1 /* 2 * Kernel-based Virtual Machine driver for Linux 3 * 4 * This header defines architecture specific interfaces, x86 version 5 * 6 * This work is licensed under the terms of the GNU GPL, version 2. See 7 * the COPYING file in the top-level directory. 8 * 9 */ 10 11 #ifndef _ASM_X86_KVM_HOST_H 12 #define _ASM_X86_KVM_HOST_H 13 14 #include <linux/types.h> 15 #include <linux/mm.h> 16 #include <linux/mmu_notifier.h> 17 #include <linux/tracepoint.h> 18 #include <linux/cpumask.h> 19 #include <linux/irq_work.h> 20 #include <linux/irq.h> 21 22 #include <linux/kvm.h> 23 #include <linux/kvm_para.h> 24 #include <linux/kvm_types.h> 25 #include <linux/perf_event.h> 26 #include <linux/pvclock_gtod.h> 27 #include <linux/clocksource.h> 28 #include <linux/irqbypass.h> 29 #include <linux/hyperv.h> 30 31 #include <asm/apic.h> 32 #include <asm/pvclock-abi.h> 33 #include <asm/desc.h> 34 #include <asm/mtrr.h> 35 #include <asm/msr-index.h> 36 #include <asm/asm.h> 37 #include <asm/kvm_page_track.h> 38 #include <asm/kvm_vcpu_regs.h> 39 #include <asm/hyperv-tlfs.h> 40 41 #define KVM_MAX_VCPUS 288 42 #define KVM_SOFT_MAX_VCPUS 240 43 #define KVM_MAX_VCPU_ID 1023 44 #define KVM_USER_MEM_SLOTS 509 45 /* memory slots that are not exposed to userspace */ 46 #define KVM_PRIVATE_MEM_SLOTS 3 47 #define KVM_MEM_SLOTS_NUM (KVM_USER_MEM_SLOTS + KVM_PRIVATE_MEM_SLOTS) 48 49 #define KVM_HALT_POLL_NS_DEFAULT 200000 50 51 #define KVM_IRQCHIP_NUM_PINS KVM_IOAPIC_NUM_PINS 52 53 /* x86-specific vcpu->requests bit members */ 54 #define KVM_REQ_MIGRATE_TIMER KVM_ARCH_REQ(0) 55 #define KVM_REQ_REPORT_TPR_ACCESS KVM_ARCH_REQ(1) 56 #define KVM_REQ_TRIPLE_FAULT KVM_ARCH_REQ(2) 57 #define KVM_REQ_MMU_SYNC KVM_ARCH_REQ(3) 58 #define KVM_REQ_CLOCK_UPDATE KVM_ARCH_REQ(4) 59 #define KVM_REQ_LOAD_CR3 KVM_ARCH_REQ(5) 60 #define KVM_REQ_EVENT KVM_ARCH_REQ(6) 61 #define KVM_REQ_APF_HALT KVM_ARCH_REQ(7) 62 #define KVM_REQ_STEAL_UPDATE KVM_ARCH_REQ(8) 63 #define KVM_REQ_NMI KVM_ARCH_REQ(9) 64 #define KVM_REQ_PMU KVM_ARCH_REQ(10) 65 #define KVM_REQ_PMI KVM_ARCH_REQ(11) 66 #define KVM_REQ_SMI KVM_ARCH_REQ(12) 67 #define KVM_REQ_MASTERCLOCK_UPDATE KVM_ARCH_REQ(13) 68 #define KVM_REQ_MCLOCK_INPROGRESS \ 69 KVM_ARCH_REQ_FLAGS(14, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP) 70 #define KVM_REQ_SCAN_IOAPIC \ 71 KVM_ARCH_REQ_FLAGS(15, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP) 72 #define KVM_REQ_GLOBAL_CLOCK_UPDATE KVM_ARCH_REQ(16) 73 #define KVM_REQ_APIC_PAGE_RELOAD \ 74 KVM_ARCH_REQ_FLAGS(17, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP) 75 #define KVM_REQ_HV_CRASH KVM_ARCH_REQ(18) 76 #define KVM_REQ_IOAPIC_EOI_EXIT KVM_ARCH_REQ(19) 77 #define KVM_REQ_HV_RESET KVM_ARCH_REQ(20) 78 #define KVM_REQ_HV_EXIT KVM_ARCH_REQ(21) 79 #define KVM_REQ_HV_STIMER KVM_ARCH_REQ(22) 80 #define KVM_REQ_LOAD_EOI_EXITMAP KVM_ARCH_REQ(23) 81 #define KVM_REQ_GET_VMCS12_PAGES KVM_ARCH_REQ(24) 82 83 #define CR0_RESERVED_BITS \ 84 (~(unsigned long)(X86_CR0_PE | X86_CR0_MP | X86_CR0_EM | X86_CR0_TS \ 85 | X86_CR0_ET | X86_CR0_NE | X86_CR0_WP | X86_CR0_AM \ 86 | X86_CR0_NW | X86_CR0_CD | X86_CR0_PG)) 87 88 #define CR4_RESERVED_BITS \ 89 (~(unsigned long)(X86_CR4_VME | X86_CR4_PVI | X86_CR4_TSD | X86_CR4_DE\ 90 | X86_CR4_PSE | X86_CR4_PAE | X86_CR4_MCE \ 91 | X86_CR4_PGE | X86_CR4_PCE | X86_CR4_OSFXSR | X86_CR4_PCIDE \ 92 | X86_CR4_OSXSAVE | X86_CR4_SMEP | X86_CR4_FSGSBASE \ 93 | X86_CR4_OSXMMEXCPT | X86_CR4_LA57 | X86_CR4_VMXE \ 94 | X86_CR4_SMAP | X86_CR4_PKE | X86_CR4_UMIP)) 95 96 #define CR8_RESERVED_BITS (~(unsigned long)X86_CR8_TPR) 97 98 99 100 #define INVALID_PAGE (~(hpa_t)0) 101 #define VALID_PAGE(x) ((x) != INVALID_PAGE) 102 103 #define UNMAPPED_GVA (~(gpa_t)0) 104 105 /* KVM Hugepage definitions for x86 */ 106 enum { 107 PT_PAGE_TABLE_LEVEL = 1, 108 PT_DIRECTORY_LEVEL = 2, 109 PT_PDPE_LEVEL = 3, 110 /* set max level to the biggest one */ 111 PT_MAX_HUGEPAGE_LEVEL = PT_PDPE_LEVEL, 112 }; 113 #define KVM_NR_PAGE_SIZES (PT_MAX_HUGEPAGE_LEVEL - \ 114 PT_PAGE_TABLE_LEVEL + 1) 115 #define KVM_HPAGE_GFN_SHIFT(x) (((x) - 1) * 9) 116 #define KVM_HPAGE_SHIFT(x) (PAGE_SHIFT + KVM_HPAGE_GFN_SHIFT(x)) 117 #define KVM_HPAGE_SIZE(x) (1UL << KVM_HPAGE_SHIFT(x)) 118 #define KVM_HPAGE_MASK(x) (~(KVM_HPAGE_SIZE(x) - 1)) 119 #define KVM_PAGES_PER_HPAGE(x) (KVM_HPAGE_SIZE(x) / PAGE_SIZE) 120 121 static inline gfn_t gfn_to_index(gfn_t gfn, gfn_t base_gfn, int level) 122 { 123 /* KVM_HPAGE_GFN_SHIFT(PT_PAGE_TABLE_LEVEL) must be 0. */ 124 return (gfn >> KVM_HPAGE_GFN_SHIFT(level)) - 125 (base_gfn >> KVM_HPAGE_GFN_SHIFT(level)); 126 } 127 128 #define KVM_PERMILLE_MMU_PAGES 20 129 #define KVM_MIN_ALLOC_MMU_PAGES 64UL 130 #define KVM_MMU_HASH_SHIFT 12 131 #define KVM_NUM_MMU_PAGES (1 << KVM_MMU_HASH_SHIFT) 132 #define KVM_MIN_FREE_MMU_PAGES 5 133 #define KVM_REFILL_PAGES 25 134 #define KVM_MAX_CPUID_ENTRIES 80 135 #define KVM_NR_FIXED_MTRR_REGION 88 136 #define KVM_NR_VAR_MTRR 8 137 138 #define ASYNC_PF_PER_VCPU 64 139 140 enum kvm_reg { 141 VCPU_REGS_RAX = __VCPU_REGS_RAX, 142 VCPU_REGS_RCX = __VCPU_REGS_RCX, 143 VCPU_REGS_RDX = __VCPU_REGS_RDX, 144 VCPU_REGS_RBX = __VCPU_REGS_RBX, 145 VCPU_REGS_RSP = __VCPU_REGS_RSP, 146 VCPU_REGS_RBP = __VCPU_REGS_RBP, 147 VCPU_REGS_RSI = __VCPU_REGS_RSI, 148 VCPU_REGS_RDI = __VCPU_REGS_RDI, 149 #ifdef CONFIG_X86_64 150 VCPU_REGS_R8 = __VCPU_REGS_R8, 151 VCPU_REGS_R9 = __VCPU_REGS_R9, 152 VCPU_REGS_R10 = __VCPU_REGS_R10, 153 VCPU_REGS_R11 = __VCPU_REGS_R11, 154 VCPU_REGS_R12 = __VCPU_REGS_R12, 155 VCPU_REGS_R13 = __VCPU_REGS_R13, 156 VCPU_REGS_R14 = __VCPU_REGS_R14, 157 VCPU_REGS_R15 = __VCPU_REGS_R15, 158 #endif 159 VCPU_REGS_RIP, 160 NR_VCPU_REGS 161 }; 162 163 enum kvm_reg_ex { 164 VCPU_EXREG_PDPTR = NR_VCPU_REGS, 165 VCPU_EXREG_CR3, 166 VCPU_EXREG_RFLAGS, 167 VCPU_EXREG_SEGMENTS, 168 }; 169 170 enum { 171 VCPU_SREG_ES, 172 VCPU_SREG_CS, 173 VCPU_SREG_SS, 174 VCPU_SREG_DS, 175 VCPU_SREG_FS, 176 VCPU_SREG_GS, 177 VCPU_SREG_TR, 178 VCPU_SREG_LDTR, 179 }; 180 181 #include <asm/kvm_emulate.h> 182 183 #define KVM_NR_MEM_OBJS 40 184 185 #define KVM_NR_DB_REGS 4 186 187 #define DR6_BD (1 << 13) 188 #define DR6_BS (1 << 14) 189 #define DR6_BT (1 << 15) 190 #define DR6_RTM (1 << 16) 191 #define DR6_FIXED_1 0xfffe0ff0 192 #define DR6_INIT 0xffff0ff0 193 #define DR6_VOLATILE 0x0001e00f 194 195 #define DR7_BP_EN_MASK 0x000000ff 196 #define DR7_GE (1 << 9) 197 #define DR7_GD (1 << 13) 198 #define DR7_FIXED_1 0x00000400 199 #define DR7_VOLATILE 0xffff2bff 200 201 #define PFERR_PRESENT_BIT 0 202 #define PFERR_WRITE_BIT 1 203 #define PFERR_USER_BIT 2 204 #define PFERR_RSVD_BIT 3 205 #define PFERR_FETCH_BIT 4 206 #define PFERR_PK_BIT 5 207 #define PFERR_GUEST_FINAL_BIT 32 208 #define PFERR_GUEST_PAGE_BIT 33 209 210 #define PFERR_PRESENT_MASK (1U << PFERR_PRESENT_BIT) 211 #define PFERR_WRITE_MASK (1U << PFERR_WRITE_BIT) 212 #define PFERR_USER_MASK (1U << PFERR_USER_BIT) 213 #define PFERR_RSVD_MASK (1U << PFERR_RSVD_BIT) 214 #define PFERR_FETCH_MASK (1U << PFERR_FETCH_BIT) 215 #define PFERR_PK_MASK (1U << PFERR_PK_BIT) 216 #define PFERR_GUEST_FINAL_MASK (1ULL << PFERR_GUEST_FINAL_BIT) 217 #define PFERR_GUEST_PAGE_MASK (1ULL << PFERR_GUEST_PAGE_BIT) 218 219 #define PFERR_NESTED_GUEST_PAGE (PFERR_GUEST_PAGE_MASK | \ 220 PFERR_WRITE_MASK | \ 221 PFERR_PRESENT_MASK) 222 223 /* 224 * The mask used to denote special SPTEs, which can be either MMIO SPTEs or 225 * Access Tracking SPTEs. We use bit 62 instead of bit 63 to avoid conflicting 226 * with the SVE bit in EPT PTEs. 227 */ 228 #define SPTE_SPECIAL_MASK (1ULL << 62) 229 230 /* apic attention bits */ 231 #define KVM_APIC_CHECK_VAPIC 0 232 /* 233 * The following bit is set with PV-EOI, unset on EOI. 234 * We detect PV-EOI changes by guest by comparing 235 * this bit with PV-EOI in guest memory. 236 * See the implementation in apic_update_pv_eoi. 237 */ 238 #define KVM_APIC_PV_EOI_PENDING 1 239 240 struct kvm_kernel_irq_routing_entry; 241 242 /* 243 * We don't want allocation failures within the mmu code, so we preallocate 244 * enough memory for a single page fault in a cache. 245 */ 246 struct kvm_mmu_memory_cache { 247 int nobjs; 248 void *objects[KVM_NR_MEM_OBJS]; 249 }; 250 251 /* 252 * the pages used as guest page table on soft mmu are tracked by 253 * kvm_memory_slot.arch.gfn_track which is 16 bits, so the role bits used 254 * by indirect shadow page can not be more than 15 bits. 255 * 256 * Currently, we used 14 bits that are @level, @gpte_is_8_bytes, @quadrant, @access, 257 * @nxe, @cr0_wp, @smep_andnot_wp and @smap_andnot_wp. 258 */ 259 union kvm_mmu_page_role { 260 u32 word; 261 struct { 262 unsigned level:4; 263 unsigned gpte_is_8_bytes:1; 264 unsigned quadrant:2; 265 unsigned direct:1; 266 unsigned access:3; 267 unsigned invalid:1; 268 unsigned nxe:1; 269 unsigned cr0_wp:1; 270 unsigned smep_andnot_wp:1; 271 unsigned smap_andnot_wp:1; 272 unsigned ad_disabled:1; 273 unsigned guest_mode:1; 274 unsigned :6; 275 276 /* 277 * This is left at the top of the word so that 278 * kvm_memslots_for_spte_role can extract it with a 279 * simple shift. While there is room, give it a whole 280 * byte so it is also faster to load it from memory. 281 */ 282 unsigned smm:8; 283 }; 284 }; 285 286 union kvm_mmu_extended_role { 287 /* 288 * This structure complements kvm_mmu_page_role caching everything needed for 289 * MMU configuration. If nothing in both these structures changed, MMU 290 * re-configuration can be skipped. @valid bit is set on first usage so we don't 291 * treat all-zero structure as valid data. 292 */ 293 u32 word; 294 struct { 295 unsigned int valid:1; 296 unsigned int execonly:1; 297 unsigned int cr0_pg:1; 298 unsigned int cr4_pae:1; 299 unsigned int cr4_pse:1; 300 unsigned int cr4_pke:1; 301 unsigned int cr4_smap:1; 302 unsigned int cr4_smep:1; 303 unsigned int cr4_la57:1; 304 unsigned int maxphyaddr:6; 305 }; 306 }; 307 308 union kvm_mmu_role { 309 u64 as_u64; 310 struct { 311 union kvm_mmu_page_role base; 312 union kvm_mmu_extended_role ext; 313 }; 314 }; 315 316 struct kvm_rmap_head { 317 unsigned long val; 318 }; 319 320 struct kvm_mmu_page { 321 struct list_head link; 322 struct hlist_node hash_link; 323 bool unsync; 324 bool mmio_cached; 325 326 /* 327 * The following two entries are used to key the shadow page in the 328 * hash table. 329 */ 330 union kvm_mmu_page_role role; 331 gfn_t gfn; 332 333 u64 *spt; 334 /* hold the gfn of each spte inside spt */ 335 gfn_t *gfns; 336 int root_count; /* Currently serving as active root */ 337 unsigned int unsync_children; 338 struct kvm_rmap_head parent_ptes; /* rmap pointers to parent sptes */ 339 DECLARE_BITMAP(unsync_child_bitmap, 512); 340 341 #ifdef CONFIG_X86_32 342 /* 343 * Used out of the mmu-lock to avoid reading spte values while an 344 * update is in progress; see the comments in __get_spte_lockless(). 345 */ 346 int clear_spte_count; 347 #endif 348 349 /* Number of writes since the last time traversal visited this page. */ 350 atomic_t write_flooding_count; 351 }; 352 353 struct kvm_pio_request { 354 unsigned long linear_rip; 355 unsigned long count; 356 int in; 357 int port; 358 int size; 359 }; 360 361 #define PT64_ROOT_MAX_LEVEL 5 362 363 struct rsvd_bits_validate { 364 u64 rsvd_bits_mask[2][PT64_ROOT_MAX_LEVEL]; 365 u64 bad_mt_xwr; 366 }; 367 368 struct kvm_mmu_root_info { 369 gpa_t cr3; 370 hpa_t hpa; 371 }; 372 373 #define KVM_MMU_ROOT_INFO_INVALID \ 374 ((struct kvm_mmu_root_info) { .cr3 = INVALID_PAGE, .hpa = INVALID_PAGE }) 375 376 #define KVM_MMU_NUM_PREV_ROOTS 3 377 378 /* 379 * x86 supports 4 paging modes (5-level 64-bit, 4-level 64-bit, 3-level 32-bit, 380 * and 2-level 32-bit). The kvm_mmu structure abstracts the details of the 381 * current mmu mode. 382 */ 383 struct kvm_mmu { 384 void (*set_cr3)(struct kvm_vcpu *vcpu, unsigned long root); 385 unsigned long (*get_cr3)(struct kvm_vcpu *vcpu); 386 u64 (*get_pdptr)(struct kvm_vcpu *vcpu, int index); 387 int (*page_fault)(struct kvm_vcpu *vcpu, gva_t gva, u32 err, 388 bool prefault); 389 void (*inject_page_fault)(struct kvm_vcpu *vcpu, 390 struct x86_exception *fault); 391 gpa_t (*gva_to_gpa)(struct kvm_vcpu *vcpu, gva_t gva, u32 access, 392 struct x86_exception *exception); 393 gpa_t (*translate_gpa)(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access, 394 struct x86_exception *exception); 395 int (*sync_page)(struct kvm_vcpu *vcpu, 396 struct kvm_mmu_page *sp); 397 void (*invlpg)(struct kvm_vcpu *vcpu, gva_t gva, hpa_t root_hpa); 398 void (*update_pte)(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp, 399 u64 *spte, const void *pte); 400 hpa_t root_hpa; 401 gpa_t root_cr3; 402 union kvm_mmu_role mmu_role; 403 u8 root_level; 404 u8 shadow_root_level; 405 u8 ept_ad; 406 bool direct_map; 407 struct kvm_mmu_root_info prev_roots[KVM_MMU_NUM_PREV_ROOTS]; 408 409 /* 410 * Bitmap; bit set = permission fault 411 * Byte index: page fault error code [4:1] 412 * Bit index: pte permissions in ACC_* format 413 */ 414 u8 permissions[16]; 415 416 /* 417 * The pkru_mask indicates if protection key checks are needed. It 418 * consists of 16 domains indexed by page fault error code bits [4:1], 419 * with PFEC.RSVD replaced by ACC_USER_MASK from the page tables. 420 * Each domain has 2 bits which are ANDed with AD and WD from PKRU. 421 */ 422 u32 pkru_mask; 423 424 u64 *pae_root; 425 u64 *lm_root; 426 427 /* 428 * check zero bits on shadow page table entries, these 429 * bits include not only hardware reserved bits but also 430 * the bits spte never used. 431 */ 432 struct rsvd_bits_validate shadow_zero_check; 433 434 struct rsvd_bits_validate guest_rsvd_check; 435 436 /* Can have large pages at levels 2..last_nonleaf_level-1. */ 437 u8 last_nonleaf_level; 438 439 bool nx; 440 441 u64 pdptrs[4]; /* pae */ 442 }; 443 444 struct kvm_tlb_range { 445 u64 start_gfn; 446 u64 pages; 447 }; 448 449 enum pmc_type { 450 KVM_PMC_GP = 0, 451 KVM_PMC_FIXED, 452 }; 453 454 struct kvm_pmc { 455 enum pmc_type type; 456 u8 idx; 457 u64 counter; 458 u64 eventsel; 459 struct perf_event *perf_event; 460 struct kvm_vcpu *vcpu; 461 }; 462 463 struct kvm_pmu { 464 unsigned nr_arch_gp_counters; 465 unsigned nr_arch_fixed_counters; 466 unsigned available_event_types; 467 u64 fixed_ctr_ctrl; 468 u64 global_ctrl; 469 u64 global_status; 470 u64 global_ovf_ctrl; 471 u64 counter_bitmask[2]; 472 u64 global_ctrl_mask; 473 u64 reserved_bits; 474 u8 version; 475 struct kvm_pmc gp_counters[INTEL_PMC_MAX_GENERIC]; 476 struct kvm_pmc fixed_counters[INTEL_PMC_MAX_FIXED]; 477 struct irq_work irq_work; 478 u64 reprogram_pmi; 479 }; 480 481 struct kvm_pmu_ops; 482 483 enum { 484 KVM_DEBUGREG_BP_ENABLED = 1, 485 KVM_DEBUGREG_WONT_EXIT = 2, 486 KVM_DEBUGREG_RELOAD = 4, 487 }; 488 489 struct kvm_mtrr_range { 490 u64 base; 491 u64 mask; 492 struct list_head node; 493 }; 494 495 struct kvm_mtrr { 496 struct kvm_mtrr_range var_ranges[KVM_NR_VAR_MTRR]; 497 mtrr_type fixed_ranges[KVM_NR_FIXED_MTRR_REGION]; 498 u64 deftype; 499 500 struct list_head head; 501 }; 502 503 /* Hyper-V SynIC timer */ 504 struct kvm_vcpu_hv_stimer { 505 struct hrtimer timer; 506 int index; 507 union hv_stimer_config config; 508 u64 count; 509 u64 exp_time; 510 struct hv_message msg; 511 bool msg_pending; 512 }; 513 514 /* Hyper-V synthetic interrupt controller (SynIC)*/ 515 struct kvm_vcpu_hv_synic { 516 u64 version; 517 u64 control; 518 u64 msg_page; 519 u64 evt_page; 520 atomic64_t sint[HV_SYNIC_SINT_COUNT]; 521 atomic_t sint_to_gsi[HV_SYNIC_SINT_COUNT]; 522 DECLARE_BITMAP(auto_eoi_bitmap, 256); 523 DECLARE_BITMAP(vec_bitmap, 256); 524 bool active; 525 bool dont_zero_synic_pages; 526 }; 527 528 /* Hyper-V per vcpu emulation context */ 529 struct kvm_vcpu_hv { 530 u32 vp_index; 531 u64 hv_vapic; 532 s64 runtime_offset; 533 struct kvm_vcpu_hv_synic synic; 534 struct kvm_hyperv_exit exit; 535 struct kvm_vcpu_hv_stimer stimer[HV_SYNIC_STIMER_COUNT]; 536 DECLARE_BITMAP(stimer_pending_bitmap, HV_SYNIC_STIMER_COUNT); 537 cpumask_t tlb_flush; 538 }; 539 540 struct kvm_vcpu_arch { 541 /* 542 * rip and regs accesses must go through 543 * kvm_{register,rip}_{read,write} functions. 544 */ 545 unsigned long regs[NR_VCPU_REGS]; 546 u32 regs_avail; 547 u32 regs_dirty; 548 549 unsigned long cr0; 550 unsigned long cr0_guest_owned_bits; 551 unsigned long cr2; 552 unsigned long cr3; 553 unsigned long cr4; 554 unsigned long cr4_guest_owned_bits; 555 unsigned long cr8; 556 u32 pkru; 557 u32 hflags; 558 u64 efer; 559 u64 apic_base; 560 struct kvm_lapic *apic; /* kernel irqchip context */ 561 bool apicv_active; 562 bool load_eoi_exitmap_pending; 563 DECLARE_BITMAP(ioapic_handled_vectors, 256); 564 unsigned long apic_attention; 565 int32_t apic_arb_prio; 566 int mp_state; 567 u64 ia32_misc_enable_msr; 568 u64 smbase; 569 u64 smi_count; 570 bool tpr_access_reporting; 571 u64 ia32_xss; 572 u64 microcode_version; 573 u64 arch_capabilities; 574 575 /* 576 * Paging state of the vcpu 577 * 578 * If the vcpu runs in guest mode with two level paging this still saves 579 * the paging mode of the l1 guest. This context is always used to 580 * handle faults. 581 */ 582 struct kvm_mmu *mmu; 583 584 /* Non-nested MMU for L1 */ 585 struct kvm_mmu root_mmu; 586 587 /* L1 MMU when running nested */ 588 struct kvm_mmu guest_mmu; 589 590 /* 591 * Paging state of an L2 guest (used for nested npt) 592 * 593 * This context will save all necessary information to walk page tables 594 * of the an L2 guest. This context is only initialized for page table 595 * walking and not for faulting since we never handle l2 page faults on 596 * the host. 597 */ 598 struct kvm_mmu nested_mmu; 599 600 /* 601 * Pointer to the mmu context currently used for 602 * gva_to_gpa translations. 603 */ 604 struct kvm_mmu *walk_mmu; 605 606 struct kvm_mmu_memory_cache mmu_pte_list_desc_cache; 607 struct kvm_mmu_memory_cache mmu_page_cache; 608 struct kvm_mmu_memory_cache mmu_page_header_cache; 609 610 /* 611 * QEMU userspace and the guest each have their own FPU state. 612 * In vcpu_run, we switch between the user, maintained in the 613 * task_struct struct, and guest FPU contexts. While running a VCPU, 614 * the VCPU thread will have the guest FPU context. 615 * 616 * Note that while the PKRU state lives inside the fpu registers, 617 * it is switched out separately at VMENTER and VMEXIT time. The 618 * "guest_fpu" state here contains the guest FPU context, with the 619 * host PRKU bits. 620 */ 621 struct fpu *guest_fpu; 622 623 u64 xcr0; 624 u64 guest_supported_xcr0; 625 u32 guest_xstate_size; 626 627 struct kvm_pio_request pio; 628 void *pio_data; 629 630 u8 event_exit_inst_len; 631 632 struct kvm_queued_exception { 633 bool pending; 634 bool injected; 635 bool has_error_code; 636 u8 nr; 637 u32 error_code; 638 unsigned long payload; 639 bool has_payload; 640 u8 nested_apf; 641 } exception; 642 643 struct kvm_queued_interrupt { 644 bool injected; 645 bool soft; 646 u8 nr; 647 } interrupt; 648 649 int halt_request; /* real mode on Intel only */ 650 651 int cpuid_nent; 652 struct kvm_cpuid_entry2 cpuid_entries[KVM_MAX_CPUID_ENTRIES]; 653 654 int maxphyaddr; 655 656 /* emulate context */ 657 658 struct x86_emulate_ctxt emulate_ctxt; 659 bool emulate_regs_need_sync_to_vcpu; 660 bool emulate_regs_need_sync_from_vcpu; 661 int (*complete_userspace_io)(struct kvm_vcpu *vcpu); 662 663 gpa_t time; 664 struct pvclock_vcpu_time_info hv_clock; 665 unsigned int hw_tsc_khz; 666 struct gfn_to_hva_cache pv_time; 667 bool pv_time_enabled; 668 /* set guest stopped flag in pvclock flags field */ 669 bool pvclock_set_guest_stopped_request; 670 671 struct { 672 u64 msr_val; 673 u64 last_steal; 674 struct gfn_to_hva_cache stime; 675 struct kvm_steal_time steal; 676 } st; 677 678 u64 tsc_offset; 679 u64 last_guest_tsc; 680 u64 last_host_tsc; 681 u64 tsc_offset_adjustment; 682 u64 this_tsc_nsec; 683 u64 this_tsc_write; 684 u64 this_tsc_generation; 685 bool tsc_catchup; 686 bool tsc_always_catchup; 687 s8 virtual_tsc_shift; 688 u32 virtual_tsc_mult; 689 u32 virtual_tsc_khz; 690 s64 ia32_tsc_adjust_msr; 691 u64 tsc_scaling_ratio; 692 693 atomic_t nmi_queued; /* unprocessed asynchronous NMIs */ 694 unsigned nmi_pending; /* NMI queued after currently running handler */ 695 bool nmi_injected; /* Trying to inject an NMI this entry */ 696 bool smi_pending; /* SMI queued after currently running handler */ 697 698 struct kvm_mtrr mtrr_state; 699 u64 pat; 700 701 unsigned switch_db_regs; 702 unsigned long db[KVM_NR_DB_REGS]; 703 unsigned long dr6; 704 unsigned long dr7; 705 unsigned long eff_db[KVM_NR_DB_REGS]; 706 unsigned long guest_debug_dr7; 707 u64 msr_platform_info; 708 u64 msr_misc_features_enables; 709 710 u64 mcg_cap; 711 u64 mcg_status; 712 u64 mcg_ctl; 713 u64 mcg_ext_ctl; 714 u64 *mce_banks; 715 716 /* Cache MMIO info */ 717 u64 mmio_gva; 718 unsigned access; 719 gfn_t mmio_gfn; 720 u64 mmio_gen; 721 722 struct kvm_pmu pmu; 723 724 /* used for guest single stepping over the given code position */ 725 unsigned long singlestep_rip; 726 727 struct kvm_vcpu_hv hyperv; 728 729 cpumask_var_t wbinvd_dirty_mask; 730 731 unsigned long last_retry_eip; 732 unsigned long last_retry_addr; 733 734 struct { 735 bool halted; 736 gfn_t gfns[roundup_pow_of_two(ASYNC_PF_PER_VCPU)]; 737 struct gfn_to_hva_cache data; 738 u64 msr_val; 739 u32 id; 740 bool send_user_only; 741 u32 host_apf_reason; 742 unsigned long nested_apf_token; 743 bool delivery_as_pf_vmexit; 744 } apf; 745 746 /* OSVW MSRs (AMD only) */ 747 struct { 748 u64 length; 749 u64 status; 750 } osvw; 751 752 struct { 753 u64 msr_val; 754 struct gfn_to_hva_cache data; 755 } pv_eoi; 756 757 /* 758 * Indicate whether the access faults on its page table in guest 759 * which is set when fix page fault and used to detect unhandeable 760 * instruction. 761 */ 762 bool write_fault_to_shadow_pgtable; 763 764 /* set at EPT violation at this point */ 765 unsigned long exit_qualification; 766 767 /* pv related host specific info */ 768 struct { 769 bool pv_unhalted; 770 } pv; 771 772 int pending_ioapic_eoi; 773 int pending_external_vector; 774 775 /* GPA available */ 776 bool gpa_available; 777 gpa_t gpa_val; 778 779 /* be preempted when it's in kernel-mode(cpl=0) */ 780 bool preempted_in_kernel; 781 782 /* Flush the L1 Data cache for L1TF mitigation on VMENTER */ 783 bool l1tf_flush_l1d; 784 }; 785 786 struct kvm_lpage_info { 787 int disallow_lpage; 788 }; 789 790 struct kvm_arch_memory_slot { 791 struct kvm_rmap_head *rmap[KVM_NR_PAGE_SIZES]; 792 struct kvm_lpage_info *lpage_info[KVM_NR_PAGE_SIZES - 1]; 793 unsigned short *gfn_track[KVM_PAGE_TRACK_MAX]; 794 }; 795 796 /* 797 * We use as the mode the number of bits allocated in the LDR for the 798 * logical processor ID. It happens that these are all powers of two. 799 * This makes it is very easy to detect cases where the APICs are 800 * configured for multiple modes; in that case, we cannot use the map and 801 * hence cannot use kvm_irq_delivery_to_apic_fast either. 802 */ 803 #define KVM_APIC_MODE_XAPIC_CLUSTER 4 804 #define KVM_APIC_MODE_XAPIC_FLAT 8 805 #define KVM_APIC_MODE_X2APIC 16 806 807 struct kvm_apic_map { 808 struct rcu_head rcu; 809 u8 mode; 810 u32 max_apic_id; 811 union { 812 struct kvm_lapic *xapic_flat_map[8]; 813 struct kvm_lapic *xapic_cluster_map[16][4]; 814 }; 815 struct kvm_lapic *phys_map[]; 816 }; 817 818 /* Hyper-V emulation context */ 819 struct kvm_hv { 820 struct mutex hv_lock; 821 u64 hv_guest_os_id; 822 u64 hv_hypercall; 823 u64 hv_tsc_page; 824 825 /* Hyper-v based guest crash (NT kernel bugcheck) parameters */ 826 u64 hv_crash_param[HV_X64_MSR_CRASH_PARAMS]; 827 u64 hv_crash_ctl; 828 829 HV_REFERENCE_TSC_PAGE tsc_ref; 830 831 struct idr conn_to_evt; 832 833 u64 hv_reenlightenment_control; 834 u64 hv_tsc_emulation_control; 835 u64 hv_tsc_emulation_status; 836 837 /* How many vCPUs have VP index != vCPU index */ 838 atomic_t num_mismatched_vp_indexes; 839 }; 840 841 enum kvm_irqchip_mode { 842 KVM_IRQCHIP_NONE, 843 KVM_IRQCHIP_KERNEL, /* created with KVM_CREATE_IRQCHIP */ 844 KVM_IRQCHIP_SPLIT, /* created with KVM_CAP_SPLIT_IRQCHIP */ 845 }; 846 847 struct kvm_arch { 848 unsigned long n_used_mmu_pages; 849 unsigned long n_requested_mmu_pages; 850 unsigned long n_max_mmu_pages; 851 unsigned int indirect_shadow_pages; 852 struct hlist_head mmu_page_hash[KVM_NUM_MMU_PAGES]; 853 /* 854 * Hash table of struct kvm_mmu_page. 855 */ 856 struct list_head active_mmu_pages; 857 struct kvm_page_track_notifier_node mmu_sp_tracker; 858 struct kvm_page_track_notifier_head track_notifier_head; 859 860 struct list_head assigned_dev_head; 861 struct iommu_domain *iommu_domain; 862 bool iommu_noncoherent; 863 #define __KVM_HAVE_ARCH_NONCOHERENT_DMA 864 atomic_t noncoherent_dma_count; 865 #define __KVM_HAVE_ARCH_ASSIGNED_DEVICE 866 atomic_t assigned_device_count; 867 struct kvm_pic *vpic; 868 struct kvm_ioapic *vioapic; 869 struct kvm_pit *vpit; 870 atomic_t vapics_in_nmi_mode; 871 struct mutex apic_map_lock; 872 struct kvm_apic_map *apic_map; 873 874 bool apic_access_page_done; 875 876 gpa_t wall_clock; 877 878 bool mwait_in_guest; 879 bool hlt_in_guest; 880 bool pause_in_guest; 881 882 unsigned long irq_sources_bitmap; 883 s64 kvmclock_offset; 884 raw_spinlock_t tsc_write_lock; 885 u64 last_tsc_nsec; 886 u64 last_tsc_write; 887 u32 last_tsc_khz; 888 u64 cur_tsc_nsec; 889 u64 cur_tsc_write; 890 u64 cur_tsc_offset; 891 u64 cur_tsc_generation; 892 int nr_vcpus_matched_tsc; 893 894 spinlock_t pvclock_gtod_sync_lock; 895 bool use_master_clock; 896 u64 master_kernel_ns; 897 u64 master_cycle_now; 898 struct delayed_work kvmclock_update_work; 899 struct delayed_work kvmclock_sync_work; 900 901 struct kvm_xen_hvm_config xen_hvm_config; 902 903 /* reads protected by irq_srcu, writes by irq_lock */ 904 struct hlist_head mask_notifier_list; 905 906 struct kvm_hv hyperv; 907 908 #ifdef CONFIG_KVM_MMU_AUDIT 909 int audit_point; 910 #endif 911 912 bool backwards_tsc_observed; 913 bool boot_vcpu_runs_old_kvmclock; 914 u32 bsp_vcpu_id; 915 916 u64 disabled_quirks; 917 918 enum kvm_irqchip_mode irqchip_mode; 919 u8 nr_reserved_ioapic_pins; 920 921 bool disabled_lapic_found; 922 923 bool x2apic_format; 924 bool x2apic_broadcast_quirk_disabled; 925 926 bool guest_can_read_msr_platform_info; 927 bool exception_payload_enabled; 928 }; 929 930 struct kvm_vm_stat { 931 ulong mmu_shadow_zapped; 932 ulong mmu_pte_write; 933 ulong mmu_pte_updated; 934 ulong mmu_pde_zapped; 935 ulong mmu_flooded; 936 ulong mmu_recycled; 937 ulong mmu_cache_miss; 938 ulong mmu_unsync; 939 ulong remote_tlb_flush; 940 ulong lpages; 941 ulong max_mmu_page_hash_collisions; 942 }; 943 944 struct kvm_vcpu_stat { 945 u64 pf_fixed; 946 u64 pf_guest; 947 u64 tlb_flush; 948 u64 invlpg; 949 950 u64 exits; 951 u64 io_exits; 952 u64 mmio_exits; 953 u64 signal_exits; 954 u64 irq_window_exits; 955 u64 nmi_window_exits; 956 u64 l1d_flush; 957 u64 halt_exits; 958 u64 halt_successful_poll; 959 u64 halt_attempted_poll; 960 u64 halt_poll_invalid; 961 u64 halt_wakeup; 962 u64 request_irq_exits; 963 u64 irq_exits; 964 u64 host_state_reload; 965 u64 fpu_reload; 966 u64 insn_emulation; 967 u64 insn_emulation_fail; 968 u64 hypercalls; 969 u64 irq_injections; 970 u64 nmi_injections; 971 u64 req_event; 972 }; 973 974 struct x86_instruction_info; 975 976 struct msr_data { 977 bool host_initiated; 978 u32 index; 979 u64 data; 980 }; 981 982 struct kvm_lapic_irq { 983 u32 vector; 984 u16 delivery_mode; 985 u16 dest_mode; 986 bool level; 987 u16 trig_mode; 988 u32 shorthand; 989 u32 dest_id; 990 bool msi_redir_hint; 991 }; 992 993 struct kvm_x86_ops { 994 int (*cpu_has_kvm_support)(void); /* __init */ 995 int (*disabled_by_bios)(void); /* __init */ 996 int (*hardware_enable)(void); 997 void (*hardware_disable)(void); 998 void (*check_processor_compatibility)(void *rtn); 999 int (*hardware_setup)(void); /* __init */ 1000 void (*hardware_unsetup)(void); /* __exit */ 1001 bool (*cpu_has_accelerated_tpr)(void); 1002 bool (*has_emulated_msr)(int index); 1003 void (*cpuid_update)(struct kvm_vcpu *vcpu); 1004 1005 struct kvm *(*vm_alloc)(void); 1006 void (*vm_free)(struct kvm *); 1007 int (*vm_init)(struct kvm *kvm); 1008 void (*vm_destroy)(struct kvm *kvm); 1009 1010 /* Create, but do not attach this VCPU */ 1011 struct kvm_vcpu *(*vcpu_create)(struct kvm *kvm, unsigned id); 1012 void (*vcpu_free)(struct kvm_vcpu *vcpu); 1013 void (*vcpu_reset)(struct kvm_vcpu *vcpu, bool init_event); 1014 1015 void (*prepare_guest_switch)(struct kvm_vcpu *vcpu); 1016 void (*vcpu_load)(struct kvm_vcpu *vcpu, int cpu); 1017 void (*vcpu_put)(struct kvm_vcpu *vcpu); 1018 1019 void (*update_bp_intercept)(struct kvm_vcpu *vcpu); 1020 int (*get_msr)(struct kvm_vcpu *vcpu, struct msr_data *msr); 1021 int (*set_msr)(struct kvm_vcpu *vcpu, struct msr_data *msr); 1022 u64 (*get_segment_base)(struct kvm_vcpu *vcpu, int seg); 1023 void (*get_segment)(struct kvm_vcpu *vcpu, 1024 struct kvm_segment *var, int seg); 1025 int (*get_cpl)(struct kvm_vcpu *vcpu); 1026 void (*set_segment)(struct kvm_vcpu *vcpu, 1027 struct kvm_segment *var, int seg); 1028 void (*get_cs_db_l_bits)(struct kvm_vcpu *vcpu, int *db, int *l); 1029 void (*decache_cr0_guest_bits)(struct kvm_vcpu *vcpu); 1030 void (*decache_cr3)(struct kvm_vcpu *vcpu); 1031 void (*decache_cr4_guest_bits)(struct kvm_vcpu *vcpu); 1032 void (*set_cr0)(struct kvm_vcpu *vcpu, unsigned long cr0); 1033 void (*set_cr3)(struct kvm_vcpu *vcpu, unsigned long cr3); 1034 int (*set_cr4)(struct kvm_vcpu *vcpu, unsigned long cr4); 1035 void (*set_efer)(struct kvm_vcpu *vcpu, u64 efer); 1036 void (*get_idt)(struct kvm_vcpu *vcpu, struct desc_ptr *dt); 1037 void (*set_idt)(struct kvm_vcpu *vcpu, struct desc_ptr *dt); 1038 void (*get_gdt)(struct kvm_vcpu *vcpu, struct desc_ptr *dt); 1039 void (*set_gdt)(struct kvm_vcpu *vcpu, struct desc_ptr *dt); 1040 u64 (*get_dr6)(struct kvm_vcpu *vcpu); 1041 void (*set_dr6)(struct kvm_vcpu *vcpu, unsigned long value); 1042 void (*sync_dirty_debug_regs)(struct kvm_vcpu *vcpu); 1043 void (*set_dr7)(struct kvm_vcpu *vcpu, unsigned long value); 1044 void (*cache_reg)(struct kvm_vcpu *vcpu, enum kvm_reg reg); 1045 unsigned long (*get_rflags)(struct kvm_vcpu *vcpu); 1046 void (*set_rflags)(struct kvm_vcpu *vcpu, unsigned long rflags); 1047 1048 void (*tlb_flush)(struct kvm_vcpu *vcpu, bool invalidate_gpa); 1049 int (*tlb_remote_flush)(struct kvm *kvm); 1050 int (*tlb_remote_flush_with_range)(struct kvm *kvm, 1051 struct kvm_tlb_range *range); 1052 1053 /* 1054 * Flush any TLB entries associated with the given GVA. 1055 * Does not need to flush GPA->HPA mappings. 1056 * Can potentially get non-canonical addresses through INVLPGs, which 1057 * the implementation may choose to ignore if appropriate. 1058 */ 1059 void (*tlb_flush_gva)(struct kvm_vcpu *vcpu, gva_t addr); 1060 1061 void (*run)(struct kvm_vcpu *vcpu); 1062 int (*handle_exit)(struct kvm_vcpu *vcpu); 1063 void (*skip_emulated_instruction)(struct kvm_vcpu *vcpu); 1064 void (*set_interrupt_shadow)(struct kvm_vcpu *vcpu, int mask); 1065 u32 (*get_interrupt_shadow)(struct kvm_vcpu *vcpu); 1066 void (*patch_hypercall)(struct kvm_vcpu *vcpu, 1067 unsigned char *hypercall_addr); 1068 void (*set_irq)(struct kvm_vcpu *vcpu); 1069 void (*set_nmi)(struct kvm_vcpu *vcpu); 1070 void (*queue_exception)(struct kvm_vcpu *vcpu); 1071 void (*cancel_injection)(struct kvm_vcpu *vcpu); 1072 int (*interrupt_allowed)(struct kvm_vcpu *vcpu); 1073 int (*nmi_allowed)(struct kvm_vcpu *vcpu); 1074 bool (*get_nmi_mask)(struct kvm_vcpu *vcpu); 1075 void (*set_nmi_mask)(struct kvm_vcpu *vcpu, bool masked); 1076 void (*enable_nmi_window)(struct kvm_vcpu *vcpu); 1077 void (*enable_irq_window)(struct kvm_vcpu *vcpu); 1078 void (*update_cr8_intercept)(struct kvm_vcpu *vcpu, int tpr, int irr); 1079 bool (*get_enable_apicv)(struct kvm_vcpu *vcpu); 1080 void (*refresh_apicv_exec_ctrl)(struct kvm_vcpu *vcpu); 1081 void (*hwapic_irr_update)(struct kvm_vcpu *vcpu, int max_irr); 1082 void (*hwapic_isr_update)(struct kvm_vcpu *vcpu, int isr); 1083 bool (*guest_apic_has_interrupt)(struct kvm_vcpu *vcpu); 1084 void (*load_eoi_exitmap)(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap); 1085 void (*set_virtual_apic_mode)(struct kvm_vcpu *vcpu); 1086 void (*set_apic_access_page_addr)(struct kvm_vcpu *vcpu, hpa_t hpa); 1087 void (*deliver_posted_interrupt)(struct kvm_vcpu *vcpu, int vector); 1088 int (*sync_pir_to_irr)(struct kvm_vcpu *vcpu); 1089 int (*set_tss_addr)(struct kvm *kvm, unsigned int addr); 1090 int (*set_identity_map_addr)(struct kvm *kvm, u64 ident_addr); 1091 int (*get_tdp_level)(struct kvm_vcpu *vcpu); 1092 u64 (*get_mt_mask)(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio); 1093 int (*get_lpage_level)(void); 1094 bool (*rdtscp_supported)(void); 1095 bool (*invpcid_supported)(void); 1096 1097 void (*set_tdp_cr3)(struct kvm_vcpu *vcpu, unsigned long cr3); 1098 1099 void (*set_supported_cpuid)(u32 func, struct kvm_cpuid_entry2 *entry); 1100 1101 bool (*has_wbinvd_exit)(void); 1102 1103 u64 (*read_l1_tsc_offset)(struct kvm_vcpu *vcpu); 1104 /* Returns actual tsc_offset set in active VMCS */ 1105 u64 (*write_l1_tsc_offset)(struct kvm_vcpu *vcpu, u64 offset); 1106 1107 void (*get_exit_info)(struct kvm_vcpu *vcpu, u64 *info1, u64 *info2); 1108 1109 int (*check_intercept)(struct kvm_vcpu *vcpu, 1110 struct x86_instruction_info *info, 1111 enum x86_intercept_stage stage); 1112 void (*handle_external_intr)(struct kvm_vcpu *vcpu); 1113 bool (*mpx_supported)(void); 1114 bool (*xsaves_supported)(void); 1115 bool (*umip_emulated)(void); 1116 bool (*pt_supported)(void); 1117 1118 int (*check_nested_events)(struct kvm_vcpu *vcpu, bool external_intr); 1119 void (*request_immediate_exit)(struct kvm_vcpu *vcpu); 1120 1121 void (*sched_in)(struct kvm_vcpu *kvm, int cpu); 1122 1123 /* 1124 * Arch-specific dirty logging hooks. These hooks are only supposed to 1125 * be valid if the specific arch has hardware-accelerated dirty logging 1126 * mechanism. Currently only for PML on VMX. 1127 * 1128 * - slot_enable_log_dirty: 1129 * called when enabling log dirty mode for the slot. 1130 * - slot_disable_log_dirty: 1131 * called when disabling log dirty mode for the slot. 1132 * also called when slot is created with log dirty disabled. 1133 * - flush_log_dirty: 1134 * called before reporting dirty_bitmap to userspace. 1135 * - enable_log_dirty_pt_masked: 1136 * called when reenabling log dirty for the GFNs in the mask after 1137 * corresponding bits are cleared in slot->dirty_bitmap. 1138 */ 1139 void (*slot_enable_log_dirty)(struct kvm *kvm, 1140 struct kvm_memory_slot *slot); 1141 void (*slot_disable_log_dirty)(struct kvm *kvm, 1142 struct kvm_memory_slot *slot); 1143 void (*flush_log_dirty)(struct kvm *kvm); 1144 void (*enable_log_dirty_pt_masked)(struct kvm *kvm, 1145 struct kvm_memory_slot *slot, 1146 gfn_t offset, unsigned long mask); 1147 int (*write_log_dirty)(struct kvm_vcpu *vcpu); 1148 1149 /* pmu operations of sub-arch */ 1150 const struct kvm_pmu_ops *pmu_ops; 1151 1152 /* 1153 * Architecture specific hooks for vCPU blocking due to 1154 * HLT instruction. 1155 * Returns for .pre_block(): 1156 * - 0 means continue to block the vCPU. 1157 * - 1 means we cannot block the vCPU since some event 1158 * happens during this period, such as, 'ON' bit in 1159 * posted-interrupts descriptor is set. 1160 */ 1161 int (*pre_block)(struct kvm_vcpu *vcpu); 1162 void (*post_block)(struct kvm_vcpu *vcpu); 1163 1164 void (*vcpu_blocking)(struct kvm_vcpu *vcpu); 1165 void (*vcpu_unblocking)(struct kvm_vcpu *vcpu); 1166 1167 int (*update_pi_irte)(struct kvm *kvm, unsigned int host_irq, 1168 uint32_t guest_irq, bool set); 1169 void (*apicv_post_state_restore)(struct kvm_vcpu *vcpu); 1170 1171 int (*set_hv_timer)(struct kvm_vcpu *vcpu, u64 guest_deadline_tsc); 1172 void (*cancel_hv_timer)(struct kvm_vcpu *vcpu); 1173 1174 void (*setup_mce)(struct kvm_vcpu *vcpu); 1175 1176 int (*get_nested_state)(struct kvm_vcpu *vcpu, 1177 struct kvm_nested_state __user *user_kvm_nested_state, 1178 unsigned user_data_size); 1179 int (*set_nested_state)(struct kvm_vcpu *vcpu, 1180 struct kvm_nested_state __user *user_kvm_nested_state, 1181 struct kvm_nested_state *kvm_state); 1182 void (*get_vmcs12_pages)(struct kvm_vcpu *vcpu); 1183 1184 int (*smi_allowed)(struct kvm_vcpu *vcpu); 1185 int (*pre_enter_smm)(struct kvm_vcpu *vcpu, char *smstate); 1186 int (*pre_leave_smm)(struct kvm_vcpu *vcpu, const char *smstate); 1187 int (*enable_smi_window)(struct kvm_vcpu *vcpu); 1188 1189 int (*mem_enc_op)(struct kvm *kvm, void __user *argp); 1190 int (*mem_enc_reg_region)(struct kvm *kvm, struct kvm_enc_region *argp); 1191 int (*mem_enc_unreg_region)(struct kvm *kvm, struct kvm_enc_region *argp); 1192 1193 int (*get_msr_feature)(struct kvm_msr_entry *entry); 1194 1195 int (*nested_enable_evmcs)(struct kvm_vcpu *vcpu, 1196 uint16_t *vmcs_version); 1197 uint16_t (*nested_get_evmcs_version)(struct kvm_vcpu *vcpu); 1198 1199 bool (*need_emulation_on_page_fault)(struct kvm_vcpu *vcpu); 1200 }; 1201 1202 struct kvm_arch_async_pf { 1203 u32 token; 1204 gfn_t gfn; 1205 unsigned long cr3; 1206 bool direct_map; 1207 }; 1208 1209 extern struct kvm_x86_ops *kvm_x86_ops; 1210 extern struct kmem_cache *x86_fpu_cache; 1211 1212 #define __KVM_HAVE_ARCH_VM_ALLOC 1213 static inline struct kvm *kvm_arch_alloc_vm(void) 1214 { 1215 return kvm_x86_ops->vm_alloc(); 1216 } 1217 1218 static inline void kvm_arch_free_vm(struct kvm *kvm) 1219 { 1220 return kvm_x86_ops->vm_free(kvm); 1221 } 1222 1223 #define __KVM_HAVE_ARCH_FLUSH_REMOTE_TLB 1224 static inline int kvm_arch_flush_remote_tlb(struct kvm *kvm) 1225 { 1226 if (kvm_x86_ops->tlb_remote_flush && 1227 !kvm_x86_ops->tlb_remote_flush(kvm)) 1228 return 0; 1229 else 1230 return -ENOTSUPP; 1231 } 1232 1233 int kvm_mmu_module_init(void); 1234 void kvm_mmu_module_exit(void); 1235 1236 void kvm_mmu_destroy(struct kvm_vcpu *vcpu); 1237 int kvm_mmu_create(struct kvm_vcpu *vcpu); 1238 void kvm_mmu_init_vm(struct kvm *kvm); 1239 void kvm_mmu_uninit_vm(struct kvm *kvm); 1240 void kvm_mmu_set_mask_ptes(u64 user_mask, u64 accessed_mask, 1241 u64 dirty_mask, u64 nx_mask, u64 x_mask, u64 p_mask, 1242 u64 acc_track_mask, u64 me_mask); 1243 1244 void kvm_mmu_reset_context(struct kvm_vcpu *vcpu); 1245 void kvm_mmu_slot_remove_write_access(struct kvm *kvm, 1246 struct kvm_memory_slot *memslot); 1247 void kvm_mmu_zap_collapsible_sptes(struct kvm *kvm, 1248 const struct kvm_memory_slot *memslot); 1249 void kvm_mmu_slot_leaf_clear_dirty(struct kvm *kvm, 1250 struct kvm_memory_slot *memslot); 1251 void kvm_mmu_slot_largepage_remove_write_access(struct kvm *kvm, 1252 struct kvm_memory_slot *memslot); 1253 void kvm_mmu_slot_set_dirty(struct kvm *kvm, 1254 struct kvm_memory_slot *memslot); 1255 void kvm_mmu_clear_dirty_pt_masked(struct kvm *kvm, 1256 struct kvm_memory_slot *slot, 1257 gfn_t gfn_offset, unsigned long mask); 1258 void kvm_mmu_zap_all(struct kvm *kvm); 1259 void kvm_mmu_invalidate_mmio_sptes(struct kvm *kvm, u64 gen); 1260 unsigned long kvm_mmu_calculate_default_mmu_pages(struct kvm *kvm); 1261 void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned long kvm_nr_mmu_pages); 1262 1263 int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3); 1264 bool pdptrs_changed(struct kvm_vcpu *vcpu); 1265 1266 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa, 1267 const void *val, int bytes); 1268 1269 struct kvm_irq_mask_notifier { 1270 void (*func)(struct kvm_irq_mask_notifier *kimn, bool masked); 1271 int irq; 1272 struct hlist_node link; 1273 }; 1274 1275 void kvm_register_irq_mask_notifier(struct kvm *kvm, int irq, 1276 struct kvm_irq_mask_notifier *kimn); 1277 void kvm_unregister_irq_mask_notifier(struct kvm *kvm, int irq, 1278 struct kvm_irq_mask_notifier *kimn); 1279 void kvm_fire_mask_notifiers(struct kvm *kvm, unsigned irqchip, unsigned pin, 1280 bool mask); 1281 1282 extern bool tdp_enabled; 1283 1284 u64 vcpu_tsc_khz(struct kvm_vcpu *vcpu); 1285 1286 /* control of guest tsc rate supported? */ 1287 extern bool kvm_has_tsc_control; 1288 /* maximum supported tsc_khz for guests */ 1289 extern u32 kvm_max_guest_tsc_khz; 1290 /* number of bits of the fractional part of the TSC scaling ratio */ 1291 extern u8 kvm_tsc_scaling_ratio_frac_bits; 1292 /* maximum allowed value of TSC scaling ratio */ 1293 extern u64 kvm_max_tsc_scaling_ratio; 1294 /* 1ull << kvm_tsc_scaling_ratio_frac_bits */ 1295 extern u64 kvm_default_tsc_scaling_ratio; 1296 1297 extern u64 kvm_mce_cap_supported; 1298 1299 enum emulation_result { 1300 EMULATE_DONE, /* no further processing */ 1301 EMULATE_USER_EXIT, /* kvm_run ready for userspace exit */ 1302 EMULATE_FAIL, /* can't emulate this instruction */ 1303 }; 1304 1305 #define EMULTYPE_NO_DECODE (1 << 0) 1306 #define EMULTYPE_TRAP_UD (1 << 1) 1307 #define EMULTYPE_SKIP (1 << 2) 1308 #define EMULTYPE_ALLOW_RETRY (1 << 3) 1309 #define EMULTYPE_NO_UD_ON_FAIL (1 << 4) 1310 #define EMULTYPE_VMWARE (1 << 5) 1311 int kvm_emulate_instruction(struct kvm_vcpu *vcpu, int emulation_type); 1312 int kvm_emulate_instruction_from_buffer(struct kvm_vcpu *vcpu, 1313 void *insn, int insn_len); 1314 1315 void kvm_enable_efer_bits(u64); 1316 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer); 1317 int kvm_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr); 1318 int kvm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr); 1319 1320 struct x86_emulate_ctxt; 1321 1322 int kvm_fast_pio(struct kvm_vcpu *vcpu, int size, unsigned short port, int in); 1323 int kvm_emulate_cpuid(struct kvm_vcpu *vcpu); 1324 int kvm_emulate_halt(struct kvm_vcpu *vcpu); 1325 int kvm_vcpu_halt(struct kvm_vcpu *vcpu); 1326 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu); 1327 1328 void kvm_get_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg); 1329 int kvm_load_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector, int seg); 1330 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector); 1331 1332 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index, 1333 int reason, bool has_error_code, u32 error_code); 1334 1335 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0); 1336 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3); 1337 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4); 1338 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8); 1339 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val); 1340 int kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val); 1341 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu); 1342 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw); 1343 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l); 1344 int kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr); 1345 1346 int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr); 1347 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr); 1348 1349 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu); 1350 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags); 1351 bool kvm_rdpmc(struct kvm_vcpu *vcpu); 1352 1353 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr); 1354 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code); 1355 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr); 1356 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code); 1357 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault); 1358 int kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, 1359 gfn_t gfn, void *data, int offset, int len, 1360 u32 access); 1361 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl); 1362 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr); 1363 1364 static inline int __kvm_irq_line_state(unsigned long *irq_state, 1365 int irq_source_id, int level) 1366 { 1367 /* Logical OR for level trig interrupt */ 1368 if (level) 1369 __set_bit(irq_source_id, irq_state); 1370 else 1371 __clear_bit(irq_source_id, irq_state); 1372 1373 return !!(*irq_state); 1374 } 1375 1376 #define KVM_MMU_ROOT_CURRENT BIT(0) 1377 #define KVM_MMU_ROOT_PREVIOUS(i) BIT(1+i) 1378 #define KVM_MMU_ROOTS_ALL (~0UL) 1379 1380 int kvm_pic_set_irq(struct kvm_pic *pic, int irq, int irq_source_id, int level); 1381 void kvm_pic_clear_all(struct kvm_pic *pic, int irq_source_id); 1382 1383 void kvm_inject_nmi(struct kvm_vcpu *vcpu); 1384 1385 int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn); 1386 int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva); 1387 void __kvm_mmu_free_some_pages(struct kvm_vcpu *vcpu); 1388 int kvm_mmu_load(struct kvm_vcpu *vcpu); 1389 void kvm_mmu_unload(struct kvm_vcpu *vcpu); 1390 void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu); 1391 void kvm_mmu_free_roots(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, 1392 ulong roots_to_free); 1393 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access, 1394 struct x86_exception *exception); 1395 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva, 1396 struct x86_exception *exception); 1397 gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva, 1398 struct x86_exception *exception); 1399 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva, 1400 struct x86_exception *exception); 1401 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva, 1402 struct x86_exception *exception); 1403 1404 void kvm_vcpu_deactivate_apicv(struct kvm_vcpu *vcpu); 1405 1406 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu); 1407 1408 int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gva_t gva, u64 error_code, 1409 void *insn, int insn_len); 1410 void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva); 1411 void kvm_mmu_invpcid_gva(struct kvm_vcpu *vcpu, gva_t gva, unsigned long pcid); 1412 void kvm_mmu_new_cr3(struct kvm_vcpu *vcpu, gpa_t new_cr3, bool skip_tlb_flush); 1413 1414 void kvm_enable_tdp(void); 1415 void kvm_disable_tdp(void); 1416 1417 static inline gpa_t translate_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access, 1418 struct x86_exception *exception) 1419 { 1420 return gpa; 1421 } 1422 1423 static inline struct kvm_mmu_page *page_header(hpa_t shadow_page) 1424 { 1425 struct page *page = pfn_to_page(shadow_page >> PAGE_SHIFT); 1426 1427 return (struct kvm_mmu_page *)page_private(page); 1428 } 1429 1430 static inline u16 kvm_read_ldt(void) 1431 { 1432 u16 ldt; 1433 asm("sldt %0" : "=g"(ldt)); 1434 return ldt; 1435 } 1436 1437 static inline void kvm_load_ldt(u16 sel) 1438 { 1439 asm("lldt %0" : : "rm"(sel)); 1440 } 1441 1442 #ifdef CONFIG_X86_64 1443 static inline unsigned long read_msr(unsigned long msr) 1444 { 1445 u64 value; 1446 1447 rdmsrl(msr, value); 1448 return value; 1449 } 1450 #endif 1451 1452 static inline u32 get_rdx_init_val(void) 1453 { 1454 return 0x600; /* P6 family */ 1455 } 1456 1457 static inline void kvm_inject_gp(struct kvm_vcpu *vcpu, u32 error_code) 1458 { 1459 kvm_queue_exception_e(vcpu, GP_VECTOR, error_code); 1460 } 1461 1462 #define TSS_IOPB_BASE_OFFSET 0x66 1463 #define TSS_BASE_SIZE 0x68 1464 #define TSS_IOPB_SIZE (65536 / 8) 1465 #define TSS_REDIRECTION_SIZE (256 / 8) 1466 #define RMODE_TSS_SIZE \ 1467 (TSS_BASE_SIZE + TSS_REDIRECTION_SIZE + TSS_IOPB_SIZE + 1) 1468 1469 enum { 1470 TASK_SWITCH_CALL = 0, 1471 TASK_SWITCH_IRET = 1, 1472 TASK_SWITCH_JMP = 2, 1473 TASK_SWITCH_GATE = 3, 1474 }; 1475 1476 #define HF_GIF_MASK (1 << 0) 1477 #define HF_HIF_MASK (1 << 1) 1478 #define HF_VINTR_MASK (1 << 2) 1479 #define HF_NMI_MASK (1 << 3) 1480 #define HF_IRET_MASK (1 << 4) 1481 #define HF_GUEST_MASK (1 << 5) /* VCPU is in guest-mode */ 1482 #define HF_SMM_MASK (1 << 6) 1483 #define HF_SMM_INSIDE_NMI_MASK (1 << 7) 1484 1485 #define __KVM_VCPU_MULTIPLE_ADDRESS_SPACE 1486 #define KVM_ADDRESS_SPACE_NUM 2 1487 1488 #define kvm_arch_vcpu_memslots_id(vcpu) ((vcpu)->arch.hflags & HF_SMM_MASK ? 1 : 0) 1489 #define kvm_memslots_for_spte_role(kvm, role) __kvm_memslots(kvm, (role).smm) 1490 1491 /* 1492 * Hardware virtualization extension instructions may fault if a 1493 * reboot turns off virtualization while processes are running. 1494 * Trap the fault and ignore the instruction if that happens. 1495 */ 1496 asmlinkage void kvm_spurious_fault(void); 1497 1498 #define ____kvm_handle_fault_on_reboot(insn, cleanup_insn) \ 1499 "666: " insn "\n\t" \ 1500 "668: \n\t" \ 1501 ".pushsection .fixup, \"ax\" \n" \ 1502 "667: \n\t" \ 1503 cleanup_insn "\n\t" \ 1504 "cmpb $0, kvm_rebooting \n\t" \ 1505 "jne 668b \n\t" \ 1506 __ASM_SIZE(push) " $666b \n\t" \ 1507 "jmp kvm_spurious_fault \n\t" \ 1508 ".popsection \n\t" \ 1509 _ASM_EXTABLE(666b, 667b) 1510 1511 #define __kvm_handle_fault_on_reboot(insn) \ 1512 ____kvm_handle_fault_on_reboot(insn, "") 1513 1514 #define KVM_ARCH_WANT_MMU_NOTIFIER 1515 int kvm_unmap_hva_range(struct kvm *kvm, unsigned long start, unsigned long end); 1516 int kvm_age_hva(struct kvm *kvm, unsigned long start, unsigned long end); 1517 int kvm_test_age_hva(struct kvm *kvm, unsigned long hva); 1518 int kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte); 1519 int kvm_cpu_has_injectable_intr(struct kvm_vcpu *v); 1520 int kvm_cpu_has_interrupt(struct kvm_vcpu *vcpu); 1521 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu); 1522 int kvm_cpu_get_interrupt(struct kvm_vcpu *v); 1523 void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event); 1524 void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu); 1525 1526 int kvm_pv_send_ipi(struct kvm *kvm, unsigned long ipi_bitmap_low, 1527 unsigned long ipi_bitmap_high, u32 min, 1528 unsigned long icr, int op_64_bit); 1529 1530 u64 kvm_get_arch_capabilities(void); 1531 void kvm_define_shared_msr(unsigned index, u32 msr); 1532 int kvm_set_shared_msr(unsigned index, u64 val, u64 mask); 1533 1534 u64 kvm_scale_tsc(struct kvm_vcpu *vcpu, u64 tsc); 1535 u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc); 1536 1537 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu); 1538 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip); 1539 1540 void kvm_make_mclock_inprogress_request(struct kvm *kvm); 1541 void kvm_make_scan_ioapic_request(struct kvm *kvm); 1542 1543 void kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu, 1544 struct kvm_async_pf *work); 1545 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu, 1546 struct kvm_async_pf *work); 1547 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, 1548 struct kvm_async_pf *work); 1549 bool kvm_arch_can_inject_async_page_present(struct kvm_vcpu *vcpu); 1550 extern bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn); 1551 1552 int kvm_skip_emulated_instruction(struct kvm_vcpu *vcpu); 1553 int kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err); 1554 void __kvm_request_immediate_exit(struct kvm_vcpu *vcpu); 1555 1556 int kvm_is_in_guest(void); 1557 1558 int __x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, u32 size); 1559 int x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, u32 size); 1560 bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu); 1561 bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu); 1562 1563 bool kvm_intr_is_single_vcpu(struct kvm *kvm, struct kvm_lapic_irq *irq, 1564 struct kvm_vcpu **dest_vcpu); 1565 1566 void kvm_set_msi_irq(struct kvm *kvm, struct kvm_kernel_irq_routing_entry *e, 1567 struct kvm_lapic_irq *irq); 1568 1569 static inline void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu) 1570 { 1571 if (kvm_x86_ops->vcpu_blocking) 1572 kvm_x86_ops->vcpu_blocking(vcpu); 1573 } 1574 1575 static inline void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu) 1576 { 1577 if (kvm_x86_ops->vcpu_unblocking) 1578 kvm_x86_ops->vcpu_unblocking(vcpu); 1579 } 1580 1581 static inline void kvm_arch_vcpu_block_finish(struct kvm_vcpu *vcpu) {} 1582 1583 static inline int kvm_cpu_get_apicid(int mps_cpu) 1584 { 1585 #ifdef CONFIG_X86_LOCAL_APIC 1586 return default_cpu_present_to_apicid(mps_cpu); 1587 #else 1588 WARN_ON_ONCE(1); 1589 return BAD_APICID; 1590 #endif 1591 } 1592 1593 #define put_smstate(type, buf, offset, val) \ 1594 *(type *)((buf) + (offset) - 0x7e00) = val 1595 1596 #define GET_SMSTATE(type, buf, offset) \ 1597 (*(type *)((buf) + (offset) - 0x7e00)) 1598 1599 #endif /* _ASM_X86_KVM_HOST_H */ 1600