xref: /openbmc/linux/arch/x86/include/asm/kvm_host.h (revision 4f89e4b8)
1 /* SPDX-License-Identifier: GPL-2.0-only */
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  *
5  * This header defines architecture specific interfaces, x86 version
6  */
7 
8 #ifndef _ASM_X86_KVM_HOST_H
9 #define _ASM_X86_KVM_HOST_H
10 
11 #include <linux/types.h>
12 #include <linux/mm.h>
13 #include <linux/mmu_notifier.h>
14 #include <linux/tracepoint.h>
15 #include <linux/cpumask.h>
16 #include <linux/irq_work.h>
17 #include <linux/irq.h>
18 
19 #include <linux/kvm.h>
20 #include <linux/kvm_para.h>
21 #include <linux/kvm_types.h>
22 #include <linux/perf_event.h>
23 #include <linux/pvclock_gtod.h>
24 #include <linux/clocksource.h>
25 #include <linux/irqbypass.h>
26 #include <linux/hyperv.h>
27 
28 #include <asm/apic.h>
29 #include <asm/pvclock-abi.h>
30 #include <asm/desc.h>
31 #include <asm/mtrr.h>
32 #include <asm/msr-index.h>
33 #include <asm/asm.h>
34 #include <asm/kvm_page_track.h>
35 #include <asm/kvm_vcpu_regs.h>
36 #include <asm/hyperv-tlfs.h>
37 
38 #define KVM_MAX_VCPUS 288
39 #define KVM_SOFT_MAX_VCPUS 240
40 #define KVM_MAX_VCPU_ID 1023
41 #define KVM_USER_MEM_SLOTS 509
42 /* memory slots that are not exposed to userspace */
43 #define KVM_PRIVATE_MEM_SLOTS 3
44 #define KVM_MEM_SLOTS_NUM (KVM_USER_MEM_SLOTS + KVM_PRIVATE_MEM_SLOTS)
45 
46 #define KVM_HALT_POLL_NS_DEFAULT 200000
47 
48 #define KVM_IRQCHIP_NUM_PINS  KVM_IOAPIC_NUM_PINS
49 
50 /* x86-specific vcpu->requests bit members */
51 #define KVM_REQ_MIGRATE_TIMER		KVM_ARCH_REQ(0)
52 #define KVM_REQ_REPORT_TPR_ACCESS	KVM_ARCH_REQ(1)
53 #define KVM_REQ_TRIPLE_FAULT		KVM_ARCH_REQ(2)
54 #define KVM_REQ_MMU_SYNC		KVM_ARCH_REQ(3)
55 #define KVM_REQ_CLOCK_UPDATE		KVM_ARCH_REQ(4)
56 #define KVM_REQ_LOAD_CR3		KVM_ARCH_REQ(5)
57 #define KVM_REQ_EVENT			KVM_ARCH_REQ(6)
58 #define KVM_REQ_APF_HALT		KVM_ARCH_REQ(7)
59 #define KVM_REQ_STEAL_UPDATE		KVM_ARCH_REQ(8)
60 #define KVM_REQ_NMI			KVM_ARCH_REQ(9)
61 #define KVM_REQ_PMU			KVM_ARCH_REQ(10)
62 #define KVM_REQ_PMI			KVM_ARCH_REQ(11)
63 #define KVM_REQ_SMI			KVM_ARCH_REQ(12)
64 #define KVM_REQ_MASTERCLOCK_UPDATE	KVM_ARCH_REQ(13)
65 #define KVM_REQ_MCLOCK_INPROGRESS \
66 	KVM_ARCH_REQ_FLAGS(14, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
67 #define KVM_REQ_SCAN_IOAPIC \
68 	KVM_ARCH_REQ_FLAGS(15, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
69 #define KVM_REQ_GLOBAL_CLOCK_UPDATE	KVM_ARCH_REQ(16)
70 #define KVM_REQ_APIC_PAGE_RELOAD \
71 	KVM_ARCH_REQ_FLAGS(17, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
72 #define KVM_REQ_HV_CRASH		KVM_ARCH_REQ(18)
73 #define KVM_REQ_IOAPIC_EOI_EXIT		KVM_ARCH_REQ(19)
74 #define KVM_REQ_HV_RESET		KVM_ARCH_REQ(20)
75 #define KVM_REQ_HV_EXIT			KVM_ARCH_REQ(21)
76 #define KVM_REQ_HV_STIMER		KVM_ARCH_REQ(22)
77 #define KVM_REQ_LOAD_EOI_EXITMAP	KVM_ARCH_REQ(23)
78 #define KVM_REQ_GET_VMCS12_PAGES	KVM_ARCH_REQ(24)
79 
80 #define CR0_RESERVED_BITS                                               \
81 	(~(unsigned long)(X86_CR0_PE | X86_CR0_MP | X86_CR0_EM | X86_CR0_TS \
82 			  | X86_CR0_ET | X86_CR0_NE | X86_CR0_WP | X86_CR0_AM \
83 			  | X86_CR0_NW | X86_CR0_CD | X86_CR0_PG))
84 
85 #define CR4_RESERVED_BITS                                               \
86 	(~(unsigned long)(X86_CR4_VME | X86_CR4_PVI | X86_CR4_TSD | X86_CR4_DE\
87 			  | X86_CR4_PSE | X86_CR4_PAE | X86_CR4_MCE     \
88 			  | X86_CR4_PGE | X86_CR4_PCE | X86_CR4_OSFXSR | X86_CR4_PCIDE \
89 			  | X86_CR4_OSXSAVE | X86_CR4_SMEP | X86_CR4_FSGSBASE \
90 			  | X86_CR4_OSXMMEXCPT | X86_CR4_LA57 | X86_CR4_VMXE \
91 			  | X86_CR4_SMAP | X86_CR4_PKE | X86_CR4_UMIP))
92 
93 #define CR8_RESERVED_BITS (~(unsigned long)X86_CR8_TPR)
94 
95 
96 
97 #define INVALID_PAGE (~(hpa_t)0)
98 #define VALID_PAGE(x) ((x) != INVALID_PAGE)
99 
100 #define UNMAPPED_GVA (~(gpa_t)0)
101 
102 /* KVM Hugepage definitions for x86 */
103 enum {
104 	PT_PAGE_TABLE_LEVEL   = 1,
105 	PT_DIRECTORY_LEVEL    = 2,
106 	PT_PDPE_LEVEL         = 3,
107 	/* set max level to the biggest one */
108 	PT_MAX_HUGEPAGE_LEVEL = PT_PDPE_LEVEL,
109 };
110 #define KVM_NR_PAGE_SIZES	(PT_MAX_HUGEPAGE_LEVEL - \
111 				 PT_PAGE_TABLE_LEVEL + 1)
112 #define KVM_HPAGE_GFN_SHIFT(x)	(((x) - 1) * 9)
113 #define KVM_HPAGE_SHIFT(x)	(PAGE_SHIFT + KVM_HPAGE_GFN_SHIFT(x))
114 #define KVM_HPAGE_SIZE(x)	(1UL << KVM_HPAGE_SHIFT(x))
115 #define KVM_HPAGE_MASK(x)	(~(KVM_HPAGE_SIZE(x) - 1))
116 #define KVM_PAGES_PER_HPAGE(x)	(KVM_HPAGE_SIZE(x) / PAGE_SIZE)
117 
118 static inline gfn_t gfn_to_index(gfn_t gfn, gfn_t base_gfn, int level)
119 {
120 	/* KVM_HPAGE_GFN_SHIFT(PT_PAGE_TABLE_LEVEL) must be 0. */
121 	return (gfn >> KVM_HPAGE_GFN_SHIFT(level)) -
122 		(base_gfn >> KVM_HPAGE_GFN_SHIFT(level));
123 }
124 
125 #define KVM_PERMILLE_MMU_PAGES 20
126 #define KVM_MIN_ALLOC_MMU_PAGES 64UL
127 #define KVM_MMU_HASH_SHIFT 12
128 #define KVM_NUM_MMU_PAGES (1 << KVM_MMU_HASH_SHIFT)
129 #define KVM_MIN_FREE_MMU_PAGES 5
130 #define KVM_REFILL_PAGES 25
131 #define KVM_MAX_CPUID_ENTRIES 80
132 #define KVM_NR_FIXED_MTRR_REGION 88
133 #define KVM_NR_VAR_MTRR 8
134 
135 #define ASYNC_PF_PER_VCPU 64
136 
137 enum kvm_reg {
138 	VCPU_REGS_RAX = __VCPU_REGS_RAX,
139 	VCPU_REGS_RCX = __VCPU_REGS_RCX,
140 	VCPU_REGS_RDX = __VCPU_REGS_RDX,
141 	VCPU_REGS_RBX = __VCPU_REGS_RBX,
142 	VCPU_REGS_RSP = __VCPU_REGS_RSP,
143 	VCPU_REGS_RBP = __VCPU_REGS_RBP,
144 	VCPU_REGS_RSI = __VCPU_REGS_RSI,
145 	VCPU_REGS_RDI = __VCPU_REGS_RDI,
146 #ifdef CONFIG_X86_64
147 	VCPU_REGS_R8  = __VCPU_REGS_R8,
148 	VCPU_REGS_R9  = __VCPU_REGS_R9,
149 	VCPU_REGS_R10 = __VCPU_REGS_R10,
150 	VCPU_REGS_R11 = __VCPU_REGS_R11,
151 	VCPU_REGS_R12 = __VCPU_REGS_R12,
152 	VCPU_REGS_R13 = __VCPU_REGS_R13,
153 	VCPU_REGS_R14 = __VCPU_REGS_R14,
154 	VCPU_REGS_R15 = __VCPU_REGS_R15,
155 #endif
156 	VCPU_REGS_RIP,
157 	NR_VCPU_REGS
158 };
159 
160 enum kvm_reg_ex {
161 	VCPU_EXREG_PDPTR = NR_VCPU_REGS,
162 	VCPU_EXREG_CR3,
163 	VCPU_EXREG_RFLAGS,
164 	VCPU_EXREG_SEGMENTS,
165 };
166 
167 enum {
168 	VCPU_SREG_ES,
169 	VCPU_SREG_CS,
170 	VCPU_SREG_SS,
171 	VCPU_SREG_DS,
172 	VCPU_SREG_FS,
173 	VCPU_SREG_GS,
174 	VCPU_SREG_TR,
175 	VCPU_SREG_LDTR,
176 };
177 
178 #include <asm/kvm_emulate.h>
179 
180 #define KVM_NR_MEM_OBJS 40
181 
182 #define KVM_NR_DB_REGS	4
183 
184 #define DR6_BD		(1 << 13)
185 #define DR6_BS		(1 << 14)
186 #define DR6_BT		(1 << 15)
187 #define DR6_RTM		(1 << 16)
188 #define DR6_FIXED_1	0xfffe0ff0
189 #define DR6_INIT	0xffff0ff0
190 #define DR6_VOLATILE	0x0001e00f
191 
192 #define DR7_BP_EN_MASK	0x000000ff
193 #define DR7_GE		(1 << 9)
194 #define DR7_GD		(1 << 13)
195 #define DR7_FIXED_1	0x00000400
196 #define DR7_VOLATILE	0xffff2bff
197 
198 #define PFERR_PRESENT_BIT 0
199 #define PFERR_WRITE_BIT 1
200 #define PFERR_USER_BIT 2
201 #define PFERR_RSVD_BIT 3
202 #define PFERR_FETCH_BIT 4
203 #define PFERR_PK_BIT 5
204 #define PFERR_GUEST_FINAL_BIT 32
205 #define PFERR_GUEST_PAGE_BIT 33
206 
207 #define PFERR_PRESENT_MASK (1U << PFERR_PRESENT_BIT)
208 #define PFERR_WRITE_MASK (1U << PFERR_WRITE_BIT)
209 #define PFERR_USER_MASK (1U << PFERR_USER_BIT)
210 #define PFERR_RSVD_MASK (1U << PFERR_RSVD_BIT)
211 #define PFERR_FETCH_MASK (1U << PFERR_FETCH_BIT)
212 #define PFERR_PK_MASK (1U << PFERR_PK_BIT)
213 #define PFERR_GUEST_FINAL_MASK (1ULL << PFERR_GUEST_FINAL_BIT)
214 #define PFERR_GUEST_PAGE_MASK (1ULL << PFERR_GUEST_PAGE_BIT)
215 
216 #define PFERR_NESTED_GUEST_PAGE (PFERR_GUEST_PAGE_MASK |	\
217 				 PFERR_WRITE_MASK |		\
218 				 PFERR_PRESENT_MASK)
219 
220 /*
221  * The mask used to denote special SPTEs, which can be either MMIO SPTEs or
222  * Access Tracking SPTEs. We use bit 62 instead of bit 63 to avoid conflicting
223  * with the SVE bit in EPT PTEs.
224  */
225 #define SPTE_SPECIAL_MASK (1ULL << 62)
226 
227 /* apic attention bits */
228 #define KVM_APIC_CHECK_VAPIC	0
229 /*
230  * The following bit is set with PV-EOI, unset on EOI.
231  * We detect PV-EOI changes by guest by comparing
232  * this bit with PV-EOI in guest memory.
233  * See the implementation in apic_update_pv_eoi.
234  */
235 #define KVM_APIC_PV_EOI_PENDING	1
236 
237 struct kvm_kernel_irq_routing_entry;
238 
239 /*
240  * We don't want allocation failures within the mmu code, so we preallocate
241  * enough memory for a single page fault in a cache.
242  */
243 struct kvm_mmu_memory_cache {
244 	int nobjs;
245 	void *objects[KVM_NR_MEM_OBJS];
246 };
247 
248 /*
249  * the pages used as guest page table on soft mmu are tracked by
250  * kvm_memory_slot.arch.gfn_track which is 16 bits, so the role bits used
251  * by indirect shadow page can not be more than 15 bits.
252  *
253  * Currently, we used 14 bits that are @level, @gpte_is_8_bytes, @quadrant, @access,
254  * @nxe, @cr0_wp, @smep_andnot_wp and @smap_andnot_wp.
255  */
256 union kvm_mmu_page_role {
257 	u32 word;
258 	struct {
259 		unsigned level:4;
260 		unsigned gpte_is_8_bytes:1;
261 		unsigned quadrant:2;
262 		unsigned direct:1;
263 		unsigned access:3;
264 		unsigned invalid:1;
265 		unsigned nxe:1;
266 		unsigned cr0_wp:1;
267 		unsigned smep_andnot_wp:1;
268 		unsigned smap_andnot_wp:1;
269 		unsigned ad_disabled:1;
270 		unsigned guest_mode:1;
271 		unsigned :6;
272 
273 		/*
274 		 * This is left at the top of the word so that
275 		 * kvm_memslots_for_spte_role can extract it with a
276 		 * simple shift.  While there is room, give it a whole
277 		 * byte so it is also faster to load it from memory.
278 		 */
279 		unsigned smm:8;
280 	};
281 };
282 
283 union kvm_mmu_extended_role {
284 /*
285  * This structure complements kvm_mmu_page_role caching everything needed for
286  * MMU configuration. If nothing in both these structures changed, MMU
287  * re-configuration can be skipped. @valid bit is set on first usage so we don't
288  * treat all-zero structure as valid data.
289  */
290 	u32 word;
291 	struct {
292 		unsigned int valid:1;
293 		unsigned int execonly:1;
294 		unsigned int cr0_pg:1;
295 		unsigned int cr4_pae:1;
296 		unsigned int cr4_pse:1;
297 		unsigned int cr4_pke:1;
298 		unsigned int cr4_smap:1;
299 		unsigned int cr4_smep:1;
300 		unsigned int cr4_la57:1;
301 		unsigned int maxphyaddr:6;
302 	};
303 };
304 
305 union kvm_mmu_role {
306 	u64 as_u64;
307 	struct {
308 		union kvm_mmu_page_role base;
309 		union kvm_mmu_extended_role ext;
310 	};
311 };
312 
313 struct kvm_rmap_head {
314 	unsigned long val;
315 };
316 
317 struct kvm_mmu_page {
318 	struct list_head link;
319 	struct hlist_node hash_link;
320 	bool unsync;
321 	bool mmio_cached;
322 
323 	/*
324 	 * The following two entries are used to key the shadow page in the
325 	 * hash table.
326 	 */
327 	union kvm_mmu_page_role role;
328 	gfn_t gfn;
329 
330 	u64 *spt;
331 	/* hold the gfn of each spte inside spt */
332 	gfn_t *gfns;
333 	int root_count;          /* Currently serving as active root */
334 	unsigned int unsync_children;
335 	struct kvm_rmap_head parent_ptes; /* rmap pointers to parent sptes */
336 	DECLARE_BITMAP(unsync_child_bitmap, 512);
337 
338 #ifdef CONFIG_X86_32
339 	/*
340 	 * Used out of the mmu-lock to avoid reading spte values while an
341 	 * update is in progress; see the comments in __get_spte_lockless().
342 	 */
343 	int clear_spte_count;
344 #endif
345 
346 	/* Number of writes since the last time traversal visited this page.  */
347 	atomic_t write_flooding_count;
348 };
349 
350 struct kvm_pio_request {
351 	unsigned long linear_rip;
352 	unsigned long count;
353 	int in;
354 	int port;
355 	int size;
356 };
357 
358 #define PT64_ROOT_MAX_LEVEL 5
359 
360 struct rsvd_bits_validate {
361 	u64 rsvd_bits_mask[2][PT64_ROOT_MAX_LEVEL];
362 	u64 bad_mt_xwr;
363 };
364 
365 struct kvm_mmu_root_info {
366 	gpa_t cr3;
367 	hpa_t hpa;
368 };
369 
370 #define KVM_MMU_ROOT_INFO_INVALID \
371 	((struct kvm_mmu_root_info) { .cr3 = INVALID_PAGE, .hpa = INVALID_PAGE })
372 
373 #define KVM_MMU_NUM_PREV_ROOTS 3
374 
375 /*
376  * x86 supports 4 paging modes (5-level 64-bit, 4-level 64-bit, 3-level 32-bit,
377  * and 2-level 32-bit).  The kvm_mmu structure abstracts the details of the
378  * current mmu mode.
379  */
380 struct kvm_mmu {
381 	void (*set_cr3)(struct kvm_vcpu *vcpu, unsigned long root);
382 	unsigned long (*get_cr3)(struct kvm_vcpu *vcpu);
383 	u64 (*get_pdptr)(struct kvm_vcpu *vcpu, int index);
384 	int (*page_fault)(struct kvm_vcpu *vcpu, gva_t gva, u32 err,
385 			  bool prefault);
386 	void (*inject_page_fault)(struct kvm_vcpu *vcpu,
387 				  struct x86_exception *fault);
388 	gpa_t (*gva_to_gpa)(struct kvm_vcpu *vcpu, gva_t gva, u32 access,
389 			    struct x86_exception *exception);
390 	gpa_t (*translate_gpa)(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access,
391 			       struct x86_exception *exception);
392 	int (*sync_page)(struct kvm_vcpu *vcpu,
393 			 struct kvm_mmu_page *sp);
394 	void (*invlpg)(struct kvm_vcpu *vcpu, gva_t gva, hpa_t root_hpa);
395 	void (*update_pte)(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
396 			   u64 *spte, const void *pte);
397 	hpa_t root_hpa;
398 	gpa_t root_cr3;
399 	union kvm_mmu_role mmu_role;
400 	u8 root_level;
401 	u8 shadow_root_level;
402 	u8 ept_ad;
403 	bool direct_map;
404 	struct kvm_mmu_root_info prev_roots[KVM_MMU_NUM_PREV_ROOTS];
405 
406 	/*
407 	 * Bitmap; bit set = permission fault
408 	 * Byte index: page fault error code [4:1]
409 	 * Bit index: pte permissions in ACC_* format
410 	 */
411 	u8 permissions[16];
412 
413 	/*
414 	* The pkru_mask indicates if protection key checks are needed.  It
415 	* consists of 16 domains indexed by page fault error code bits [4:1],
416 	* with PFEC.RSVD replaced by ACC_USER_MASK from the page tables.
417 	* Each domain has 2 bits which are ANDed with AD and WD from PKRU.
418 	*/
419 	u32 pkru_mask;
420 
421 	u64 *pae_root;
422 	u64 *lm_root;
423 
424 	/*
425 	 * check zero bits on shadow page table entries, these
426 	 * bits include not only hardware reserved bits but also
427 	 * the bits spte never used.
428 	 */
429 	struct rsvd_bits_validate shadow_zero_check;
430 
431 	struct rsvd_bits_validate guest_rsvd_check;
432 
433 	/* Can have large pages at levels 2..last_nonleaf_level-1. */
434 	u8 last_nonleaf_level;
435 
436 	bool nx;
437 
438 	u64 pdptrs[4]; /* pae */
439 };
440 
441 struct kvm_tlb_range {
442 	u64 start_gfn;
443 	u64 pages;
444 };
445 
446 enum pmc_type {
447 	KVM_PMC_GP = 0,
448 	KVM_PMC_FIXED,
449 };
450 
451 struct kvm_pmc {
452 	enum pmc_type type;
453 	u8 idx;
454 	u64 counter;
455 	u64 eventsel;
456 	struct perf_event *perf_event;
457 	struct kvm_vcpu *vcpu;
458 };
459 
460 struct kvm_pmu {
461 	unsigned nr_arch_gp_counters;
462 	unsigned nr_arch_fixed_counters;
463 	unsigned available_event_types;
464 	u64 fixed_ctr_ctrl;
465 	u64 global_ctrl;
466 	u64 global_status;
467 	u64 global_ovf_ctrl;
468 	u64 counter_bitmask[2];
469 	u64 global_ctrl_mask;
470 	u64 global_ovf_ctrl_mask;
471 	u64 reserved_bits;
472 	u8 version;
473 	struct kvm_pmc gp_counters[INTEL_PMC_MAX_GENERIC];
474 	struct kvm_pmc fixed_counters[INTEL_PMC_MAX_FIXED];
475 	struct irq_work irq_work;
476 	u64 reprogram_pmi;
477 };
478 
479 struct kvm_pmu_ops;
480 
481 enum {
482 	KVM_DEBUGREG_BP_ENABLED = 1,
483 	KVM_DEBUGREG_WONT_EXIT = 2,
484 	KVM_DEBUGREG_RELOAD = 4,
485 };
486 
487 struct kvm_mtrr_range {
488 	u64 base;
489 	u64 mask;
490 	struct list_head node;
491 };
492 
493 struct kvm_mtrr {
494 	struct kvm_mtrr_range var_ranges[KVM_NR_VAR_MTRR];
495 	mtrr_type fixed_ranges[KVM_NR_FIXED_MTRR_REGION];
496 	u64 deftype;
497 
498 	struct list_head head;
499 };
500 
501 /* Hyper-V SynIC timer */
502 struct kvm_vcpu_hv_stimer {
503 	struct hrtimer timer;
504 	int index;
505 	union hv_stimer_config config;
506 	u64 count;
507 	u64 exp_time;
508 	struct hv_message msg;
509 	bool msg_pending;
510 };
511 
512 /* Hyper-V synthetic interrupt controller (SynIC)*/
513 struct kvm_vcpu_hv_synic {
514 	u64 version;
515 	u64 control;
516 	u64 msg_page;
517 	u64 evt_page;
518 	atomic64_t sint[HV_SYNIC_SINT_COUNT];
519 	atomic_t sint_to_gsi[HV_SYNIC_SINT_COUNT];
520 	DECLARE_BITMAP(auto_eoi_bitmap, 256);
521 	DECLARE_BITMAP(vec_bitmap, 256);
522 	bool active;
523 	bool dont_zero_synic_pages;
524 };
525 
526 /* Hyper-V per vcpu emulation context */
527 struct kvm_vcpu_hv {
528 	u32 vp_index;
529 	u64 hv_vapic;
530 	s64 runtime_offset;
531 	struct kvm_vcpu_hv_synic synic;
532 	struct kvm_hyperv_exit exit;
533 	struct kvm_vcpu_hv_stimer stimer[HV_SYNIC_STIMER_COUNT];
534 	DECLARE_BITMAP(stimer_pending_bitmap, HV_SYNIC_STIMER_COUNT);
535 	cpumask_t tlb_flush;
536 };
537 
538 struct kvm_vcpu_arch {
539 	/*
540 	 * rip and regs accesses must go through
541 	 * kvm_{register,rip}_{read,write} functions.
542 	 */
543 	unsigned long regs[NR_VCPU_REGS];
544 	u32 regs_avail;
545 	u32 regs_dirty;
546 
547 	unsigned long cr0;
548 	unsigned long cr0_guest_owned_bits;
549 	unsigned long cr2;
550 	unsigned long cr3;
551 	unsigned long cr4;
552 	unsigned long cr4_guest_owned_bits;
553 	unsigned long cr8;
554 	u32 pkru;
555 	u32 hflags;
556 	u64 efer;
557 	u64 apic_base;
558 	struct kvm_lapic *apic;    /* kernel irqchip context */
559 	bool apicv_active;
560 	bool load_eoi_exitmap_pending;
561 	DECLARE_BITMAP(ioapic_handled_vectors, 256);
562 	unsigned long apic_attention;
563 	int32_t apic_arb_prio;
564 	int mp_state;
565 	u64 ia32_misc_enable_msr;
566 	u64 smbase;
567 	u64 smi_count;
568 	bool tpr_access_reporting;
569 	u64 ia32_xss;
570 	u64 microcode_version;
571 	u64 arch_capabilities;
572 
573 	/*
574 	 * Paging state of the vcpu
575 	 *
576 	 * If the vcpu runs in guest mode with two level paging this still saves
577 	 * the paging mode of the l1 guest. This context is always used to
578 	 * handle faults.
579 	 */
580 	struct kvm_mmu *mmu;
581 
582 	/* Non-nested MMU for L1 */
583 	struct kvm_mmu root_mmu;
584 
585 	/* L1 MMU when running nested */
586 	struct kvm_mmu guest_mmu;
587 
588 	/*
589 	 * Paging state of an L2 guest (used for nested npt)
590 	 *
591 	 * This context will save all necessary information to walk page tables
592 	 * of the an L2 guest. This context is only initialized for page table
593 	 * walking and not for faulting since we never handle l2 page faults on
594 	 * the host.
595 	 */
596 	struct kvm_mmu nested_mmu;
597 
598 	/*
599 	 * Pointer to the mmu context currently used for
600 	 * gva_to_gpa translations.
601 	 */
602 	struct kvm_mmu *walk_mmu;
603 
604 	struct kvm_mmu_memory_cache mmu_pte_list_desc_cache;
605 	struct kvm_mmu_memory_cache mmu_page_cache;
606 	struct kvm_mmu_memory_cache mmu_page_header_cache;
607 
608 	/*
609 	 * QEMU userspace and the guest each have their own FPU state.
610 	 * In vcpu_run, we switch between the user, maintained in the
611 	 * task_struct struct, and guest FPU contexts. While running a VCPU,
612 	 * the VCPU thread will have the guest FPU context.
613 	 *
614 	 * Note that while the PKRU state lives inside the fpu registers,
615 	 * it is switched out separately at VMENTER and VMEXIT time. The
616 	 * "guest_fpu" state here contains the guest FPU context, with the
617 	 * host PRKU bits.
618 	 */
619 	struct fpu *guest_fpu;
620 
621 	u64 xcr0;
622 	u64 guest_supported_xcr0;
623 	u32 guest_xstate_size;
624 
625 	struct kvm_pio_request pio;
626 	void *pio_data;
627 
628 	u8 event_exit_inst_len;
629 
630 	struct kvm_queued_exception {
631 		bool pending;
632 		bool injected;
633 		bool has_error_code;
634 		u8 nr;
635 		u32 error_code;
636 		unsigned long payload;
637 		bool has_payload;
638 		u8 nested_apf;
639 	} exception;
640 
641 	struct kvm_queued_interrupt {
642 		bool injected;
643 		bool soft;
644 		u8 nr;
645 	} interrupt;
646 
647 	int halt_request; /* real mode on Intel only */
648 
649 	int cpuid_nent;
650 	struct kvm_cpuid_entry2 cpuid_entries[KVM_MAX_CPUID_ENTRIES];
651 
652 	int maxphyaddr;
653 
654 	/* emulate context */
655 
656 	struct x86_emulate_ctxt emulate_ctxt;
657 	bool emulate_regs_need_sync_to_vcpu;
658 	bool emulate_regs_need_sync_from_vcpu;
659 	int (*complete_userspace_io)(struct kvm_vcpu *vcpu);
660 
661 	gpa_t time;
662 	struct pvclock_vcpu_time_info hv_clock;
663 	unsigned int hw_tsc_khz;
664 	struct gfn_to_hva_cache pv_time;
665 	bool pv_time_enabled;
666 	/* set guest stopped flag in pvclock flags field */
667 	bool pvclock_set_guest_stopped_request;
668 
669 	struct {
670 		u64 msr_val;
671 		u64 last_steal;
672 		struct gfn_to_hva_cache stime;
673 		struct kvm_steal_time steal;
674 	} st;
675 
676 	u64 tsc_offset;
677 	u64 last_guest_tsc;
678 	u64 last_host_tsc;
679 	u64 tsc_offset_adjustment;
680 	u64 this_tsc_nsec;
681 	u64 this_tsc_write;
682 	u64 this_tsc_generation;
683 	bool tsc_catchup;
684 	bool tsc_always_catchup;
685 	s8 virtual_tsc_shift;
686 	u32 virtual_tsc_mult;
687 	u32 virtual_tsc_khz;
688 	s64 ia32_tsc_adjust_msr;
689 	u64 msr_ia32_power_ctl;
690 	u64 tsc_scaling_ratio;
691 
692 	atomic_t nmi_queued;  /* unprocessed asynchronous NMIs */
693 	unsigned nmi_pending; /* NMI queued after currently running handler */
694 	bool nmi_injected;    /* Trying to inject an NMI this entry */
695 	bool smi_pending;    /* SMI queued after currently running handler */
696 
697 	struct kvm_mtrr mtrr_state;
698 	u64 pat;
699 
700 	unsigned switch_db_regs;
701 	unsigned long db[KVM_NR_DB_REGS];
702 	unsigned long dr6;
703 	unsigned long dr7;
704 	unsigned long eff_db[KVM_NR_DB_REGS];
705 	unsigned long guest_debug_dr7;
706 	u64 msr_platform_info;
707 	u64 msr_misc_features_enables;
708 
709 	u64 mcg_cap;
710 	u64 mcg_status;
711 	u64 mcg_ctl;
712 	u64 mcg_ext_ctl;
713 	u64 *mce_banks;
714 
715 	/* Cache MMIO info */
716 	u64 mmio_gva;
717 	unsigned access;
718 	gfn_t mmio_gfn;
719 	u64 mmio_gen;
720 
721 	struct kvm_pmu pmu;
722 
723 	/* used for guest single stepping over the given code position */
724 	unsigned long singlestep_rip;
725 
726 	struct kvm_vcpu_hv hyperv;
727 
728 	cpumask_var_t wbinvd_dirty_mask;
729 
730 	unsigned long last_retry_eip;
731 	unsigned long last_retry_addr;
732 
733 	struct {
734 		bool halted;
735 		gfn_t gfns[roundup_pow_of_two(ASYNC_PF_PER_VCPU)];
736 		struct gfn_to_hva_cache data;
737 		u64 msr_val;
738 		u32 id;
739 		bool send_user_only;
740 		u32 host_apf_reason;
741 		unsigned long nested_apf_token;
742 		bool delivery_as_pf_vmexit;
743 	} apf;
744 
745 	/* OSVW MSRs (AMD only) */
746 	struct {
747 		u64 length;
748 		u64 status;
749 	} osvw;
750 
751 	struct {
752 		u64 msr_val;
753 		struct gfn_to_hva_cache data;
754 	} pv_eoi;
755 
756 	u64 msr_kvm_poll_control;
757 
758 	/*
759 	 * Indicate whether the access faults on its page table in guest
760 	 * which is set when fix page fault and used to detect unhandeable
761 	 * instruction.
762 	 */
763 	bool write_fault_to_shadow_pgtable;
764 
765 	/* set at EPT violation at this point */
766 	unsigned long exit_qualification;
767 
768 	/* pv related host specific info */
769 	struct {
770 		bool pv_unhalted;
771 	} pv;
772 
773 	int pending_ioapic_eoi;
774 	int pending_external_vector;
775 
776 	/* GPA available */
777 	bool gpa_available;
778 	gpa_t gpa_val;
779 
780 	/* be preempted when it's in kernel-mode(cpl=0) */
781 	bool preempted_in_kernel;
782 
783 	/* Flush the L1 Data cache for L1TF mitigation on VMENTER */
784 	bool l1tf_flush_l1d;
785 
786 	/* AMD MSRC001_0015 Hardware Configuration */
787 	u64 msr_hwcr;
788 };
789 
790 struct kvm_lpage_info {
791 	int disallow_lpage;
792 };
793 
794 struct kvm_arch_memory_slot {
795 	struct kvm_rmap_head *rmap[KVM_NR_PAGE_SIZES];
796 	struct kvm_lpage_info *lpage_info[KVM_NR_PAGE_SIZES - 1];
797 	unsigned short *gfn_track[KVM_PAGE_TRACK_MAX];
798 };
799 
800 /*
801  * We use as the mode the number of bits allocated in the LDR for the
802  * logical processor ID.  It happens that these are all powers of two.
803  * This makes it is very easy to detect cases where the APICs are
804  * configured for multiple modes; in that case, we cannot use the map and
805  * hence cannot use kvm_irq_delivery_to_apic_fast either.
806  */
807 #define KVM_APIC_MODE_XAPIC_CLUSTER          4
808 #define KVM_APIC_MODE_XAPIC_FLAT             8
809 #define KVM_APIC_MODE_X2APIC                16
810 
811 struct kvm_apic_map {
812 	struct rcu_head rcu;
813 	u8 mode;
814 	u32 max_apic_id;
815 	union {
816 		struct kvm_lapic *xapic_flat_map[8];
817 		struct kvm_lapic *xapic_cluster_map[16][4];
818 	};
819 	struct kvm_lapic *phys_map[];
820 };
821 
822 /* Hyper-V emulation context */
823 struct kvm_hv {
824 	struct mutex hv_lock;
825 	u64 hv_guest_os_id;
826 	u64 hv_hypercall;
827 	u64 hv_tsc_page;
828 
829 	/* Hyper-v based guest crash (NT kernel bugcheck) parameters */
830 	u64 hv_crash_param[HV_X64_MSR_CRASH_PARAMS];
831 	u64 hv_crash_ctl;
832 
833 	HV_REFERENCE_TSC_PAGE tsc_ref;
834 
835 	struct idr conn_to_evt;
836 
837 	u64 hv_reenlightenment_control;
838 	u64 hv_tsc_emulation_control;
839 	u64 hv_tsc_emulation_status;
840 
841 	/* How many vCPUs have VP index != vCPU index */
842 	atomic_t num_mismatched_vp_indexes;
843 };
844 
845 enum kvm_irqchip_mode {
846 	KVM_IRQCHIP_NONE,
847 	KVM_IRQCHIP_KERNEL,       /* created with KVM_CREATE_IRQCHIP */
848 	KVM_IRQCHIP_SPLIT,        /* created with KVM_CAP_SPLIT_IRQCHIP */
849 };
850 
851 struct kvm_arch {
852 	unsigned long n_used_mmu_pages;
853 	unsigned long n_requested_mmu_pages;
854 	unsigned long n_max_mmu_pages;
855 	unsigned int indirect_shadow_pages;
856 	struct hlist_head mmu_page_hash[KVM_NUM_MMU_PAGES];
857 	/*
858 	 * Hash table of struct kvm_mmu_page.
859 	 */
860 	struct list_head active_mmu_pages;
861 	struct kvm_page_track_notifier_node mmu_sp_tracker;
862 	struct kvm_page_track_notifier_head track_notifier_head;
863 
864 	struct list_head assigned_dev_head;
865 	struct iommu_domain *iommu_domain;
866 	bool iommu_noncoherent;
867 #define __KVM_HAVE_ARCH_NONCOHERENT_DMA
868 	atomic_t noncoherent_dma_count;
869 #define __KVM_HAVE_ARCH_ASSIGNED_DEVICE
870 	atomic_t assigned_device_count;
871 	struct kvm_pic *vpic;
872 	struct kvm_ioapic *vioapic;
873 	struct kvm_pit *vpit;
874 	atomic_t vapics_in_nmi_mode;
875 	struct mutex apic_map_lock;
876 	struct kvm_apic_map *apic_map;
877 
878 	bool apic_access_page_done;
879 
880 	gpa_t wall_clock;
881 
882 	bool mwait_in_guest;
883 	bool hlt_in_guest;
884 	bool pause_in_guest;
885 	bool cstate_in_guest;
886 
887 	unsigned long irq_sources_bitmap;
888 	s64 kvmclock_offset;
889 	raw_spinlock_t tsc_write_lock;
890 	u64 last_tsc_nsec;
891 	u64 last_tsc_write;
892 	u32 last_tsc_khz;
893 	u64 cur_tsc_nsec;
894 	u64 cur_tsc_write;
895 	u64 cur_tsc_offset;
896 	u64 cur_tsc_generation;
897 	int nr_vcpus_matched_tsc;
898 
899 	spinlock_t pvclock_gtod_sync_lock;
900 	bool use_master_clock;
901 	u64 master_kernel_ns;
902 	u64 master_cycle_now;
903 	struct delayed_work kvmclock_update_work;
904 	struct delayed_work kvmclock_sync_work;
905 
906 	struct kvm_xen_hvm_config xen_hvm_config;
907 
908 	/* reads protected by irq_srcu, writes by irq_lock */
909 	struct hlist_head mask_notifier_list;
910 
911 	struct kvm_hv hyperv;
912 
913 	#ifdef CONFIG_KVM_MMU_AUDIT
914 	int audit_point;
915 	#endif
916 
917 	bool backwards_tsc_observed;
918 	bool boot_vcpu_runs_old_kvmclock;
919 	u32 bsp_vcpu_id;
920 
921 	u64 disabled_quirks;
922 
923 	enum kvm_irqchip_mode irqchip_mode;
924 	u8 nr_reserved_ioapic_pins;
925 
926 	bool disabled_lapic_found;
927 
928 	bool x2apic_format;
929 	bool x2apic_broadcast_quirk_disabled;
930 
931 	bool guest_can_read_msr_platform_info;
932 	bool exception_payload_enabled;
933 
934 	struct kvm_pmu_event_filter *pmu_event_filter;
935 };
936 
937 struct kvm_vm_stat {
938 	ulong mmu_shadow_zapped;
939 	ulong mmu_pte_write;
940 	ulong mmu_pte_updated;
941 	ulong mmu_pde_zapped;
942 	ulong mmu_flooded;
943 	ulong mmu_recycled;
944 	ulong mmu_cache_miss;
945 	ulong mmu_unsync;
946 	ulong remote_tlb_flush;
947 	ulong lpages;
948 	ulong max_mmu_page_hash_collisions;
949 };
950 
951 struct kvm_vcpu_stat {
952 	u64 pf_fixed;
953 	u64 pf_guest;
954 	u64 tlb_flush;
955 	u64 invlpg;
956 
957 	u64 exits;
958 	u64 io_exits;
959 	u64 mmio_exits;
960 	u64 signal_exits;
961 	u64 irq_window_exits;
962 	u64 nmi_window_exits;
963 	u64 l1d_flush;
964 	u64 halt_exits;
965 	u64 halt_successful_poll;
966 	u64 halt_attempted_poll;
967 	u64 halt_poll_invalid;
968 	u64 halt_wakeup;
969 	u64 request_irq_exits;
970 	u64 irq_exits;
971 	u64 host_state_reload;
972 	u64 fpu_reload;
973 	u64 insn_emulation;
974 	u64 insn_emulation_fail;
975 	u64 hypercalls;
976 	u64 irq_injections;
977 	u64 nmi_injections;
978 	u64 req_event;
979 };
980 
981 struct x86_instruction_info;
982 
983 struct msr_data {
984 	bool host_initiated;
985 	u32 index;
986 	u64 data;
987 };
988 
989 struct kvm_lapic_irq {
990 	u32 vector;
991 	u16 delivery_mode;
992 	u16 dest_mode;
993 	bool level;
994 	u16 trig_mode;
995 	u32 shorthand;
996 	u32 dest_id;
997 	bool msi_redir_hint;
998 };
999 
1000 struct kvm_x86_ops {
1001 	int (*cpu_has_kvm_support)(void);          /* __init */
1002 	int (*disabled_by_bios)(void);             /* __init */
1003 	int (*hardware_enable)(void);
1004 	void (*hardware_disable)(void);
1005 	int (*check_processor_compatibility)(void);/* __init */
1006 	int (*hardware_setup)(void);               /* __init */
1007 	void (*hardware_unsetup)(void);            /* __exit */
1008 	bool (*cpu_has_accelerated_tpr)(void);
1009 	bool (*has_emulated_msr)(int index);
1010 	void (*cpuid_update)(struct kvm_vcpu *vcpu);
1011 
1012 	struct kvm *(*vm_alloc)(void);
1013 	void (*vm_free)(struct kvm *);
1014 	int (*vm_init)(struct kvm *kvm);
1015 	void (*vm_destroy)(struct kvm *kvm);
1016 
1017 	/* Create, but do not attach this VCPU */
1018 	struct kvm_vcpu *(*vcpu_create)(struct kvm *kvm, unsigned id);
1019 	void (*vcpu_free)(struct kvm_vcpu *vcpu);
1020 	void (*vcpu_reset)(struct kvm_vcpu *vcpu, bool init_event);
1021 
1022 	void (*prepare_guest_switch)(struct kvm_vcpu *vcpu);
1023 	void (*vcpu_load)(struct kvm_vcpu *vcpu, int cpu);
1024 	void (*vcpu_put)(struct kvm_vcpu *vcpu);
1025 
1026 	void (*update_bp_intercept)(struct kvm_vcpu *vcpu);
1027 	int (*get_msr)(struct kvm_vcpu *vcpu, struct msr_data *msr);
1028 	int (*set_msr)(struct kvm_vcpu *vcpu, struct msr_data *msr);
1029 	u64 (*get_segment_base)(struct kvm_vcpu *vcpu, int seg);
1030 	void (*get_segment)(struct kvm_vcpu *vcpu,
1031 			    struct kvm_segment *var, int seg);
1032 	int (*get_cpl)(struct kvm_vcpu *vcpu);
1033 	void (*set_segment)(struct kvm_vcpu *vcpu,
1034 			    struct kvm_segment *var, int seg);
1035 	void (*get_cs_db_l_bits)(struct kvm_vcpu *vcpu, int *db, int *l);
1036 	void (*decache_cr0_guest_bits)(struct kvm_vcpu *vcpu);
1037 	void (*decache_cr3)(struct kvm_vcpu *vcpu);
1038 	void (*decache_cr4_guest_bits)(struct kvm_vcpu *vcpu);
1039 	void (*set_cr0)(struct kvm_vcpu *vcpu, unsigned long cr0);
1040 	void (*set_cr3)(struct kvm_vcpu *vcpu, unsigned long cr3);
1041 	int (*set_cr4)(struct kvm_vcpu *vcpu, unsigned long cr4);
1042 	void (*set_efer)(struct kvm_vcpu *vcpu, u64 efer);
1043 	void (*get_idt)(struct kvm_vcpu *vcpu, struct desc_ptr *dt);
1044 	void (*set_idt)(struct kvm_vcpu *vcpu, struct desc_ptr *dt);
1045 	void (*get_gdt)(struct kvm_vcpu *vcpu, struct desc_ptr *dt);
1046 	void (*set_gdt)(struct kvm_vcpu *vcpu, struct desc_ptr *dt);
1047 	u64 (*get_dr6)(struct kvm_vcpu *vcpu);
1048 	void (*set_dr6)(struct kvm_vcpu *vcpu, unsigned long value);
1049 	void (*sync_dirty_debug_regs)(struct kvm_vcpu *vcpu);
1050 	void (*set_dr7)(struct kvm_vcpu *vcpu, unsigned long value);
1051 	void (*cache_reg)(struct kvm_vcpu *vcpu, enum kvm_reg reg);
1052 	unsigned long (*get_rflags)(struct kvm_vcpu *vcpu);
1053 	void (*set_rflags)(struct kvm_vcpu *vcpu, unsigned long rflags);
1054 
1055 	void (*tlb_flush)(struct kvm_vcpu *vcpu, bool invalidate_gpa);
1056 	int  (*tlb_remote_flush)(struct kvm *kvm);
1057 	int  (*tlb_remote_flush_with_range)(struct kvm *kvm,
1058 			struct kvm_tlb_range *range);
1059 
1060 	/*
1061 	 * Flush any TLB entries associated with the given GVA.
1062 	 * Does not need to flush GPA->HPA mappings.
1063 	 * Can potentially get non-canonical addresses through INVLPGs, which
1064 	 * the implementation may choose to ignore if appropriate.
1065 	 */
1066 	void (*tlb_flush_gva)(struct kvm_vcpu *vcpu, gva_t addr);
1067 
1068 	void (*run)(struct kvm_vcpu *vcpu);
1069 	int (*handle_exit)(struct kvm_vcpu *vcpu);
1070 	void (*skip_emulated_instruction)(struct kvm_vcpu *vcpu);
1071 	void (*set_interrupt_shadow)(struct kvm_vcpu *vcpu, int mask);
1072 	u32 (*get_interrupt_shadow)(struct kvm_vcpu *vcpu);
1073 	void (*patch_hypercall)(struct kvm_vcpu *vcpu,
1074 				unsigned char *hypercall_addr);
1075 	void (*set_irq)(struct kvm_vcpu *vcpu);
1076 	void (*set_nmi)(struct kvm_vcpu *vcpu);
1077 	void (*queue_exception)(struct kvm_vcpu *vcpu);
1078 	void (*cancel_injection)(struct kvm_vcpu *vcpu);
1079 	int (*interrupt_allowed)(struct kvm_vcpu *vcpu);
1080 	int (*nmi_allowed)(struct kvm_vcpu *vcpu);
1081 	bool (*get_nmi_mask)(struct kvm_vcpu *vcpu);
1082 	void (*set_nmi_mask)(struct kvm_vcpu *vcpu, bool masked);
1083 	void (*enable_nmi_window)(struct kvm_vcpu *vcpu);
1084 	void (*enable_irq_window)(struct kvm_vcpu *vcpu);
1085 	void (*update_cr8_intercept)(struct kvm_vcpu *vcpu, int tpr, int irr);
1086 	bool (*get_enable_apicv)(struct kvm_vcpu *vcpu);
1087 	void (*refresh_apicv_exec_ctrl)(struct kvm_vcpu *vcpu);
1088 	void (*hwapic_irr_update)(struct kvm_vcpu *vcpu, int max_irr);
1089 	void (*hwapic_isr_update)(struct kvm_vcpu *vcpu, int isr);
1090 	bool (*guest_apic_has_interrupt)(struct kvm_vcpu *vcpu);
1091 	void (*load_eoi_exitmap)(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap);
1092 	void (*set_virtual_apic_mode)(struct kvm_vcpu *vcpu);
1093 	void (*set_apic_access_page_addr)(struct kvm_vcpu *vcpu, hpa_t hpa);
1094 	void (*deliver_posted_interrupt)(struct kvm_vcpu *vcpu, int vector);
1095 	int (*sync_pir_to_irr)(struct kvm_vcpu *vcpu);
1096 	int (*set_tss_addr)(struct kvm *kvm, unsigned int addr);
1097 	int (*set_identity_map_addr)(struct kvm *kvm, u64 ident_addr);
1098 	int (*get_tdp_level)(struct kvm_vcpu *vcpu);
1099 	u64 (*get_mt_mask)(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio);
1100 	int (*get_lpage_level)(void);
1101 	bool (*rdtscp_supported)(void);
1102 	bool (*invpcid_supported)(void);
1103 
1104 	void (*set_tdp_cr3)(struct kvm_vcpu *vcpu, unsigned long cr3);
1105 
1106 	void (*set_supported_cpuid)(u32 func, struct kvm_cpuid_entry2 *entry);
1107 
1108 	bool (*has_wbinvd_exit)(void);
1109 
1110 	u64 (*read_l1_tsc_offset)(struct kvm_vcpu *vcpu);
1111 	/* Returns actual tsc_offset set in active VMCS */
1112 	u64 (*write_l1_tsc_offset)(struct kvm_vcpu *vcpu, u64 offset);
1113 
1114 	void (*get_exit_info)(struct kvm_vcpu *vcpu, u64 *info1, u64 *info2);
1115 
1116 	int (*check_intercept)(struct kvm_vcpu *vcpu,
1117 			       struct x86_instruction_info *info,
1118 			       enum x86_intercept_stage stage);
1119 	void (*handle_exit_irqoff)(struct kvm_vcpu *vcpu);
1120 	bool (*mpx_supported)(void);
1121 	bool (*xsaves_supported)(void);
1122 	bool (*umip_emulated)(void);
1123 	bool (*pt_supported)(void);
1124 
1125 	int (*check_nested_events)(struct kvm_vcpu *vcpu, bool external_intr);
1126 	void (*request_immediate_exit)(struct kvm_vcpu *vcpu);
1127 
1128 	void (*sched_in)(struct kvm_vcpu *kvm, int cpu);
1129 
1130 	/*
1131 	 * Arch-specific dirty logging hooks. These hooks are only supposed to
1132 	 * be valid if the specific arch has hardware-accelerated dirty logging
1133 	 * mechanism. Currently only for PML on VMX.
1134 	 *
1135 	 *  - slot_enable_log_dirty:
1136 	 *	called when enabling log dirty mode for the slot.
1137 	 *  - slot_disable_log_dirty:
1138 	 *	called when disabling log dirty mode for the slot.
1139 	 *	also called when slot is created with log dirty disabled.
1140 	 *  - flush_log_dirty:
1141 	 *	called before reporting dirty_bitmap to userspace.
1142 	 *  - enable_log_dirty_pt_masked:
1143 	 *	called when reenabling log dirty for the GFNs in the mask after
1144 	 *	corresponding bits are cleared in slot->dirty_bitmap.
1145 	 */
1146 	void (*slot_enable_log_dirty)(struct kvm *kvm,
1147 				      struct kvm_memory_slot *slot);
1148 	void (*slot_disable_log_dirty)(struct kvm *kvm,
1149 				       struct kvm_memory_slot *slot);
1150 	void (*flush_log_dirty)(struct kvm *kvm);
1151 	void (*enable_log_dirty_pt_masked)(struct kvm *kvm,
1152 					   struct kvm_memory_slot *slot,
1153 					   gfn_t offset, unsigned long mask);
1154 	int (*write_log_dirty)(struct kvm_vcpu *vcpu);
1155 
1156 	/* pmu operations of sub-arch */
1157 	const struct kvm_pmu_ops *pmu_ops;
1158 
1159 	/*
1160 	 * Architecture specific hooks for vCPU blocking due to
1161 	 * HLT instruction.
1162 	 * Returns for .pre_block():
1163 	 *    - 0 means continue to block the vCPU.
1164 	 *    - 1 means we cannot block the vCPU since some event
1165 	 *        happens during this period, such as, 'ON' bit in
1166 	 *        posted-interrupts descriptor is set.
1167 	 */
1168 	int (*pre_block)(struct kvm_vcpu *vcpu);
1169 	void (*post_block)(struct kvm_vcpu *vcpu);
1170 
1171 	void (*vcpu_blocking)(struct kvm_vcpu *vcpu);
1172 	void (*vcpu_unblocking)(struct kvm_vcpu *vcpu);
1173 
1174 	int (*update_pi_irte)(struct kvm *kvm, unsigned int host_irq,
1175 			      uint32_t guest_irq, bool set);
1176 	void (*apicv_post_state_restore)(struct kvm_vcpu *vcpu);
1177 
1178 	int (*set_hv_timer)(struct kvm_vcpu *vcpu, u64 guest_deadline_tsc,
1179 			    bool *expired);
1180 	void (*cancel_hv_timer)(struct kvm_vcpu *vcpu);
1181 
1182 	void (*setup_mce)(struct kvm_vcpu *vcpu);
1183 
1184 	int (*get_nested_state)(struct kvm_vcpu *vcpu,
1185 				struct kvm_nested_state __user *user_kvm_nested_state,
1186 				unsigned user_data_size);
1187 	int (*set_nested_state)(struct kvm_vcpu *vcpu,
1188 				struct kvm_nested_state __user *user_kvm_nested_state,
1189 				struct kvm_nested_state *kvm_state);
1190 	void (*get_vmcs12_pages)(struct kvm_vcpu *vcpu);
1191 
1192 	int (*smi_allowed)(struct kvm_vcpu *vcpu);
1193 	int (*pre_enter_smm)(struct kvm_vcpu *vcpu, char *smstate);
1194 	int (*pre_leave_smm)(struct kvm_vcpu *vcpu, const char *smstate);
1195 	int (*enable_smi_window)(struct kvm_vcpu *vcpu);
1196 
1197 	int (*mem_enc_op)(struct kvm *kvm, void __user *argp);
1198 	int (*mem_enc_reg_region)(struct kvm *kvm, struct kvm_enc_region *argp);
1199 	int (*mem_enc_unreg_region)(struct kvm *kvm, struct kvm_enc_region *argp);
1200 
1201 	int (*get_msr_feature)(struct kvm_msr_entry *entry);
1202 
1203 	int (*nested_enable_evmcs)(struct kvm_vcpu *vcpu,
1204 				   uint16_t *vmcs_version);
1205 	uint16_t (*nested_get_evmcs_version)(struct kvm_vcpu *vcpu);
1206 
1207 	bool (*need_emulation_on_page_fault)(struct kvm_vcpu *vcpu);
1208 };
1209 
1210 struct kvm_arch_async_pf {
1211 	u32 token;
1212 	gfn_t gfn;
1213 	unsigned long cr3;
1214 	bool direct_map;
1215 };
1216 
1217 extern struct kvm_x86_ops *kvm_x86_ops;
1218 extern struct kmem_cache *x86_fpu_cache;
1219 
1220 #define __KVM_HAVE_ARCH_VM_ALLOC
1221 static inline struct kvm *kvm_arch_alloc_vm(void)
1222 {
1223 	return kvm_x86_ops->vm_alloc();
1224 }
1225 
1226 static inline void kvm_arch_free_vm(struct kvm *kvm)
1227 {
1228 	return kvm_x86_ops->vm_free(kvm);
1229 }
1230 
1231 #define __KVM_HAVE_ARCH_FLUSH_REMOTE_TLB
1232 static inline int kvm_arch_flush_remote_tlb(struct kvm *kvm)
1233 {
1234 	if (kvm_x86_ops->tlb_remote_flush &&
1235 	    !kvm_x86_ops->tlb_remote_flush(kvm))
1236 		return 0;
1237 	else
1238 		return -ENOTSUPP;
1239 }
1240 
1241 int kvm_mmu_module_init(void);
1242 void kvm_mmu_module_exit(void);
1243 
1244 void kvm_mmu_destroy(struct kvm_vcpu *vcpu);
1245 int kvm_mmu_create(struct kvm_vcpu *vcpu);
1246 void kvm_mmu_init_vm(struct kvm *kvm);
1247 void kvm_mmu_uninit_vm(struct kvm *kvm);
1248 void kvm_mmu_set_mask_ptes(u64 user_mask, u64 accessed_mask,
1249 		u64 dirty_mask, u64 nx_mask, u64 x_mask, u64 p_mask,
1250 		u64 acc_track_mask, u64 me_mask);
1251 
1252 void kvm_mmu_reset_context(struct kvm_vcpu *vcpu);
1253 void kvm_mmu_slot_remove_write_access(struct kvm *kvm,
1254 				      struct kvm_memory_slot *memslot);
1255 void kvm_mmu_zap_collapsible_sptes(struct kvm *kvm,
1256 				   const struct kvm_memory_slot *memslot);
1257 void kvm_mmu_slot_leaf_clear_dirty(struct kvm *kvm,
1258 				   struct kvm_memory_slot *memslot);
1259 void kvm_mmu_slot_largepage_remove_write_access(struct kvm *kvm,
1260 					struct kvm_memory_slot *memslot);
1261 void kvm_mmu_slot_set_dirty(struct kvm *kvm,
1262 			    struct kvm_memory_slot *memslot);
1263 void kvm_mmu_clear_dirty_pt_masked(struct kvm *kvm,
1264 				   struct kvm_memory_slot *slot,
1265 				   gfn_t gfn_offset, unsigned long mask);
1266 void kvm_mmu_zap_all(struct kvm *kvm);
1267 void kvm_mmu_invalidate_mmio_sptes(struct kvm *kvm, u64 gen);
1268 unsigned long kvm_mmu_calculate_default_mmu_pages(struct kvm *kvm);
1269 void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned long kvm_nr_mmu_pages);
1270 
1271 int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3);
1272 bool pdptrs_changed(struct kvm_vcpu *vcpu);
1273 
1274 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
1275 			  const void *val, int bytes);
1276 
1277 struct kvm_irq_mask_notifier {
1278 	void (*func)(struct kvm_irq_mask_notifier *kimn, bool masked);
1279 	int irq;
1280 	struct hlist_node link;
1281 };
1282 
1283 void kvm_register_irq_mask_notifier(struct kvm *kvm, int irq,
1284 				    struct kvm_irq_mask_notifier *kimn);
1285 void kvm_unregister_irq_mask_notifier(struct kvm *kvm, int irq,
1286 				      struct kvm_irq_mask_notifier *kimn);
1287 void kvm_fire_mask_notifiers(struct kvm *kvm, unsigned irqchip, unsigned pin,
1288 			     bool mask);
1289 
1290 extern bool tdp_enabled;
1291 
1292 u64 vcpu_tsc_khz(struct kvm_vcpu *vcpu);
1293 
1294 /* control of guest tsc rate supported? */
1295 extern bool kvm_has_tsc_control;
1296 /* maximum supported tsc_khz for guests */
1297 extern u32  kvm_max_guest_tsc_khz;
1298 /* number of bits of the fractional part of the TSC scaling ratio */
1299 extern u8   kvm_tsc_scaling_ratio_frac_bits;
1300 /* maximum allowed value of TSC scaling ratio */
1301 extern u64  kvm_max_tsc_scaling_ratio;
1302 /* 1ull << kvm_tsc_scaling_ratio_frac_bits */
1303 extern u64  kvm_default_tsc_scaling_ratio;
1304 
1305 extern u64 kvm_mce_cap_supported;
1306 
1307 enum emulation_result {
1308 	EMULATE_DONE,         /* no further processing */
1309 	EMULATE_USER_EXIT,    /* kvm_run ready for userspace exit */
1310 	EMULATE_FAIL,         /* can't emulate this instruction */
1311 };
1312 
1313 #define EMULTYPE_NO_DECODE	    (1 << 0)
1314 #define EMULTYPE_TRAP_UD	    (1 << 1)
1315 #define EMULTYPE_SKIP		    (1 << 2)
1316 #define EMULTYPE_ALLOW_RETRY	    (1 << 3)
1317 #define EMULTYPE_NO_UD_ON_FAIL	    (1 << 4)
1318 #define EMULTYPE_VMWARE		    (1 << 5)
1319 int kvm_emulate_instruction(struct kvm_vcpu *vcpu, int emulation_type);
1320 int kvm_emulate_instruction_from_buffer(struct kvm_vcpu *vcpu,
1321 					void *insn, int insn_len);
1322 
1323 void kvm_enable_efer_bits(u64);
1324 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer);
1325 int kvm_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr);
1326 int kvm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr);
1327 
1328 struct x86_emulate_ctxt;
1329 
1330 int kvm_fast_pio(struct kvm_vcpu *vcpu, int size, unsigned short port, int in);
1331 int kvm_emulate_cpuid(struct kvm_vcpu *vcpu);
1332 int kvm_emulate_halt(struct kvm_vcpu *vcpu);
1333 int kvm_vcpu_halt(struct kvm_vcpu *vcpu);
1334 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu);
1335 
1336 void kvm_get_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg);
1337 int kvm_load_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector, int seg);
1338 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector);
1339 
1340 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
1341 		    int reason, bool has_error_code, u32 error_code);
1342 
1343 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0);
1344 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3);
1345 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4);
1346 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8);
1347 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val);
1348 int kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val);
1349 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu);
1350 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw);
1351 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l);
1352 int kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr);
1353 
1354 int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr);
1355 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr);
1356 
1357 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu);
1358 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags);
1359 bool kvm_rdpmc(struct kvm_vcpu *vcpu);
1360 
1361 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr);
1362 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code);
1363 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr);
1364 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code);
1365 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault);
1366 int kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
1367 			    gfn_t gfn, void *data, int offset, int len,
1368 			    u32 access);
1369 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl);
1370 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr);
1371 
1372 static inline int __kvm_irq_line_state(unsigned long *irq_state,
1373 				       int irq_source_id, int level)
1374 {
1375 	/* Logical OR for level trig interrupt */
1376 	if (level)
1377 		__set_bit(irq_source_id, irq_state);
1378 	else
1379 		__clear_bit(irq_source_id, irq_state);
1380 
1381 	return !!(*irq_state);
1382 }
1383 
1384 #define KVM_MMU_ROOT_CURRENT		BIT(0)
1385 #define KVM_MMU_ROOT_PREVIOUS(i)	BIT(1+i)
1386 #define KVM_MMU_ROOTS_ALL		(~0UL)
1387 
1388 int kvm_pic_set_irq(struct kvm_pic *pic, int irq, int irq_source_id, int level);
1389 void kvm_pic_clear_all(struct kvm_pic *pic, int irq_source_id);
1390 
1391 void kvm_inject_nmi(struct kvm_vcpu *vcpu);
1392 
1393 int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn);
1394 int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva);
1395 void __kvm_mmu_free_some_pages(struct kvm_vcpu *vcpu);
1396 int kvm_mmu_load(struct kvm_vcpu *vcpu);
1397 void kvm_mmu_unload(struct kvm_vcpu *vcpu);
1398 void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu);
1399 void kvm_mmu_free_roots(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
1400 			ulong roots_to_free);
1401 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access,
1402 			   struct x86_exception *exception);
1403 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
1404 			      struct x86_exception *exception);
1405 gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva,
1406 			       struct x86_exception *exception);
1407 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
1408 			       struct x86_exception *exception);
1409 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
1410 				struct x86_exception *exception);
1411 
1412 void kvm_vcpu_deactivate_apicv(struct kvm_vcpu *vcpu);
1413 
1414 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu);
1415 
1416 int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gva_t gva, u64 error_code,
1417 		       void *insn, int insn_len);
1418 void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva);
1419 void kvm_mmu_invpcid_gva(struct kvm_vcpu *vcpu, gva_t gva, unsigned long pcid);
1420 void kvm_mmu_new_cr3(struct kvm_vcpu *vcpu, gpa_t new_cr3, bool skip_tlb_flush);
1421 
1422 void kvm_enable_tdp(void);
1423 void kvm_disable_tdp(void);
1424 
1425 static inline gpa_t translate_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access,
1426 				  struct x86_exception *exception)
1427 {
1428 	return gpa;
1429 }
1430 
1431 static inline struct kvm_mmu_page *page_header(hpa_t shadow_page)
1432 {
1433 	struct page *page = pfn_to_page(shadow_page >> PAGE_SHIFT);
1434 
1435 	return (struct kvm_mmu_page *)page_private(page);
1436 }
1437 
1438 static inline u16 kvm_read_ldt(void)
1439 {
1440 	u16 ldt;
1441 	asm("sldt %0" : "=g"(ldt));
1442 	return ldt;
1443 }
1444 
1445 static inline void kvm_load_ldt(u16 sel)
1446 {
1447 	asm("lldt %0" : : "rm"(sel));
1448 }
1449 
1450 #ifdef CONFIG_X86_64
1451 static inline unsigned long read_msr(unsigned long msr)
1452 {
1453 	u64 value;
1454 
1455 	rdmsrl(msr, value);
1456 	return value;
1457 }
1458 #endif
1459 
1460 static inline u32 get_rdx_init_val(void)
1461 {
1462 	return 0x600; /* P6 family */
1463 }
1464 
1465 static inline void kvm_inject_gp(struct kvm_vcpu *vcpu, u32 error_code)
1466 {
1467 	kvm_queue_exception_e(vcpu, GP_VECTOR, error_code);
1468 }
1469 
1470 #define TSS_IOPB_BASE_OFFSET 0x66
1471 #define TSS_BASE_SIZE 0x68
1472 #define TSS_IOPB_SIZE (65536 / 8)
1473 #define TSS_REDIRECTION_SIZE (256 / 8)
1474 #define RMODE_TSS_SIZE							\
1475 	(TSS_BASE_SIZE + TSS_REDIRECTION_SIZE + TSS_IOPB_SIZE + 1)
1476 
1477 enum {
1478 	TASK_SWITCH_CALL = 0,
1479 	TASK_SWITCH_IRET = 1,
1480 	TASK_SWITCH_JMP = 2,
1481 	TASK_SWITCH_GATE = 3,
1482 };
1483 
1484 #define HF_GIF_MASK		(1 << 0)
1485 #define HF_HIF_MASK		(1 << 1)
1486 #define HF_VINTR_MASK		(1 << 2)
1487 #define HF_NMI_MASK		(1 << 3)
1488 #define HF_IRET_MASK		(1 << 4)
1489 #define HF_GUEST_MASK		(1 << 5) /* VCPU is in guest-mode */
1490 #define HF_SMM_MASK		(1 << 6)
1491 #define HF_SMM_INSIDE_NMI_MASK	(1 << 7)
1492 
1493 #define __KVM_VCPU_MULTIPLE_ADDRESS_SPACE
1494 #define KVM_ADDRESS_SPACE_NUM 2
1495 
1496 #define kvm_arch_vcpu_memslots_id(vcpu) ((vcpu)->arch.hflags & HF_SMM_MASK ? 1 : 0)
1497 #define kvm_memslots_for_spte_role(kvm, role) __kvm_memslots(kvm, (role).smm)
1498 
1499 asmlinkage void __noreturn kvm_spurious_fault(void);
1500 
1501 /*
1502  * Hardware virtualization extension instructions may fault if a
1503  * reboot turns off virtualization while processes are running.
1504  * Usually after catching the fault we just panic; during reboot
1505  * instead the instruction is ignored.
1506  */
1507 #define ____kvm_handle_fault_on_reboot(insn, cleanup_insn)		\
1508 	"666: \n\t"							\
1509 	insn "\n\t"							\
1510 	"jmp	668f \n\t"						\
1511 	"667: \n\t"							\
1512 	"call	kvm_spurious_fault \n\t"				\
1513 	"668: \n\t"							\
1514 	".pushsection .fixup, \"ax\" \n\t"				\
1515 	"700: \n\t"							\
1516 	cleanup_insn "\n\t"						\
1517 	"cmpb	$0, kvm_rebooting\n\t"					\
1518 	"je	667b \n\t"						\
1519 	"jmp	668b \n\t"						\
1520 	".popsection \n\t"						\
1521 	_ASM_EXTABLE(666b, 700b)
1522 
1523 #define __kvm_handle_fault_on_reboot(insn)		\
1524 	____kvm_handle_fault_on_reboot(insn, "")
1525 
1526 #define KVM_ARCH_WANT_MMU_NOTIFIER
1527 int kvm_unmap_hva_range(struct kvm *kvm, unsigned long start, unsigned long end);
1528 int kvm_age_hva(struct kvm *kvm, unsigned long start, unsigned long end);
1529 int kvm_test_age_hva(struct kvm *kvm, unsigned long hva);
1530 int kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte);
1531 int kvm_cpu_has_injectable_intr(struct kvm_vcpu *v);
1532 int kvm_cpu_has_interrupt(struct kvm_vcpu *vcpu);
1533 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu);
1534 int kvm_cpu_get_interrupt(struct kvm_vcpu *v);
1535 void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event);
1536 void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu);
1537 
1538 int kvm_pv_send_ipi(struct kvm *kvm, unsigned long ipi_bitmap_low,
1539 		    unsigned long ipi_bitmap_high, u32 min,
1540 		    unsigned long icr, int op_64_bit);
1541 
1542 void kvm_define_shared_msr(unsigned index, u32 msr);
1543 int kvm_set_shared_msr(unsigned index, u64 val, u64 mask);
1544 
1545 u64 kvm_scale_tsc(struct kvm_vcpu *vcpu, u64 tsc);
1546 u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc);
1547 
1548 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu);
1549 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip);
1550 
1551 void kvm_make_mclock_inprogress_request(struct kvm *kvm);
1552 void kvm_make_scan_ioapic_request(struct kvm *kvm);
1553 
1554 void kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
1555 				     struct kvm_async_pf *work);
1556 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
1557 				 struct kvm_async_pf *work);
1558 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu,
1559 			       struct kvm_async_pf *work);
1560 bool kvm_arch_can_inject_async_page_present(struct kvm_vcpu *vcpu);
1561 extern bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn);
1562 
1563 int kvm_skip_emulated_instruction(struct kvm_vcpu *vcpu);
1564 int kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err);
1565 void __kvm_request_immediate_exit(struct kvm_vcpu *vcpu);
1566 
1567 int kvm_is_in_guest(void);
1568 
1569 int __x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, u32 size);
1570 int x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, u32 size);
1571 bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu);
1572 bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu);
1573 
1574 bool kvm_intr_is_single_vcpu(struct kvm *kvm, struct kvm_lapic_irq *irq,
1575 			     struct kvm_vcpu **dest_vcpu);
1576 
1577 void kvm_set_msi_irq(struct kvm *kvm, struct kvm_kernel_irq_routing_entry *e,
1578 		     struct kvm_lapic_irq *irq);
1579 
1580 static inline void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu)
1581 {
1582 	if (kvm_x86_ops->vcpu_blocking)
1583 		kvm_x86_ops->vcpu_blocking(vcpu);
1584 }
1585 
1586 static inline void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu)
1587 {
1588 	if (kvm_x86_ops->vcpu_unblocking)
1589 		kvm_x86_ops->vcpu_unblocking(vcpu);
1590 }
1591 
1592 static inline void kvm_arch_vcpu_block_finish(struct kvm_vcpu *vcpu) {}
1593 
1594 static inline int kvm_cpu_get_apicid(int mps_cpu)
1595 {
1596 #ifdef CONFIG_X86_LOCAL_APIC
1597 	return default_cpu_present_to_apicid(mps_cpu);
1598 #else
1599 	WARN_ON_ONCE(1);
1600 	return BAD_APICID;
1601 #endif
1602 }
1603 
1604 #define put_smstate(type, buf, offset, val)                      \
1605 	*(type *)((buf) + (offset) - 0x7e00) = val
1606 
1607 #define GET_SMSTATE(type, buf, offset)		\
1608 	(*(type *)((buf) + (offset) - 0x7e00))
1609 
1610 #endif /* _ASM_X86_KVM_HOST_H */
1611