain in the list until their tdp_mmu_root_count 1370 * drops to zero, at which point the thread that decremented the 1371 * count to zero should removed the root from the list and clean 1372 * it up, freeing the root after an RCU grace period. 1373 */ 1374 struct list_head tdp_mmu_roots; 1375 1376 /* 1377 * Protects accesses to the following fields when the MMU lock 1378 * is held in read mode: 1379 * - tdp_mmu_roots (above) 1380 * - the link field of kvm_mmu_page structs used by the TDP MMU 1381 * - possible_nx_huge_pages; 1382 * - the possible_nx_huge_page_link field of kvm_mmu_page structs used 1383 * by the TDP MMU 1384 * It is acceptable, but not necessary, to acquire this lock when 1385 * the thread holds the MMU lock in write mode. 1386 */ 1387 spinlock_t tdp_mmu_pages_lock; 1388 struct workqueue_struct *tdp_mmu_zap_wq; 1389 #endif /* CONFIG_X86_64 */ 1390 1391 /* 1392 * If set, at least one shadow root has been allocated. This flag 1393 * is used as one input when determining whether certain memslot 1394 * related allocations are necessary. 1395 */ 1396 bool shadow_root_allocated; 1397 1398 #if IS_ENABLED(CONFIG_HYPERV) 1399 hpa_t hv_root_tdp; 1400 spinlock_t hv_root_tdp_lock; 1401 #endif 1402 /* 1403 * VM-scope maximum vCPU ID. Used to determine the size of structures 1404 * that increase along with the maximum vCPU ID, in which case, using 1405 * the global KVM_MAX_VCPU_IDS may lead to significant memory waste. 1406 */ 1407 u32 max_vcpu_ids; 1408 1409 bool disable_nx_huge_pages; 1410 1411 /* 1412 * Memory caches used to allocate shadow pages when performing eager 1413 * page splitting. No need for a shadowed_info_cache since eager page 1414 * splitting only allocates direct shadow pages. 1415 * 1416 * Protected by kvm->slots_lock. 1417 */ 1418 struct kvm_mmu_memory_cache split_shadow_page_cache; 1419 struct kvm_mmu_memory_cache split_page_header_cache; 1420 1421 /* 1422 * Memory cache used to allocate pte_list_desc structs while splitting 1423 * huge pages. In the worst case, to split one huge page, 512 1424 * pte_list_desc structs are needed to add each lower level leaf sptep 1425 * to the rmap plus 1 to extend the parent_ptes rmap of the lower level 1426 * page table. 1427 * 1428 * Protected by kvm->slots_lock. 1429 */ 1430 #define SPLIT_DESC_CACHE_MIN_NR_OBJECTS (SPTE_ENT_PER_PAGE + 1) 1431 struct kvm_mmu_memory_cache split_desc_cache; 1432 }; 1433 1434 struct kvm_vm_stat { 1435 struct kvm_vm_stat_generic generic; 1436 u64 mmu_shadow_zapped; 1437 u64 mmu_pte_write; 1438 u64 mmu_pde_zapped; 1439 u64 mmu_flooded; 1440 u64 mmu_recycled; 1441 u64 mmu_cache_miss; 1442 u64 mmu_unsync; 1443 union { 1444 struct { 1445 atomic64_t pages_4k; 1446 atomic64_t pages_2m; 1447 atomic64_t pages_1g; 1448 }; 1449 atomic64_t pages[KVM_NR_PAGE_SIZES]; 1450 }; 1451 u64 nx_lpage_splits; 1452 u64 max_mmu_page_hash_collisions; 1453 u64 max_mmu_rmap_size; 1454 }; 1455 1456 struct kvm_vcpu_stat { 1457 struct kvm_vcpu_stat_generic generic; 1458 u64 pf_taken; 1459 u64 pf_fixed; 1460 u64 pf_emulate; 1461 u64 pf_spurious; 1462 u64 pf_fast; 1463 u64 pf_mmio_spte_created; 1464 u64 pf_guest; 1465 u64 tlb_flush; 1466 u64 invlpg; 1467 1468 u64 exits; 1469 u64 io_exits; 1470 u64 mmio_exits; 1471 u64 signal_exits; 1472 u64 irq_window_exits; 1473 u64 nmi_window_exits; 1474 u64 l1d_flush; 1475 u64 halt_exits; 1476 u64 request_irq_exits; 1477 u64 irq_exits; 1478 u64 host_state_reload; 1479 u64 fpu_reload; 1480 u64 insn_emulation; 1481 u64 insn_emulation_fail; 1482 u64 hypercalls; 1483 u64 irq_injections; 1484 u64 nmi_injections; 1485 u64 req_event; 1486 u64 nested_run; 1487 u64 directed_yield_attempted; 1488 u64 directed_yield_successful; 1489 u64 preemption_reported; 1490 u64 preemption_other; 1491 u64 guest_mode; 1492 u64 notify_window_exits; 1493 }; 1494 1495 struct x86_instruction_info; 1496 1497 struct msr_data { 1498 bool host_initiated; 1499 u32 index; 1500 u64 data; 1501 }; 1502 1503 struct kvm_lapic_irq { 1504 u32 vector; 1505 u16 delivery_mode; 1506 u16 dest_mode; 1507 bool level; 1508 u16 trig_mode; 1509 u32 shorthand; 1510 u32 dest_id; 1511 bool msi_redir_hint; 1512 }; 1513 1514 static inline u16 kvm_lapic_irq_dest_mode(bool dest_mode_logical) 1515 { 1516 return dest_mode_logical ? APIC_DEST_LOGICAL : APIC_DEST_PHYSICAL; 1517 } 1518 1519 struct kvm_x86_ops { 1520 const char *name; 1521 1522 int (*hardware_enable)(void); 1523 void (*hardware_disable)(void); 1524 void (*hardware_unsetup)(void); 1525 bool (*has_emulated_msr)(struct kvm *kvm, u32 index); 1526 void (*vcpu_after_set_cpuid)(struct kvm_vcpu *vcpu); 1527 1528 unsigned int vm_size; 1529 int (*vm_init)(struct kvm *kvm); 1530 void (*vm_destroy)(struct kvm *kvm); 1531 1532 /* Create, but do not attach this VCPU */ 1533 int (*vcpu_precreate)(struct kvm *kvm); 1534 int (*vcpu_create)(struct kvm_vcpu *vcpu); 1535 void (*vcpu_free)(struct kvm_vcpu *vcpu); 1536 void (*vcpu_reset)(struct kvm_vcpu *vcpu, bool init_event); 1537 1538 void (*prepare_switch_to_guest)(struct kvm_vcpu *vcpu); 1539 void (*vcpu_load)(struct kvm_vcpu *vcpu, int cpu); 1540 void (*vcpu_put)(struct kvm_vcpu *vcpu); 1541 1542 void (*update_exception_bitmap)(struct kvm_vcpu *vcpu); 1543 int (*get_msr)(struct kvm_vcpu *vcpu, struct msr_data *msr); 1544 int (*set_msr)(struct kvm_vcpu *vcpu, struct msr_data *msr); 1545 u64 (*get_segment_base)(struct kvm_vcpu *vcpu, int seg); 1546 void (*get_segment)(struct kvm_vcpu *vcpu, 1547 struct kvm_segment *var, int seg); 1548 int (*get_cpl)(struct kvm_vcpu *vcpu); 1549 void (*set_segment)(struct kvm_vcpu *vcpu, 1550 struct kvm_segment *var, int seg); 1551 void (*get_cs_db_l_bits)(struct kvm_vcpu *vcpu, int *db, int *l); 1552 void (*set_cr0)(struct kvm_vcpu *vcpu, unsigned long cr0); 1553 void (*post_set_cr3)(struct kvm_vcpu *vcpu, unsigned long cr3); 1554 bool (*is_valid_cr4)(struct kvm_vcpu *vcpu, unsigned long cr0); 1555 void (*set_cr4)(struct kvm_vcpu *vcpu, unsigned long cr4); 1556 int (*set_efer)(struct kvm_vcpu *vcpu, u64 efer); 1557 void (*get_idt)(struct kvm_vcpu *vcpu, struct desc_ptr *dt); 1558 void (*set_idt)(struct kvm_vcpu *vcpu, struct desc_ptr *dt); 1559 void (*get_gdt)(struct kvm_vcpu *vcpu, struct desc_ptr *dt); 1560 void (*set_gdt)(struct kvm_vcpu *vcpu, struct desc_ptr *dt); 1561 void (*sync_dirty_debug_regs)(struct kvm_vcpu *vcpu); 1562 void (*set_dr7)(struct kvm_vcpu *vcpu, unsigned long value); 1563 void (*cache_reg)(struct kvm_vcpu *vcpu, enum kvm_reg reg); 1564 unsigned long (*get_rflags)(struct kvm_vcpu *vcpu); 1565 void (*set_rflags)(struct kvm_vcpu *vcpu, unsigned long rflags); 1566 bool (*get_if_flag)(struct kvm_vcpu *vcpu); 1567 1568 void (*flush_tlb_all)(struct kvm_vcpu *vcpu); 1569 void (*flush_tlb_current)(struct kvm_vcpu *vcpu); 1570 int (*tlb_remote_flush)(struct kvm *kvm); 1571 int (*tlb_remote_flush_with_range)(struct kvm *kvm, 1572 struct kvm_tlb_range *range); 1573 1574 /* 1575 * Flush any TLB entries associated with the given GVA. 1576 * Does not need to flush GPA->HPA mappings. 1577 * Can potentially get non-canonical addresses through INVLPGs, which 1578 * the implementation may choose to ignore if appropriate. 1579 */ 1580 void (*flush_tlb_gva)(struct kvm_vcpu *vcpu, gva_t addr); 1581 1582 /* 1583 * Flush any TLB entries created by the guest. Like tlb_flush_gva(), 1584 * does not need to flush GPA->HPA mappings. 1585 */ 1586 void (*flush_tlb_guest)(struct kvm_vcpu *vcpu); 1587 1588 int (*vcpu_pre_run)(struct kvm_vcpu *vcpu); 1589 enum exit_fastpath_completion (*vcpu_run)(struct kvm_vcpu *vcpu); 1590 int (*handle_exit)(struct kvm_vcpu *vcpu, 1591 enum exit_fastpath_completion exit_fastpath); 1592 int (*skip_emulated_instruction)(struct kvm_vcpu *vcpu); 1593 void (*update_emulated_instruction)(struct kvm_vcpu *vcpu); 1594 void (*set_interrupt_shadow)(struct kvm_vcpu *vcpu, int mask); 1595 u32 (*get_interrupt_shadow)(struct kvm_vcpu *vcpu); 1596 void (*patch_hypercall)(struct kvm_vcpu *vcpu, 1597 unsigned char *hypercall_addr); 1598 void (*inject_irq)(struct kvm_vcpu *vcpu, bool reinjected); 1599 void (*inject_nmi)(struct kvm_vcpu *vcpu); 1600 void (*inject_exception)(struct kvm_vcpu *vcpu); 1601 void (*cancel_injection)(struct kvm_vcpu *vcpu); 1602 int (*interrupt_allowed)(struct kvm_vcpu *vcpu, bool for_injection); 1603 int (*nmi_allowed)(struct kvm_vcpu *vcpu, bool for_injection); 1604 bool (*get_nmi_mask)(struct kvm_vcpu *vcpu); 1605 void (*set_nmi_mask)(struct kvm_vcpu *vcpu, bool masked); 1606 void (*enable_nmi_window)(struct kvm_vcpu *vcpu); 1607 void (*enable_irq_window)(struct kvm_vcpu *vcpu); 1608 void (*update_cr8_intercept)(struct kvm_vcpu *vcpu, int tpr, int irr); 1609 bool (*check_apicv_inhibit_reasons)(enum kvm_apicv_inhibit reason); 1610 void (*refresh_apicv_exec_ctrl)(struct kvm_vcpu *vcpu); 1611 void (*hwapic_irr_update)(struct kvm_vcpu *vcpu, int max_irr); 1612 void (*hwapic_isr_update)(int isr); 1613 bool (*guest_apic_has_interrupt)(struct kvm_vcpu *vcpu); 1614 void (*load_eoi_exitmap)(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap); 1615 void (*set_virtual_apic_mode)(struct kvm_vcpu *vcpu); 1616 void (*set_apic_access_page_addr)(struct kvm_vcpu *vcpu); 1617 void (*deliver_interrupt)(struct kvm_lapic *apic, int delivery_mode, 1618 int trig_mode, int vector); 1619 int (*sync_pir_to_irr)(struct kvm_vcpu *vcpu); 1620 int (*set_tss_addr)(struct kvm *kvm, unsigned int addr); 1621 int (*set_identity_map_addr)(struct kvm *kvm, u64 ident_addr); 1622 u8 (*get_mt_mask)(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio); 1623 1624 void (*load_mmu_pgd)(struct kvm_vcpu *vcpu, hpa_t root_hpa, 1625 int root_level); 1626 1627 bool (*has_wbinvd_exit)(void); 1628 1629 u64 (*get_l2_tsc_offset)(struct kvm_vcpu *vcpu); 1630 u64 (*get_l2_tsc_multiplier)(struct kvm_vcpu *vcpu); 1631 void (*write_tsc_offset)(struct kvm_vcpu *vcpu, u64 offset); 1632 void (*write_tsc_multiplier)(struct kvm_vcpu *vcpu, u64 multiplier); 1633 1634 /* 1635 * Retrieve somewhat arbitrary exit information. Intended to 1636 * be used only from within tracepoints or error paths. 1637 */ 1638 void (*get_exit_info)(struct kvm_vcpu *vcpu, u32 *reason, 1639 u64 *info1, u64 *info2, 1640 u32 *exit_int_info, u32 *exit_int_info_err_code); 1641 1642 int (*check_intercept)(struct kvm_vcpu *vcpu, 1643 struct x86_instruction_info *info, 1644 enum x86_intercept_stage stage, 1645 struct x86_exception *exception); 1646 void (*handle_exit_irqoff)(struct kvm_vcpu *vcpu); 1647 1648 void (*request_immediate_exit)(struct kvm_vcpu *vcpu); 1649 1650 void (*sched_in)(struct kvm_vcpu *kvm, int cpu); 1651 1652 /* 1653 * Size of the CPU's dirty log buffer, i.e. VMX's PML buffer. A zero 1654 * value indicates CPU dirty logging is unsupported or disabled. 1655 */ 1656 int cpu_dirty_log_size; 1657 void (*update_cpu_dirty_logging)(struct kvm_vcpu *vcpu); 1658 1659 const struct kvm_x86_nested_ops *nested_ops; 1660 1661 void (*vcpu_blocking)(struct kvm_vcpu *vcpu); 1662 void (*vcpu_unblocking)(struct kvm_vcpu *vcpu); 1663 1664 int (*pi_update_irte)(struct kvm *kvm, unsigned int host_irq, 1665 uint32_t guest_irq, bool set); 1666 void (*pi_start_assignment)(struct kvm *kvm); 1667 void (*apicv_post_state_restore)(struct kvm_vcpu *vcpu); 1668 bool (*dy_apicv_has_pending_interrupt)(struct kvm_vcpu *vcpu); 1669 1670 int (*set_hv_timer)(struct kvm_vcpu *vcpu, u64 guest_deadline_tsc, 1671 bool *expired); 1672 void (*cancel_hv_timer)(struct kvm_vcpu *vcpu); 1673 1674 void (*setup_mce)(struct kvm_vcpu *vcpu); 1675 1676 #ifdef CONFIG_KVM_SMM 1677 int (*smi_allowed)(struct kvm_vcpu *vcpu, bool for_injection); 1678 int (*enter_smm)(struct kvm_vcpu *vcpu, union kvm_smram *smram); 1679 int (*leave_smm)(struct kvm_vcpu *vcpu, const union kvm_smram *smram); 1680 void (*enable_smi_window)(struct kvm_vcpu *vcpu); 1681 #endif 1682 1683 int (*mem_enc_ioctl)(struct kvm *kvm, void __user *argp); 1684 int (*mem_enc_register_region)(struct kvm *kvm, struct kvm_enc_region *argp); 1685 int (*mem_enc_unregister_region)(struct kvm *kvm, struct kvm_enc_region *argp); 1686 int (*vm_copy_enc_context_from)(struct kvm *kvm, unsigned int source_fd); 1687 int (*vm_move_enc_context_from)(struct kvm *kvm, unsigned int source_fd); 1688 void (*guest_memory_reclaimed)(struct kvm *kvm); 1689 1690 int (*get_msr_feature)(struct kvm_msr_entry *entry); 1691 1692 bool (*can_emulate_instruction)(struct kvm_vcpu *vcpu, int emul_type, 1693 void *insn, int insn_len); 1694 1695 bool (*apic_init_signal_blocked)(struct kvm_vcpu *vcpu); 1696 int (*enable_l2_tlb_flush)(struct kvm_vcpu *vcpu); 1697 1698 void (*migrate_timers)(struct kvm_vcpu *vcpu); 1699 void (*msr_filter_changed)(struct kvm_vcpu *vcpu); 1700 int (*complete_emulated_msr)(struct kvm_vcpu *vcpu, int err); 1701 1702 void (*vcpu_deliver_sipi_vector)(struct kvm_vcpu *vcpu, u8 vector); 1703 1704 /* 1705 * Returns vCPU specific APICv inhibit reasons 1706 */ 1707 unsigned long (*vcpu_get_apicv_inhibit_reasons)(struct kvm_vcpu *vcpu); 1708 }; 1709 1710 struct kvm_x86_nested_ops { 1711 void (*leave_nested)(struct kvm_vcpu *vcpu); 1712 bool (*is_exception_vmexit)(struct kvm_vcpu *vcpu, u8 vector, 1713 u32 error_code); 1714 int (*check_events)(struct kvm_vcpu *vcpu); 1715 bool (*has_events)(struct kvm_vcpu *vcpu); 1716 void (*triple_fault)(struct kvm_vcpu *vcpu); 1717 int (*get_state)(struct kvm_vcpu *vcpu, 1718 struct kvm_nested_state __user *user_kvm_nested_state, 1719 unsigned user_data_size); 1720 int (*set_state)(struct kvm_vcpu *vcpu, 1721 struct kvm_nested_state __user *user_kvm_nested_state, 1722 struct kvm_nested_state *kvm_state); 1723 bool (*get_nested_state_pages)(struct kvm_vcpu *vcpu); 1724 int (*write_log_dirty)(struct kvm_vcpu *vcpu, gpa_t l2_gpa); 1725 1726 int (*enable_evmcs)(struct kvm_vcpu *vcpu, 1727 uint16_t *vmcs_version); 1728 uint16_t (*get_evmcs_version)(struct kvm_vcpu *vcpu); 1729 void (*hv_inject_synthetic_vmexit_post_tlb_flush)(struct kvm_vcpu *vcpu); 1730 }; 1731 1732 struct kvm_x86_init_ops { 1733 int (*cpu_has_kvm_support)(void); 1734 int (*disabled_by_bios)(void); 1735 int (*check_processor_compatibility)(void); 1736 int (*hardware_setup)(void); 1737 unsigned int (*handle_intel_pt_intr)(void); 1738 1739 struct kvm_x86_ops *runtime_ops; 1740 struct kvm_pmu_ops *pmu_ops; 1741 }; 1742 1743 struct kvm_arch_async_pf { 1744 u32 token; 1745 gfn_t gfn; 1746 unsigned long cr3; 1747 bool direct_map; 1748 }; 1749 1750 extern u32 __read_mostly kvm_nr_uret_msrs; 1751 extern u64 __read_mostly host_efer; 1752 extern bool __read_mostly allow_smaller_maxphyaddr; 1753 extern bool __read_mostly enable_apicv; 1754 extern struct kvm_x86_ops kvm_x86_ops; 1755 1756 #define KVM_X86_OP(func) \ 1757 DECLARE_STATIC_CALL(kvm_x86_##func, *(((struct kvm_x86_ops *)0)->func)); 1758 #define KVM_X86_OP_OPTIONAL KVM_X86_OP 1759 #define KVM_X86_OP_OPTIONAL_RET0 KVM_X86_OP 1760 #include <asm/kvm-x86-ops.h> 1761 1762 #define __KVM_HAVE_ARCH_VM_ALLOC 1763 static inline struct kvm *kvm_arch_alloc_vm(void) 1764 { 1765 return __vmalloc(kvm_x86_ops.vm_size, GFP_KERNEL_ACCOUNT | __GFP_ZERO); 1766 } 1767 1768 #define __KVM_HAVE_ARCH_VM_FREE 1769 void kvm_arch_free_vm(struct kvm *kvm); 1770 1771 #define __KVM_HAVE_ARCH_FLUSH_REMOTE_TLB 1772 static inline int kvm_arch_flush_remote_tlb(struct kvm *kvm) 1773 { 1774 if (kvm_x86_ops.tlb_remote_flush && 1775 !static_call(kvm_x86_tlb_remote_flush)(kvm)) 1776 return 0; 1777 else 1778 return -ENOTSUPP; 1779 } 1780 1781 #define kvm_arch_pmi_in_guest(vcpu) \ 1782 ((vcpu) && (vcpu)->arch.handling_intr_from_guest) 1783 1784 void __init kvm_mmu_x86_module_init(void); 1785 int kvm_mmu_vendor_module_init(void); 1786 void kvm_mmu_vendor_module_exit(void); 1787 1788 void kvm_mmu_destroy(struct kvm_vcpu *vcpu); 1789 int kvm_mmu_create(struct kvm_vcpu *vcpu); 1790 int kvm_mmu_init_vm(struct kvm *kvm); 1791 void kvm_mmu_uninit_vm(struct kvm *kvm); 1792 1793 void kvm_mmu_after_set_cpuid(struct kvm_vcpu *vcpu); 1794 void kvm_mmu_reset_context(struct kvm_vcpu *vcpu); 1795 void kvm_mmu_slot_remove_write_access(struct kvm *kvm, 1796 const struct kvm_memory_slot *memslot, 1797 int start_level); 1798 void kvm_mmu_slot_try_split_huge_pages(struct kvm *kvm, 1799 const struct kvm_memory_slot *memslot, 1800 int target_level); 1801 void kvm_mmu_try_split_huge_pages(struct kvm *kvm, 1802 const struct kvm_memory_slot *memslot, 1803 u64 start, u64 end, 1804 int target_level); 1805 void kvm_mmu_zap_collapsible_sptes(struct kvm *kvm, 1806 const struct kvm_memory_slot *memslot); 1807 void kvm_mmu_slot_leaf_clear_dirty(struct kvm *kvm, 1808 const struct kvm_memory_slot *memslot); 1809 void kvm_mmu_zap_all(struct kvm *kvm); 1810 void kvm_mmu_invalidate_mmio_sptes(struct kvm *kvm, u64 gen); 1811 void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned long kvm_nr_mmu_pages); 1812 1813 int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3); 1814 1815 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa, 1816 const void *val, int bytes); 1817 1818 struct kvm_irq_mask_notifier { 1819 void (*func)(struct kvm_irq_mask_notifier *kimn, bool masked); 1820 int irq; 1821 struct hlist_node link; 1822 }; 1823 1824 void kvm_register_irq_mask_notifier(struct kvm *kvm, int irq, 1825 struct kvm_irq_mask_notifier *kimn); 1826 void kvm_unregister_irq_mask_notifier(struct kvm *kvm, int irq, 1827 struct kvm_irq_mask_notifier *kimn); 1828 void kvm_fire_mask_notifiers(struct kvm *kvm, unsigned irqchip, unsigned pin, 1829 bool mask); 1830 1831 extern bool tdp_enabled; 1832 1833 u64 vcpu_tsc_khz(struct kvm_vcpu *vcpu); 1834 1835 /* 1836 * EMULTYPE_NO_DECODE - Set when re-emulating an instruction (after completing 1837 * userspace I/O) to indicate that the emulation context 1838 * should be reused as is, i.e. skip initialization of 1839 * emulation context, instruction fetch and decode. 1840 * 1841 * EMULTYPE_TRAP_UD - Set when emulating an intercepted #UD from hardware. 1842 * Indicates that only select instructions (tagged with 1843 * EmulateOnUD) should be emulated (to minimize the emulator 1844 * attack surface). See also EMULTYPE_TRAP_UD_FORCED. 1845 * 1846 * EMULTYPE_SKIP - Set when emulating solely to skip an instruction, i.e. to 1847 * decode the instruction length. For use *only* by 1848 * kvm_x86_ops.skip_emulated_instruction() implementations if 1849 * EMULTYPE_COMPLETE_USER_EXIT is not set. 1850 * 1851 * EMULTYPE_ALLOW_RETRY_PF - Set when the emulator should resume the guest to 1852 * retry native execution under certain conditions, 1853 * Can only be set in conjunction with EMULTYPE_PF. 1854 * 1855 * EMULTYPE_TRAP_UD_FORCED - Set when emulating an intercepted #UD that was 1856 * triggered by KVM's magic "force emulation" prefix, 1857 * which is opt in via module param (off by default). 1858 * Bypasses EmulateOnUD restriction despite emulating 1859 * due to an intercepted #UD (see EMULTYPE_TRAP_UD). 1860 * Used to test the full emulator from userspace. 1861 * 1862 * EMULTYPE_VMWARE_GP - Set when emulating an intercepted #GP for VMware 1863 * backdoor emulation, which is opt in via module param. 1864 * VMware backdoor emulation handles select instructions 1865 * and reinjects the #GP for all other cases. 1866 * 1867 * EMULTYPE_PF - Set when emulating MMIO by way of an intercepted #PF, in which 1868 * case the CR2/GPA value pass on the stack is valid. 1869 * 1870 * EMULTYPE_COMPLETE_USER_EXIT - Set when the emulator should update interruptibility 1871 * state and inject single-step #DBs after skipping 1872 * an instruction (after completing userspace I/O). 1873 */ 1874 #define EMULTYPE_NO_DECODE (1 << 0) 1875 #define EMULTYPE_TRAP_UD (1 << 1) 1876 #define EMULTYPE_SKIP (1 << 2) 1877 #define EMULTYPE_ALLOW_RETRY_PF (1 << 3) 1878 #define EMULTYPE_TRAP_UD_FORCED (1 << 4) 1879 #define EMULTYPE_VMWARE_GP (1 << 5) 1880 #define EMULTYPE_PF (1 << 6) 1881 #define EMULTYPE_COMPLETE_USER_EXIT (1 << 7) 1882 1883 int kvm_emulate_instruction(struct kvm_vcpu *vcpu, int emulation_type); 1884 int kvm_emulate_instruction_from_buffer(struct kvm_vcpu *vcpu, 1885 void *insn, int insn_len); 1886 void __kvm_prepare_emulation_failure_exit(struct kvm_vcpu *vcpu, 1887 u64 *data, u8 ndata); 1888 void kvm_prepare_emulation_failure_exit(struct kvm_vcpu *vcpu); 1889 1890 void kvm_enable_efer_bits(u64); 1891 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer); 1892 int __kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data, bool host_initiated); 1893 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data); 1894 int kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data); 1895 int kvm_emulate_rdmsr(struct kvm_vcpu *vcpu); 1896 int kvm_emulate_wrmsr(struct kvm_vcpu *vcpu); 1897 int kvm_emulate_as_nop(struct kvm_vcpu *vcpu); 1898 int kvm_emulate_invd(struct kvm_vcpu *vcpu); 1899 int kvm_emulate_mwait(struct kvm_vcpu *vcpu); 1900 int kvm_handle_invalid_op(struct kvm_vcpu *vcpu); 1901 int kvm_emulate_monitor(struct kvm_vcpu *vcpu); 1902 1903 int kvm_fast_pio(struct kvm_vcpu *vcpu, int size, unsigned short port, int in); 1904 int kvm_emulate_cpuid(struct kvm_vcpu *vcpu); 1905 int kvm_emulate_halt(struct kvm_vcpu *vcpu); 1906 int kvm_emulate_halt_noskip(struct kvm_vcpu *vcpu); 1907 int kvm_emulate_ap_reset_hold(struct kvm_vcpu *vcpu); 1908 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu); 1909 1910 void kvm_get_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg); 1911 void kvm_set_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg); 1912 int kvm_load_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector, int seg); 1913 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector); 1914 1915 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index, 1916 int reason, bool has_error_code, u32 error_code); 1917 1918 void kvm_post_set_cr0(struct kvm_vcpu *vcpu, unsigned long old_cr0, unsigned long cr0); 1919 void kvm_post_set_cr4(struct kvm_vcpu *vcpu, unsigned long old_cr4, unsigned long cr4); 1920 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0); 1921 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3); 1922 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4); 1923 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8); 1924 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val); 1925 void kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val); 1926 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu); 1927 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw); 1928 int kvm_emulate_xsetbv(struct kvm_vcpu *vcpu); 1929 1930 int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr); 1931 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr); 1932 1933 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu); 1934 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags); 1935 int kvm_emulate_rdpmc(struct kvm_vcpu *vcpu); 1936 1937 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr); 1938 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code); 1939 void kvm_queue_exception_p(struct kvm_vcpu *vcpu, unsigned nr, unsigned long payload); 1940 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr); 1941 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code); 1942 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault); 1943 void kvm_inject_emulated_page_fault(struct kvm_vcpu *vcpu, 1944 struct x86_exception *fault); 1945 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl); 1946 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr); 1947 1948 static inline int __kvm_irq_line_state(unsigned long *irq_state, 1949 int irq_source_id, int level) 1950 { 1951 /* Logical OR for level trig interrupt */ 1952 if (level) 1953 __set_bit(irq_source_id, irq_state); 1954 else 1955 __clear_bit(irq_source_id, irq_state); 1956 1957 return !!(*irq_state); 1958 } 1959 1960 #define KVM_MMU_ROOT_CURRENT BIT(0) 1961 #define KVM_MMU_ROOT_PREVIOUS(i) BIT(1+i) 1962 #define KVM_MMU_ROOTS_ALL (~0UL) 1963 1964 int kvm_pic_set_irq(struct kvm_pic *pic, int irq, int irq_source_id, int level); 1965 void kvm_pic_clear_all(struct kvm_pic *pic, int irq_source_id); 1966 1967 void kvm_inject_nmi(struct kvm_vcpu *vcpu); 1968 1969 void kvm_update_dr7(struct kvm_vcpu *vcpu); 1970 1971 int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn); 1972 void kvm_mmu_free_roots(struct kvm *kvm, struct kvm_mmu *mmu, 1973 ulong roots_to_free); 1974 void kvm_mmu_free_guest_mode_roots(struct kvm *kvm, struct kvm_mmu *mmu); 1975 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva, 1976 struct x86_exception *exception); 1977 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva, 1978 struct x86_exception *exception); 1979 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva, 1980 struct x86_exception *exception); 1981 1982 bool kvm_apicv_activated(struct kvm *kvm); 1983 bool kvm_vcpu_apicv_activated(struct kvm_vcpu *vcpu); 1984 void kvm_vcpu_update_apicv(struct kvm_vcpu *vcpu); 1985 void __kvm_set_or_clear_apicv_inhibit(struct kvm *kvm, 1986 enum kvm_apicv_inhibit reason, bool set); 1987 void kvm_set_or_clear_apicv_inhibit(struct kvm *kvm, 1988 enum kvm_apicv_inhibit reason, bool set); 1989 1990 static inline void kvm_set_apicv_inhibit(struct kvm *kvm, 1991 enum kvm_apicv_inhibit reason) 1992 { 1993 kvm_set_or_clear_apicv_inhibit(kvm, reason, true); 1994 } 1995 1996 static inline void kvm_clear_apicv_inhibit(struct kvm *kvm, 1997 enum kvm_apicv_inhibit reason) 1998 { 1999 kvm_set_or_clear_apicv_inhibit(kvm, reason, false); 2000 } 2001 2002 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu); 2003 2004 int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, u64 error_code, 2005 void *insn, int insn_len); 2006 void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva); 2007 void kvm_mmu_invalidate_gva(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, 2008 gva_t gva, hpa_t root_hpa); 2009 void kvm_mmu_invpcid_gva(struct kvm_vcpu *vcpu, gva_t gva, unsigned long pcid); 2010 void kvm_mmu_new_pgd(struct kvm_vcpu *vcpu, gpa_t new_pgd); 2011 2012 void kvm_configure_mmu(bool enable_tdp, int tdp_forced_root_level, 2013 int tdp_max_root_level, int tdp_huge_page_level); 2014 2015 static inline u16 kvm_read_ldt(void) 2016 { 2017 u16 ldt; 2018 asm("sldt %0" : "=g"(ldt)); 2019 return ldt; 2020 } 2021 2022 static inline void kvm_load_ldt(u16 sel) 2023 { 2024 asm("lldt %0" : : "rm"(sel)); 2025 } 2026 2027 #ifdef CONFIG_X86_64 2028 static inline unsigned long read_msr(unsigned long msr) 2029 { 2030 u64 value; 2031 2032 rdmsrl(msr, value); 2033 return value; 2034 } 2035 #endif 2036 2037 static inline void kvm_inject_gp(struct kvm_vcpu *vcpu, u32 error_code) 2038 { 2039 kvm_queue_exception_e(vcpu, GP_VECTOR, error_code); 2040 } 2041 2042 #define TSS_IOPB_BASE_OFFSET 0x66 2043 #define TSS_BASE_SIZE 0x68 2044 #define TSS_IOPB_SIZE (65536 / 8) 2045 #define TSS_REDIRECTION_SIZE (256 / 8) 2046 #define RMODE_TSS_SIZE \ 2047 (TSS_BASE_SIZE + TSS_REDIRECTION_SIZE + TSS_IOPB_SIZE + 1) 2048 2049 enum { 2050 TASK_SWITCH_CALL = 0, 2051 TASK_SWITCH_IRET = 1, 2052 TASK_SWITCH_JMP = 2, 2053 TASK_SWITCH_GATE = 3, 2054 }; 2055 2056 #define HF_GIF_MASK (1 << 0) 2057 #define HF_NMI_MASK (1 << 3) 2058 #define HF_IRET_MASK (1 << 4) 2059 #define HF_GUEST_MASK (1 << 5) /* VCPU is in guest-mode */ 2060 2061 #ifdef CONFIG_KVM_SMM 2062 #define HF_SMM_MASK (1 << 6) 2063 #define HF_SMM_INSIDE_NMI_MASK (1 << 7) 2064 2065 # define __KVM_VCPU_MULTIPLE_ADDRESS_SPACE 2066 # define KVM_ADDRESS_SPACE_NUM 2 2067 # define kvm_arch_vcpu_memslots_id(vcpu) ((vcpu)->arch.hflags & HF_SMM_MASK ? 1 : 0) 2068 # define kvm_memslots_for_spte_role(kvm, role) __kvm_memslots(kvm, (role).smm) 2069 #else 2070 # define kvm_memslots_for_spte_role(kvm, role) __kvm_memslots(kvm, 0) 2071 #endif 2072 2073 #define KVM_ARCH_WANT_MMU_NOTIFIER 2074 2075 int kvm_cpu_has_injectable_intr(struct kvm_vcpu *v); 2076 int kvm_cpu_has_interrupt(struct kvm_vcpu *vcpu); 2077 int kvm_cpu_has_extint(struct kvm_vcpu *v); 2078 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu); 2079 int kvm_cpu_get_interrupt(struct kvm_vcpu *v); 2080 void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event); 2081 2082 int kvm_pv_send_ipi(struct kvm *kvm, unsigned long ipi_bitmap_low, 2083 unsigned long ipi_bitmap_high, u32 min, 2084 unsigned long icr, int op_64_bit); 2085 2086 int kvm_add_user_return_msr(u32 msr); 2087 int kvm_find_user_return_msr(u32 msr); 2088 int kvm_set_user_return_msr(unsigned index, u64 val, u64 mask); 2089 2090 static inline bool kvm_is_supported_user_return_msr(u32 msr) 2091 { 2092 return kvm_find_user_return_msr(msr) >= 0; 2093 } 2094 2095 u64 kvm_scale_tsc(u64 tsc, u64 ratio); 2096 u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc); 2097 u64 kvm_calc_nested_tsc_offset(u64 l1_offset, u64 l2_offset, u64 l2_multiplier); 2098 u64 kvm_calc_nested_tsc_multiplier(u64 l1_multiplier, u64 l2_multiplier); 2099 2100 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu); 2101 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip); 2102 2103 void kvm_make_scan_ioapic_request(struct kvm *kvm); 2104 void kvm_make_scan_ioapic_request_mask(struct kvm *kvm, 2105 unsigned long *vcpu_bitmap); 2106 2107 bool kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu, 2108 struct kvm_async_pf *work); 2109 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu, 2110 struct kvm_async_pf *work); 2111 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, 2112 struct kvm_async_pf *work); 2113 void kvm_arch_async_page_present_queued(struct kvm_vcpu *vcpu); 2114 bool kvm_arch_can_dequeue_async_page_present(struct kvm_vcpu *vcpu); 2115 extern bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn); 2116 2117 int kvm_skip_emulated_instruction(struct kvm_vcpu *vcpu); 2118 int kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err); 2119 void __kvm_request_immediate_exit(struct kvm_vcpu *vcpu); 2120 2121 void __user *__x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, 2122 u32 size); 2123 bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu); 2124 bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu); 2125 2126 bool kvm_intr_is_single_vcpu(struct kvm *kvm, struct kvm_lapic_irq *irq, 2127 struct kvm_vcpu **dest_vcpu); 2128 2129 void kvm_set_msi_irq(struct kvm *kvm, struct kvm_kernel_irq_routing_entry *e, 2130 struct kvm_lapic_irq *irq); 2131 2132 static inline bool kvm_irq_is_postable(struct kvm_lapic_irq *irq) 2133 { 2134 /* We can only post Fixed and LowPrio IRQs */ 2135 return (irq->delivery_mode == APIC_DM_FIXED || 2136 irq->delivery_mode == APIC_DM_LOWEST); 2137 } 2138 2139 static inline void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu) 2140 { 2141 static_call_cond(kvm_x86_vcpu_blocking)(vcpu); 2142 } 2143 2144 static inline void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu) 2145 { 2146 static_call_cond(kvm_x86_vcpu_unblocking)(vcpu); 2147 } 2148 2149 static inline int kvm_cpu_get_apicid(int mps_cpu) 2150 { 2151 #ifdef CONFIG_X86_LOCAL_APIC 2152 return default_cpu_present_to_apicid(mps_cpu); 2153 #else 2154 WARN_ON_ONCE(1); 2155 return BAD_APICID; 2156 #endif 2157 } 2158 2159 int memslot_rmap_alloc(struct kvm_memory_slot *slot, unsigned long npages); 2160 2161 #define KVM_CLOCK_VALID_FLAGS \ 2162 (KVM_CLOCK_TSC_STABLE | KVM_CLOCK_REALTIME | KVM_CLOCK_HOST_TSC) 2163 2164 #define KVM_X86_VALID_QUIRKS \ 2165 (KVM_X86_QUIRK_LINT0_REENABLED | \ 2166 KVM_X86_QUIRK_CD_NW_CLEARED | \ 2167 KVM_X86_QUIRK_LAPIC_MMIO_HOLE | \ 2168 KVM_X86_QUIRK_OUT_7E_INC_RIP | \ 2169 KVM_X86_QUIRK_MISC_ENABLE_NO_MWAIT | \ 2170 KVM_X86_QUIRK_FIX_HYPERCALL_INSN | \ 2171 KVM_X86_QUIRK_MWAIT_NEVER_UD_FAULTS) 2172 2173 #endif /* _ASM_X86_KVM_HOST_H */ 2174