xref: /openbmc/linux/arch/x86/include/asm/kvm_host.h (revision 2bad466c)
1 /* SPDX-License-Identifier: GPL-2.0-only */
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  *
5  * This header defines architecture specific interfaces, x86 version
6  */
7 
8 #ifndef _ASM_X86_KVM_HOST_H
9 #define _ASM_X86_KVM_HOST_H
10 
11 #include <linux/types.h>
12 #include <linux/mm.h>
13 #include <linux/mmu_notifier.h>
14 #include <linux/tracepoint.h>
15 #include <linux/cpumask.h>
16 #include <linux/irq_work.h>
17 #include <linux/irq.h>
18 #include <linux/workqueue.h>
19 
20 #include <linux/kvm.h>
21 #include <linux/kvm_para.h>
22 #include <linux/kvm_types.h>
23 #include <linux/perf_event.h>
24 #include <linux/pvclock_gtod.h>
25 #include <linux/clocksource.h>
26 #include <linux/irqbypass.h>
27 #include <linux/hyperv.h>
28 #include <linux/kfifo.h>
29 
30 #include <asm/apic.h>
31 #include <asm/pvclock-abi.h>
32 #include <asm/desc.h>
33 #include <asm/mtrr.h>
34 #include <asm/msr-index.h>
35 #include <asm/asm.h>
36 #include <asm/kvm_page_track.h>
37 #include <asm/kvm_vcpu_regs.h>
38 #include <asm/hyperv-tlfs.h>
39 
40 #define __KVM_HAVE_ARCH_VCPU_DEBUGFS
41 
42 #define KVM_MAX_VCPUS 1024
43 
44 /*
45  * In x86, the VCPU ID corresponds to the APIC ID, and APIC IDs
46  * might be larger than the actual number of VCPUs because the
47  * APIC ID encodes CPU topology information.
48  *
49  * In the worst case, we'll need less than one extra bit for the
50  * Core ID, and less than one extra bit for the Package (Die) ID,
51  * so ratio of 4 should be enough.
52  */
53 #define KVM_VCPU_ID_RATIO 4
54 #define KVM_MAX_VCPU_IDS (KVM_MAX_VCPUS * KVM_VCPU_ID_RATIO)
55 
56 /* memory slots that are not exposed to userspace */
57 #define KVM_INTERNAL_MEM_SLOTS 3
58 
59 #define KVM_HALT_POLL_NS_DEFAULT 200000
60 
61 #define KVM_IRQCHIP_NUM_PINS  KVM_IOAPIC_NUM_PINS
62 
63 #define KVM_DIRTY_LOG_MANUAL_CAPS   (KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE | \
64 					KVM_DIRTY_LOG_INITIALLY_SET)
65 
66 #define KVM_BUS_LOCK_DETECTION_VALID_MODE	(KVM_BUS_LOCK_DETECTION_OFF | \
67 						 KVM_BUS_LOCK_DETECTION_EXIT)
68 
69 #define KVM_X86_NOTIFY_VMEXIT_VALID_BITS	(KVM_X86_NOTIFY_VMEXIT_ENABLED | \
70 						 KVM_X86_NOTIFY_VMEXIT_USER)
71 
72 /* x86-specific vcpu->requests bit members */
73 #define KVM_REQ_MIGRATE_TIMER		KVM_ARCH_REQ(0)
74 #define KVM_REQ_REPORT_TPR_ACCESS	KVM_ARCH_REQ(1)
75 #define KVM_REQ_TRIPLE_FAULT		KVM_ARCH_REQ(2)
76 #define KVM_REQ_MMU_SYNC		KVM_ARCH_REQ(3)
77 #define KVM_REQ_CLOCK_UPDATE		KVM_ARCH_REQ(4)
78 #define KVM_REQ_LOAD_MMU_PGD		KVM_ARCH_REQ(5)
79 #define KVM_REQ_EVENT			KVM_ARCH_REQ(6)
80 #define KVM_REQ_APF_HALT		KVM_ARCH_REQ(7)
81 #define KVM_REQ_STEAL_UPDATE		KVM_ARCH_REQ(8)
82 #define KVM_REQ_NMI			KVM_ARCH_REQ(9)
83 #define KVM_REQ_PMU			KVM_ARCH_REQ(10)
84 #define KVM_REQ_PMI			KVM_ARCH_REQ(11)
85 #ifdef CONFIG_KVM_SMM
86 #define KVM_REQ_SMI			KVM_ARCH_REQ(12)
87 #endif
88 #define KVM_REQ_MASTERCLOCK_UPDATE	KVM_ARCH_REQ(13)
89 #define KVM_REQ_MCLOCK_INPROGRESS \
90 	KVM_ARCH_REQ_FLAGS(14, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
91 #define KVM_REQ_SCAN_IOAPIC \
92 	KVM_ARCH_REQ_FLAGS(15, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
93 #define KVM_REQ_GLOBAL_CLOCK_UPDATE	KVM_ARCH_REQ(16)
94 #define KVM_REQ_APIC_PAGE_RELOAD \
95 	KVM_ARCH_REQ_FLAGS(17, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
96 #define KVM_REQ_HV_CRASH		KVM_ARCH_REQ(18)
97 #define KVM_REQ_IOAPIC_EOI_EXIT		KVM_ARCH_REQ(19)
98 #define KVM_REQ_HV_RESET		KVM_ARCH_REQ(20)
99 #define KVM_REQ_HV_EXIT			KVM_ARCH_REQ(21)
100 #define KVM_REQ_HV_STIMER		KVM_ARCH_REQ(22)
101 #define KVM_REQ_LOAD_EOI_EXITMAP	KVM_ARCH_REQ(23)
102 #define KVM_REQ_GET_NESTED_STATE_PAGES	KVM_ARCH_REQ(24)
103 #define KVM_REQ_APICV_UPDATE \
104 	KVM_ARCH_REQ_FLAGS(25, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
105 #define KVM_REQ_TLB_FLUSH_CURRENT	KVM_ARCH_REQ(26)
106 #define KVM_REQ_TLB_FLUSH_GUEST \
107 	KVM_ARCH_REQ_FLAGS(27, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
108 #define KVM_REQ_APF_READY		KVM_ARCH_REQ(28)
109 #define KVM_REQ_MSR_FILTER_CHANGED	KVM_ARCH_REQ(29)
110 #define KVM_REQ_UPDATE_CPU_DIRTY_LOGGING \
111 	KVM_ARCH_REQ_FLAGS(30, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
112 #define KVM_REQ_MMU_FREE_OBSOLETE_ROOTS \
113 	KVM_ARCH_REQ_FLAGS(31, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
114 #define KVM_REQ_HV_TLB_FLUSH \
115 	KVM_ARCH_REQ_FLAGS(32, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
116 
117 #define CR0_RESERVED_BITS                                               \
118 	(~(unsigned long)(X86_CR0_PE | X86_CR0_MP | X86_CR0_EM | X86_CR0_TS \
119 			  | X86_CR0_ET | X86_CR0_NE | X86_CR0_WP | X86_CR0_AM \
120 			  | X86_CR0_NW | X86_CR0_CD | X86_CR0_PG))
121 
122 #define CR4_RESERVED_BITS                                               \
123 	(~(unsigned long)(X86_CR4_VME | X86_CR4_PVI | X86_CR4_TSD | X86_CR4_DE\
124 			  | X86_CR4_PSE | X86_CR4_PAE | X86_CR4_MCE     \
125 			  | X86_CR4_PGE | X86_CR4_PCE | X86_CR4_OSFXSR | X86_CR4_PCIDE \
126 			  | X86_CR4_OSXSAVE | X86_CR4_SMEP | X86_CR4_FSGSBASE \
127 			  | X86_CR4_OSXMMEXCPT | X86_CR4_LA57 | X86_CR4_VMXE \
128 			  | X86_CR4_SMAP | X86_CR4_PKE | X86_CR4_UMIP))
129 
130 #define CR8_RESERVED_BITS (~(unsigned long)X86_CR8_TPR)
131 
132 
133 
134 #define INVALID_PAGE (~(hpa_t)0)
135 #define VALID_PAGE(x) ((x) != INVALID_PAGE)
136 
137 /* KVM Hugepage definitions for x86 */
138 #define KVM_MAX_HUGEPAGE_LEVEL	PG_LEVEL_1G
139 #define KVM_NR_PAGE_SIZES	(KVM_MAX_HUGEPAGE_LEVEL - PG_LEVEL_4K + 1)
140 #define KVM_HPAGE_GFN_SHIFT(x)	(((x) - 1) * 9)
141 #define KVM_HPAGE_SHIFT(x)	(PAGE_SHIFT + KVM_HPAGE_GFN_SHIFT(x))
142 #define KVM_HPAGE_SIZE(x)	(1UL << KVM_HPAGE_SHIFT(x))
143 #define KVM_HPAGE_MASK(x)	(~(KVM_HPAGE_SIZE(x) - 1))
144 #define KVM_PAGES_PER_HPAGE(x)	(KVM_HPAGE_SIZE(x) / PAGE_SIZE)
145 
146 #define KVM_MEMSLOT_PAGES_TO_MMU_PAGES_RATIO 50
147 #define KVM_MIN_ALLOC_MMU_PAGES 64UL
148 #define KVM_MMU_HASH_SHIFT 12
149 #define KVM_NUM_MMU_PAGES (1 << KVM_MMU_HASH_SHIFT)
150 #define KVM_MIN_FREE_MMU_PAGES 5
151 #define KVM_REFILL_PAGES 25
152 #define KVM_MAX_CPUID_ENTRIES 256
153 #define KVM_NR_FIXED_MTRR_REGION 88
154 #define KVM_NR_VAR_MTRR 8
155 
156 #define ASYNC_PF_PER_VCPU 64
157 
158 enum kvm_reg {
159 	VCPU_REGS_RAX = __VCPU_REGS_RAX,
160 	VCPU_REGS_RCX = __VCPU_REGS_RCX,
161 	VCPU_REGS_RDX = __VCPU_REGS_RDX,
162 	VCPU_REGS_RBX = __VCPU_REGS_RBX,
163 	VCPU_REGS_RSP = __VCPU_REGS_RSP,
164 	VCPU_REGS_RBP = __VCPU_REGS_RBP,
165 	VCPU_REGS_RSI = __VCPU_REGS_RSI,
166 	VCPU_REGS_RDI = __VCPU_REGS_RDI,
167 #ifdef CONFIG_X86_64
168 	VCPU_REGS_R8  = __VCPU_REGS_R8,
169 	VCPU_REGS_R9  = __VCPU_REGS_R9,
170 	VCPU_REGS_R10 = __VCPU_REGS_R10,
171 	VCPU_REGS_R11 = __VCPU_REGS_R11,
172 	VCPU_REGS_R12 = __VCPU_REGS_R12,
173 	VCPU_REGS_R13 = __VCPU_REGS_R13,
174 	VCPU_REGS_R14 = __VCPU_REGS_R14,
175 	VCPU_REGS_R15 = __VCPU_REGS_R15,
176 #endif
177 	VCPU_REGS_RIP,
178 	NR_VCPU_REGS,
179 
180 	VCPU_EXREG_PDPTR = NR_VCPU_REGS,
181 	VCPU_EXREG_CR0,
182 	VCPU_EXREG_CR3,
183 	VCPU_EXREG_CR4,
184 	VCPU_EXREG_RFLAGS,
185 	VCPU_EXREG_SEGMENTS,
186 	VCPU_EXREG_EXIT_INFO_1,
187 	VCPU_EXREG_EXIT_INFO_2,
188 };
189 
190 enum {
191 	VCPU_SREG_ES,
192 	VCPU_SREG_CS,
193 	VCPU_SREG_SS,
194 	VCPU_SREG_DS,
195 	VCPU_SREG_FS,
196 	VCPU_SREG_GS,
197 	VCPU_SREG_TR,
198 	VCPU_SREG_LDTR,
199 };
200 
201 enum exit_fastpath_completion {
202 	EXIT_FASTPATH_NONE,
203 	EXIT_FASTPATH_REENTER_GUEST,
204 	EXIT_FASTPATH_EXIT_HANDLED,
205 };
206 typedef enum exit_fastpath_completion fastpath_t;
207 
208 struct x86_emulate_ctxt;
209 struct x86_exception;
210 union kvm_smram;
211 enum x86_intercept;
212 enum x86_intercept_stage;
213 
214 #define KVM_NR_DB_REGS	4
215 
216 #define DR6_BUS_LOCK   (1 << 11)
217 #define DR6_BD		(1 << 13)
218 #define DR6_BS		(1 << 14)
219 #define DR6_BT		(1 << 15)
220 #define DR6_RTM		(1 << 16)
221 /*
222  * DR6_ACTIVE_LOW combines fixed-1 and active-low bits.
223  * We can regard all the bits in DR6_FIXED_1 as active_low bits;
224  * they will never be 0 for now, but when they are defined
225  * in the future it will require no code change.
226  *
227  * DR6_ACTIVE_LOW is also used as the init/reset value for DR6.
228  */
229 #define DR6_ACTIVE_LOW	0xffff0ff0
230 #define DR6_VOLATILE	0x0001e80f
231 #define DR6_FIXED_1	(DR6_ACTIVE_LOW & ~DR6_VOLATILE)
232 
233 #define DR7_BP_EN_MASK	0x000000ff
234 #define DR7_GE		(1 << 9)
235 #define DR7_GD		(1 << 13)
236 #define DR7_FIXED_1	0x00000400
237 #define DR7_VOLATILE	0xffff2bff
238 
239 #define KVM_GUESTDBG_VALID_MASK \
240 	(KVM_GUESTDBG_ENABLE | \
241 	KVM_GUESTDBG_SINGLESTEP | \
242 	KVM_GUESTDBG_USE_HW_BP | \
243 	KVM_GUESTDBG_USE_SW_BP | \
244 	KVM_GUESTDBG_INJECT_BP | \
245 	KVM_GUESTDBG_INJECT_DB | \
246 	KVM_GUESTDBG_BLOCKIRQ)
247 
248 
249 #define PFERR_PRESENT_BIT 0
250 #define PFERR_WRITE_BIT 1
251 #define PFERR_USER_BIT 2
252 #define PFERR_RSVD_BIT 3
253 #define PFERR_FETCH_BIT 4
254 #define PFERR_PK_BIT 5
255 #define PFERR_SGX_BIT 15
256 #define PFERR_GUEST_FINAL_BIT 32
257 #define PFERR_GUEST_PAGE_BIT 33
258 #define PFERR_IMPLICIT_ACCESS_BIT 48
259 
260 #define PFERR_PRESENT_MASK	BIT(PFERR_PRESENT_BIT)
261 #define PFERR_WRITE_MASK	BIT(PFERR_WRITE_BIT)
262 #define PFERR_USER_MASK		BIT(PFERR_USER_BIT)
263 #define PFERR_RSVD_MASK		BIT(PFERR_RSVD_BIT)
264 #define PFERR_FETCH_MASK	BIT(PFERR_FETCH_BIT)
265 #define PFERR_PK_MASK		BIT(PFERR_PK_BIT)
266 #define PFERR_SGX_MASK		BIT(PFERR_SGX_BIT)
267 #define PFERR_GUEST_FINAL_MASK	BIT_ULL(PFERR_GUEST_FINAL_BIT)
268 #define PFERR_GUEST_PAGE_MASK	BIT_ULL(PFERR_GUEST_PAGE_BIT)
269 #define PFERR_IMPLICIT_ACCESS	BIT_ULL(PFERR_IMPLICIT_ACCESS_BIT)
270 
271 #define PFERR_NESTED_GUEST_PAGE (PFERR_GUEST_PAGE_MASK |	\
272 				 PFERR_WRITE_MASK |		\
273 				 PFERR_PRESENT_MASK)
274 
275 /* apic attention bits */
276 #define KVM_APIC_CHECK_VAPIC	0
277 /*
278  * The following bit is set with PV-EOI, unset on EOI.
279  * We detect PV-EOI changes by guest by comparing
280  * this bit with PV-EOI in guest memory.
281  * See the implementation in apic_update_pv_eoi.
282  */
283 #define KVM_APIC_PV_EOI_PENDING	1
284 
285 struct kvm_kernel_irq_routing_entry;
286 
287 /*
288  * kvm_mmu_page_role tracks the properties of a shadow page (where shadow page
289  * also includes TDP pages) to determine whether or not a page can be used in
290  * the given MMU context.  This is a subset of the overall kvm_cpu_role to
291  * minimize the size of kvm_memory_slot.arch.gfn_track, i.e. allows allocating
292  * 2 bytes per gfn instead of 4 bytes per gfn.
293  *
294  * Upper-level shadow pages having gptes are tracked for write-protection via
295  * gfn_track.  As above, gfn_track is a 16 bit counter, so KVM must not create
296  * more than 2^16-1 upper-level shadow pages at a single gfn, otherwise
297  * gfn_track will overflow and explosions will ensure.
298  *
299  * A unique shadow page (SP) for a gfn is created if and only if an existing SP
300  * cannot be reused.  The ability to reuse a SP is tracked by its role, which
301  * incorporates various mode bits and properties of the SP.  Roughly speaking,
302  * the number of unique SPs that can theoretically be created is 2^n, where n
303  * is the number of bits that are used to compute the role.
304  *
305  * But, even though there are 19 bits in the mask below, not all combinations
306  * of modes and flags are possible:
307  *
308  *   - invalid shadow pages are not accounted, so the bits are effectively 18
309  *
310  *   - quadrant will only be used if has_4_byte_gpte=1 (non-PAE paging);
311  *     execonly and ad_disabled are only used for nested EPT which has
312  *     has_4_byte_gpte=0.  Therefore, 2 bits are always unused.
313  *
314  *   - the 4 bits of level are effectively limited to the values 2/3/4/5,
315  *     as 4k SPs are not tracked (allowed to go unsync).  In addition non-PAE
316  *     paging has exactly one upper level, making level completely redundant
317  *     when has_4_byte_gpte=1.
318  *
319  *   - on top of this, smep_andnot_wp and smap_andnot_wp are only set if
320  *     cr0_wp=0, therefore these three bits only give rise to 5 possibilities.
321  *
322  * Therefore, the maximum number of possible upper-level shadow pages for a
323  * single gfn is a bit less than 2^13.
324  */
325 union kvm_mmu_page_role {
326 	u32 word;
327 	struct {
328 		unsigned level:4;
329 		unsigned has_4_byte_gpte:1;
330 		unsigned quadrant:2;
331 		unsigned direct:1;
332 		unsigned access:3;
333 		unsigned invalid:1;
334 		unsigned efer_nx:1;
335 		unsigned cr0_wp:1;
336 		unsigned smep_andnot_wp:1;
337 		unsigned smap_andnot_wp:1;
338 		unsigned ad_disabled:1;
339 		unsigned guest_mode:1;
340 		unsigned passthrough:1;
341 		unsigned :5;
342 
343 		/*
344 		 * This is left at the top of the word so that
345 		 * kvm_memslots_for_spte_role can extract it with a
346 		 * simple shift.  While there is room, give it a whole
347 		 * byte so it is also faster to load it from memory.
348 		 */
349 		unsigned smm:8;
350 	};
351 };
352 
353 /*
354  * kvm_mmu_extended_role complements kvm_mmu_page_role, tracking properties
355  * relevant to the current MMU configuration.   When loading CR0, CR4, or EFER,
356  * including on nested transitions, if nothing in the full role changes then
357  * MMU re-configuration can be skipped. @valid bit is set on first usage so we
358  * don't treat all-zero structure as valid data.
359  *
360  * The properties that are tracked in the extended role but not the page role
361  * are for things that either (a) do not affect the validity of the shadow page
362  * or (b) are indirectly reflected in the shadow page's role.  For example,
363  * CR4.PKE only affects permission checks for software walks of the guest page
364  * tables (because KVM doesn't support Protection Keys with shadow paging), and
365  * CR0.PG, CR4.PAE, and CR4.PSE are indirectly reflected in role.level.
366  *
367  * Note, SMEP and SMAP are not redundant with sm*p_andnot_wp in the page role.
368  * If CR0.WP=1, KVM can reuse shadow pages for the guest regardless of SMEP and
369  * SMAP, but the MMU's permission checks for software walks need to be SMEP and
370  * SMAP aware regardless of CR0.WP.
371  */
372 union kvm_mmu_extended_role {
373 	u32 word;
374 	struct {
375 		unsigned int valid:1;
376 		unsigned int execonly:1;
377 		unsigned int cr4_pse:1;
378 		unsigned int cr4_pke:1;
379 		unsigned int cr4_smap:1;
380 		unsigned int cr4_smep:1;
381 		unsigned int cr4_la57:1;
382 		unsigned int efer_lma:1;
383 	};
384 };
385 
386 union kvm_cpu_role {
387 	u64 as_u64;
388 	struct {
389 		union kvm_mmu_page_role base;
390 		union kvm_mmu_extended_role ext;
391 	};
392 };
393 
394 struct kvm_rmap_head {
395 	unsigned long val;
396 };
397 
398 struct kvm_pio_request {
399 	unsigned long linear_rip;
400 	unsigned long count;
401 	int in;
402 	int port;
403 	int size;
404 };
405 
406 #define PT64_ROOT_MAX_LEVEL 5
407 
408 struct rsvd_bits_validate {
409 	u64 rsvd_bits_mask[2][PT64_ROOT_MAX_LEVEL];
410 	u64 bad_mt_xwr;
411 };
412 
413 struct kvm_mmu_root_info {
414 	gpa_t pgd;
415 	hpa_t hpa;
416 };
417 
418 #define KVM_MMU_ROOT_INFO_INVALID \
419 	((struct kvm_mmu_root_info) { .pgd = INVALID_PAGE, .hpa = INVALID_PAGE })
420 
421 #define KVM_MMU_NUM_PREV_ROOTS 3
422 
423 #define KVM_HAVE_MMU_RWLOCK
424 
425 struct kvm_mmu_page;
426 struct kvm_page_fault;
427 
428 /*
429  * x86 supports 4 paging modes (5-level 64-bit, 4-level 64-bit, 3-level 32-bit,
430  * and 2-level 32-bit).  The kvm_mmu structure abstracts the details of the
431  * current mmu mode.
432  */
433 struct kvm_mmu {
434 	unsigned long (*get_guest_pgd)(struct kvm_vcpu *vcpu);
435 	u64 (*get_pdptr)(struct kvm_vcpu *vcpu, int index);
436 	int (*page_fault)(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault);
437 	void (*inject_page_fault)(struct kvm_vcpu *vcpu,
438 				  struct x86_exception *fault);
439 	gpa_t (*gva_to_gpa)(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
440 			    gpa_t gva_or_gpa, u64 access,
441 			    struct x86_exception *exception);
442 	int (*sync_page)(struct kvm_vcpu *vcpu,
443 			 struct kvm_mmu_page *sp);
444 	void (*invlpg)(struct kvm_vcpu *vcpu, gva_t gva, hpa_t root_hpa);
445 	struct kvm_mmu_root_info root;
446 	union kvm_cpu_role cpu_role;
447 	union kvm_mmu_page_role root_role;
448 
449 	/*
450 	* The pkru_mask indicates if protection key checks are needed.  It
451 	* consists of 16 domains indexed by page fault error code bits [4:1],
452 	* with PFEC.RSVD replaced by ACC_USER_MASK from the page tables.
453 	* Each domain has 2 bits which are ANDed with AD and WD from PKRU.
454 	*/
455 	u32 pkru_mask;
456 
457 	struct kvm_mmu_root_info prev_roots[KVM_MMU_NUM_PREV_ROOTS];
458 
459 	/*
460 	 * Bitmap; bit set = permission fault
461 	 * Byte index: page fault error code [4:1]
462 	 * Bit index: pte permissions in ACC_* format
463 	 */
464 	u8 permissions[16];
465 
466 	u64 *pae_root;
467 	u64 *pml4_root;
468 	u64 *pml5_root;
469 
470 	/*
471 	 * check zero bits on shadow page table entries, these
472 	 * bits include not only hardware reserved bits but also
473 	 * the bits spte never used.
474 	 */
475 	struct rsvd_bits_validate shadow_zero_check;
476 
477 	struct rsvd_bits_validate guest_rsvd_check;
478 
479 	u64 pdptrs[4]; /* pae */
480 };
481 
482 struct kvm_tlb_range {
483 	u64 start_gfn;
484 	u64 pages;
485 };
486 
487 enum pmc_type {
488 	KVM_PMC_GP = 0,
489 	KVM_PMC_FIXED,
490 };
491 
492 struct kvm_pmc {
493 	enum pmc_type type;
494 	u8 idx;
495 	bool is_paused;
496 	bool intr;
497 	u64 counter;
498 	u64 prev_counter;
499 	u64 eventsel;
500 	struct perf_event *perf_event;
501 	struct kvm_vcpu *vcpu;
502 	/*
503 	 * only for creating or reusing perf_event,
504 	 * eventsel value for general purpose counters,
505 	 * ctrl value for fixed counters.
506 	 */
507 	u64 current_config;
508 };
509 
510 /* More counters may conflict with other existing Architectural MSRs */
511 #define KVM_INTEL_PMC_MAX_GENERIC	8
512 #define MSR_ARCH_PERFMON_PERFCTR_MAX	(MSR_ARCH_PERFMON_PERFCTR0 + KVM_INTEL_PMC_MAX_GENERIC - 1)
513 #define MSR_ARCH_PERFMON_EVENTSEL_MAX	(MSR_ARCH_PERFMON_EVENTSEL0 + KVM_INTEL_PMC_MAX_GENERIC - 1)
514 #define KVM_PMC_MAX_FIXED	3
515 #define MSR_ARCH_PERFMON_FIXED_CTR_MAX	(MSR_ARCH_PERFMON_FIXED_CTR0 + KVM_PMC_MAX_FIXED - 1)
516 #define KVM_AMD_PMC_MAX_GENERIC	6
517 struct kvm_pmu {
518 	unsigned nr_arch_gp_counters;
519 	unsigned nr_arch_fixed_counters;
520 	unsigned available_event_types;
521 	u64 fixed_ctr_ctrl;
522 	u64 fixed_ctr_ctrl_mask;
523 	u64 global_ctrl;
524 	u64 global_status;
525 	u64 counter_bitmask[2];
526 	u64 global_ctrl_mask;
527 	u64 global_ovf_ctrl_mask;
528 	u64 reserved_bits;
529 	u64 raw_event_mask;
530 	u8 version;
531 	struct kvm_pmc gp_counters[KVM_INTEL_PMC_MAX_GENERIC];
532 	struct kvm_pmc fixed_counters[KVM_PMC_MAX_FIXED];
533 	struct irq_work irq_work;
534 
535 	/*
536 	 * Overlay the bitmap with a 64-bit atomic so that all bits can be
537 	 * set in a single access, e.g. to reprogram all counters when the PMU
538 	 * filter changes.
539 	 */
540 	union {
541 		DECLARE_BITMAP(reprogram_pmi, X86_PMC_IDX_MAX);
542 		atomic64_t __reprogram_pmi;
543 	};
544 	DECLARE_BITMAP(all_valid_pmc_idx, X86_PMC_IDX_MAX);
545 	DECLARE_BITMAP(pmc_in_use, X86_PMC_IDX_MAX);
546 
547 	u64 ds_area;
548 	u64 pebs_enable;
549 	u64 pebs_enable_mask;
550 	u64 pebs_data_cfg;
551 	u64 pebs_data_cfg_mask;
552 
553 	/*
554 	 * If a guest counter is cross-mapped to host counter with different
555 	 * index, its PEBS capability will be temporarily disabled.
556 	 *
557 	 * The user should make sure that this mask is updated
558 	 * after disabling interrupts and before perf_guest_get_msrs();
559 	 */
560 	u64 host_cross_mapped_mask;
561 
562 	/*
563 	 * The gate to release perf_events not marked in
564 	 * pmc_in_use only once in a vcpu time slice.
565 	 */
566 	bool need_cleanup;
567 
568 	/*
569 	 * The total number of programmed perf_events and it helps to avoid
570 	 * redundant check before cleanup if guest don't use vPMU at all.
571 	 */
572 	u8 event_count;
573 };
574 
575 struct kvm_pmu_ops;
576 
577 enum {
578 	KVM_DEBUGREG_BP_ENABLED = 1,
579 	KVM_DEBUGREG_WONT_EXIT = 2,
580 };
581 
582 struct kvm_mtrr_range {
583 	u64 base;
584 	u64 mask;
585 	struct list_head node;
586 };
587 
588 struct kvm_mtrr {
589 	struct kvm_mtrr_range var_ranges[KVM_NR_VAR_MTRR];
590 	mtrr_type fixed_ranges[KVM_NR_FIXED_MTRR_REGION];
591 	u64 deftype;
592 
593 	struct list_head head;
594 };
595 
596 /* Hyper-V SynIC timer */
597 struct kvm_vcpu_hv_stimer {
598 	struct hrtimer timer;
599 	int index;
600 	union hv_stimer_config config;
601 	u64 count;
602 	u64 exp_time;
603 	struct hv_message msg;
604 	bool msg_pending;
605 };
606 
607 /* Hyper-V synthetic interrupt controller (SynIC)*/
608 struct kvm_vcpu_hv_synic {
609 	u64 version;
610 	u64 control;
611 	u64 msg_page;
612 	u64 evt_page;
613 	atomic64_t sint[HV_SYNIC_SINT_COUNT];
614 	atomic_t sint_to_gsi[HV_SYNIC_SINT_COUNT];
615 	DECLARE_BITMAP(auto_eoi_bitmap, 256);
616 	DECLARE_BITMAP(vec_bitmap, 256);
617 	bool active;
618 	bool dont_zero_synic_pages;
619 };
620 
621 /* The maximum number of entries on the TLB flush fifo. */
622 #define KVM_HV_TLB_FLUSH_FIFO_SIZE (16)
623 /*
624  * Note: the following 'magic' entry is made up by KVM to avoid putting
625  * anything besides GVA on the TLB flush fifo. It is theoretically possible
626  * to observe a request to flush 4095 PFNs starting from 0xfffffffffffff000
627  * which will look identical. KVM's action to 'flush everything' instead of
628  * flushing these particular addresses is, however, fully legitimate as
629  * flushing more than requested is always OK.
630  */
631 #define KVM_HV_TLB_FLUSHALL_ENTRY  ((u64)-1)
632 
633 enum hv_tlb_flush_fifos {
634 	HV_L1_TLB_FLUSH_FIFO,
635 	HV_L2_TLB_FLUSH_FIFO,
636 	HV_NR_TLB_FLUSH_FIFOS,
637 };
638 
639 struct kvm_vcpu_hv_tlb_flush_fifo {
640 	spinlock_t write_lock;
641 	DECLARE_KFIFO(entries, u64, KVM_HV_TLB_FLUSH_FIFO_SIZE);
642 };
643 
644 /* Hyper-V per vcpu emulation context */
645 struct kvm_vcpu_hv {
646 	struct kvm_vcpu *vcpu;
647 	u32 vp_index;
648 	u64 hv_vapic;
649 	s64 runtime_offset;
650 	struct kvm_vcpu_hv_synic synic;
651 	struct kvm_hyperv_exit exit;
652 	struct kvm_vcpu_hv_stimer stimer[HV_SYNIC_STIMER_COUNT];
653 	DECLARE_BITMAP(stimer_pending_bitmap, HV_SYNIC_STIMER_COUNT);
654 	bool enforce_cpuid;
655 	struct {
656 		u32 features_eax; /* HYPERV_CPUID_FEATURES.EAX */
657 		u32 features_ebx; /* HYPERV_CPUID_FEATURES.EBX */
658 		u32 features_edx; /* HYPERV_CPUID_FEATURES.EDX */
659 		u32 enlightenments_eax; /* HYPERV_CPUID_ENLIGHTMENT_INFO.EAX */
660 		u32 enlightenments_ebx; /* HYPERV_CPUID_ENLIGHTMENT_INFO.EBX */
661 		u32 syndbg_cap_eax; /* HYPERV_CPUID_SYNDBG_PLATFORM_CAPABILITIES.EAX */
662 		u32 nested_eax; /* HYPERV_CPUID_NESTED_FEATURES.EAX */
663 		u32 nested_ebx; /* HYPERV_CPUID_NESTED_FEATURES.EBX */
664 	} cpuid_cache;
665 
666 	struct kvm_vcpu_hv_tlb_flush_fifo tlb_flush_fifo[HV_NR_TLB_FLUSH_FIFOS];
667 
668 	/* Preallocated buffer for handling hypercalls passing sparse vCPU set */
669 	u64 sparse_banks[HV_MAX_SPARSE_VCPU_BANKS];
670 
671 	struct hv_vp_assist_page vp_assist_page;
672 
673 	struct {
674 		u64 pa_page_gpa;
675 		u64 vm_id;
676 		u32 vp_id;
677 	} nested;
678 };
679 
680 struct kvm_hypervisor_cpuid {
681 	u32 base;
682 	u32 limit;
683 };
684 
685 /* Xen HVM per vcpu emulation context */
686 struct kvm_vcpu_xen {
687 	u64 hypercall_rip;
688 	u32 current_runstate;
689 	u8 upcall_vector;
690 	struct gfn_to_pfn_cache vcpu_info_cache;
691 	struct gfn_to_pfn_cache vcpu_time_info_cache;
692 	struct gfn_to_pfn_cache runstate_cache;
693 	struct gfn_to_pfn_cache runstate2_cache;
694 	u64 last_steal;
695 	u64 runstate_entry_time;
696 	u64 runstate_times[4];
697 	unsigned long evtchn_pending_sel;
698 	u32 vcpu_id; /* The Xen / ACPI vCPU ID */
699 	u32 timer_virq;
700 	u64 timer_expires; /* In guest epoch */
701 	atomic_t timer_pending;
702 	struct hrtimer timer;
703 	int poll_evtchn;
704 	struct timer_list poll_timer;
705 	struct kvm_hypervisor_cpuid cpuid;
706 };
707 
708 struct kvm_queued_exception {
709 	bool pending;
710 	bool injected;
711 	bool has_error_code;
712 	u8 vector;
713 	u32 error_code;
714 	unsigned long payload;
715 	bool has_payload;
716 };
717 
718 struct kvm_vcpu_arch {
719 	/*
720 	 * rip and regs accesses must go through
721 	 * kvm_{register,rip}_{read,write} functions.
722 	 */
723 	unsigned long regs[NR_VCPU_REGS];
724 	u32 regs_avail;
725 	u32 regs_dirty;
726 
727 	unsigned long cr0;
728 	unsigned long cr0_guest_owned_bits;
729 	unsigned long cr2;
730 	unsigned long cr3;
731 	unsigned long cr4;
732 	unsigned long cr4_guest_owned_bits;
733 	unsigned long cr4_guest_rsvd_bits;
734 	unsigned long cr8;
735 	u32 host_pkru;
736 	u32 pkru;
737 	u32 hflags;
738 	u64 efer;
739 	u64 apic_base;
740 	struct kvm_lapic *apic;    /* kernel irqchip context */
741 	bool load_eoi_exitmap_pending;
742 	DECLARE_BITMAP(ioapic_handled_vectors, 256);
743 	unsigned long apic_attention;
744 	int32_t apic_arb_prio;
745 	int mp_state;
746 	u64 ia32_misc_enable_msr;
747 	u64 smbase;
748 	u64 smi_count;
749 	bool at_instruction_boundary;
750 	bool tpr_access_reporting;
751 	bool xsaves_enabled;
752 	bool xfd_no_write_intercept;
753 	u64 ia32_xss;
754 	u64 microcode_version;
755 	u64 arch_capabilities;
756 	u64 perf_capabilities;
757 
758 	/*
759 	 * Paging state of the vcpu
760 	 *
761 	 * If the vcpu runs in guest mode with two level paging this still saves
762 	 * the paging mode of the l1 guest. This context is always used to
763 	 * handle faults.
764 	 */
765 	struct kvm_mmu *mmu;
766 
767 	/* Non-nested MMU for L1 */
768 	struct kvm_mmu root_mmu;
769 
770 	/* L1 MMU when running nested */
771 	struct kvm_mmu guest_mmu;
772 
773 	/*
774 	 * Paging state of an L2 guest (used for nested npt)
775 	 *
776 	 * This context will save all necessary information to walk page tables
777 	 * of an L2 guest. This context is only initialized for page table
778 	 * walking and not for faulting since we never handle l2 page faults on
779 	 * the host.
780 	 */
781 	struct kvm_mmu nested_mmu;
782 
783 	/*
784 	 * Pointer to the mmu context currently used for
785 	 * gva_to_gpa translations.
786 	 */
787 	struct kvm_mmu *walk_mmu;
788 
789 	struct kvm_mmu_memory_cache mmu_pte_list_desc_cache;
790 	struct kvm_mmu_memory_cache mmu_shadow_page_cache;
791 	struct kvm_mmu_memory_cache mmu_shadowed_info_cache;
792 	struct kvm_mmu_memory_cache mmu_page_header_cache;
793 
794 	/*
795 	 * QEMU userspace and the guest each have their own FPU state.
796 	 * In vcpu_run, we switch between the user and guest FPU contexts.
797 	 * While running a VCPU, the VCPU thread will have the guest FPU
798 	 * context.
799 	 *
800 	 * Note that while the PKRU state lives inside the fpu registers,
801 	 * it is switched out separately at VMENTER and VMEXIT time. The
802 	 * "guest_fpstate" state here contains the guest FPU context, with the
803 	 * host PRKU bits.
804 	 */
805 	struct fpu_guest guest_fpu;
806 
807 	u64 xcr0;
808 	u64 guest_supported_xcr0;
809 
810 	struct kvm_pio_request pio;
811 	void *pio_data;
812 	void *sev_pio_data;
813 	unsigned sev_pio_count;
814 
815 	u8 event_exit_inst_len;
816 
817 	bool exception_from_userspace;
818 
819 	/* Exceptions to be injected to the guest. */
820 	struct kvm_queued_exception exception;
821 	/* Exception VM-Exits to be synthesized to L1. */
822 	struct kvm_queued_exception exception_vmexit;
823 
824 	struct kvm_queued_interrupt {
825 		bool injected;
826 		bool soft;
827 		u8 nr;
828 	} interrupt;
829 
830 	int halt_request; /* real mode on Intel only */
831 
832 	int cpuid_nent;
833 	struct kvm_cpuid_entry2 *cpuid_entries;
834 	struct kvm_hypervisor_cpuid kvm_cpuid;
835 
836 	u64 reserved_gpa_bits;
837 	int maxphyaddr;
838 
839 	/* emulate context */
840 
841 	struct x86_emulate_ctxt *emulate_ctxt;
842 	bool emulate_regs_need_sync_to_vcpu;
843 	bool emulate_regs_need_sync_from_vcpu;
844 	int (*complete_userspace_io)(struct kvm_vcpu *vcpu);
845 
846 	gpa_t time;
847 	struct pvclock_vcpu_time_info hv_clock;
848 	unsigned int hw_tsc_khz;
849 	struct gfn_to_pfn_cache pv_time;
850 	/* set guest stopped flag in pvclock flags field */
851 	bool pvclock_set_guest_stopped_request;
852 
853 	struct {
854 		u8 preempted;
855 		u64 msr_val;
856 		u64 last_steal;
857 		struct gfn_to_hva_cache cache;
858 	} st;
859 
860 	u64 l1_tsc_offset;
861 	u64 tsc_offset; /* current tsc offset */
862 	u64 last_guest_tsc;
863 	u64 last_host_tsc;
864 	u64 tsc_offset_adjustment;
865 	u64 this_tsc_nsec;
866 	u64 this_tsc_write;
867 	u64 this_tsc_generation;
868 	bool tsc_catchup;
869 	bool tsc_always_catchup;
870 	s8 virtual_tsc_shift;
871 	u32 virtual_tsc_mult;
872 	u32 virtual_tsc_khz;
873 	s64 ia32_tsc_adjust_msr;
874 	u64 msr_ia32_power_ctl;
875 	u64 l1_tsc_scaling_ratio;
876 	u64 tsc_scaling_ratio; /* current scaling ratio */
877 
878 	atomic_t nmi_queued;  /* unprocessed asynchronous NMIs */
879 	unsigned nmi_pending; /* NMI queued after currently running handler */
880 	bool nmi_injected;    /* Trying to inject an NMI this entry */
881 	bool smi_pending;    /* SMI queued after currently running handler */
882 	u8 handling_intr_from_guest;
883 
884 	struct kvm_mtrr mtrr_state;
885 	u64 pat;
886 
887 	unsigned switch_db_regs;
888 	unsigned long db[KVM_NR_DB_REGS];
889 	unsigned long dr6;
890 	unsigned long dr7;
891 	unsigned long eff_db[KVM_NR_DB_REGS];
892 	unsigned long guest_debug_dr7;
893 	u64 msr_platform_info;
894 	u64 msr_misc_features_enables;
895 
896 	u64 mcg_cap;
897 	u64 mcg_status;
898 	u64 mcg_ctl;
899 	u64 mcg_ext_ctl;
900 	u64 *mce_banks;
901 	u64 *mci_ctl2_banks;
902 
903 	/* Cache MMIO info */
904 	u64 mmio_gva;
905 	unsigned mmio_access;
906 	gfn_t mmio_gfn;
907 	u64 mmio_gen;
908 
909 	struct kvm_pmu pmu;
910 
911 	/* used for guest single stepping over the given code position */
912 	unsigned long singlestep_rip;
913 
914 	bool hyperv_enabled;
915 	struct kvm_vcpu_hv *hyperv;
916 	struct kvm_vcpu_xen xen;
917 
918 	cpumask_var_t wbinvd_dirty_mask;
919 
920 	unsigned long last_retry_eip;
921 	unsigned long last_retry_addr;
922 
923 	struct {
924 		bool halted;
925 		gfn_t gfns[ASYNC_PF_PER_VCPU];
926 		struct gfn_to_hva_cache data;
927 		u64 msr_en_val; /* MSR_KVM_ASYNC_PF_EN */
928 		u64 msr_int_val; /* MSR_KVM_ASYNC_PF_INT */
929 		u16 vec;
930 		u32 id;
931 		bool send_user_only;
932 		u32 host_apf_flags;
933 		bool delivery_as_pf_vmexit;
934 		bool pageready_pending;
935 	} apf;
936 
937 	/* OSVW MSRs (AMD only) */
938 	struct {
939 		u64 length;
940 		u64 status;
941 	} osvw;
942 
943 	struct {
944 		u64 msr_val;
945 		struct gfn_to_hva_cache data;
946 	} pv_eoi;
947 
948 	u64 msr_kvm_poll_control;
949 
950 	/*
951 	 * Indicates the guest is trying to write a gfn that contains one or
952 	 * more of the PTEs used to translate the write itself, i.e. the access
953 	 * is changing its own translation in the guest page tables.  KVM exits
954 	 * to userspace if emulation of the faulting instruction fails and this
955 	 * flag is set, as KVM cannot make forward progress.
956 	 *
957 	 * If emulation fails for a write to guest page tables, KVM unprotects
958 	 * (zaps) the shadow page for the target gfn and resumes the guest to
959 	 * retry the non-emulatable instruction (on hardware).  Unprotecting the
960 	 * gfn doesn't allow forward progress for a self-changing access because
961 	 * doing so also zaps the translation for the gfn, i.e. retrying the
962 	 * instruction will hit a !PRESENT fault, which results in a new shadow
963 	 * page and sends KVM back to square one.
964 	 */
965 	bool write_fault_to_shadow_pgtable;
966 
967 	/* set at EPT violation at this point */
968 	unsigned long exit_qualification;
969 
970 	/* pv related host specific info */
971 	struct {
972 		bool pv_unhalted;
973 	} pv;
974 
975 	int pending_ioapic_eoi;
976 	int pending_external_vector;
977 
978 	/* be preempted when it's in kernel-mode(cpl=0) */
979 	bool preempted_in_kernel;
980 
981 	/* Flush the L1 Data cache for L1TF mitigation on VMENTER */
982 	bool l1tf_flush_l1d;
983 
984 	/* Host CPU on which VM-entry was most recently attempted */
985 	int last_vmentry_cpu;
986 
987 	/* AMD MSRC001_0015 Hardware Configuration */
988 	u64 msr_hwcr;
989 
990 	/* pv related cpuid info */
991 	struct {
992 		/*
993 		 * value of the eax register in the KVM_CPUID_FEATURES CPUID
994 		 * leaf.
995 		 */
996 		u32 features;
997 
998 		/*
999 		 * indicates whether pv emulation should be disabled if features
1000 		 * are not present in the guest's cpuid
1001 		 */
1002 		bool enforce;
1003 	} pv_cpuid;
1004 
1005 	/* Protected Guests */
1006 	bool guest_state_protected;
1007 
1008 	/*
1009 	 * Set when PDPTS were loaded directly by the userspace without
1010 	 * reading the guest memory
1011 	 */
1012 	bool pdptrs_from_userspace;
1013 
1014 #if IS_ENABLED(CONFIG_HYPERV)
1015 	hpa_t hv_root_tdp;
1016 #endif
1017 };
1018 
1019 struct kvm_lpage_info {
1020 	int disallow_lpage;
1021 };
1022 
1023 struct kvm_arch_memory_slot {
1024 	struct kvm_rmap_head *rmap[KVM_NR_PAGE_SIZES];
1025 	struct kvm_lpage_info *lpage_info[KVM_NR_PAGE_SIZES - 1];
1026 	unsigned short *gfn_track[KVM_PAGE_TRACK_MAX];
1027 };
1028 
1029 /*
1030  * Track the mode of the optimized logical map, as the rules for decoding the
1031  * destination vary per mode.  Enabling the optimized logical map requires all
1032  * software-enabled local APIs to be in the same mode, each addressable APIC to
1033  * be mapped to only one MDA, and each MDA to map to at most one APIC.
1034  */
1035 enum kvm_apic_logical_mode {
1036 	/* All local APICs are software disabled. */
1037 	KVM_APIC_MODE_SW_DISABLED,
1038 	/* All software enabled local APICs in xAPIC cluster addressing mode. */
1039 	KVM_APIC_MODE_XAPIC_CLUSTER,
1040 	/* All software enabled local APICs in xAPIC flat addressing mode. */
1041 	KVM_APIC_MODE_XAPIC_FLAT,
1042 	/* All software enabled local APICs in x2APIC mode. */
1043 	KVM_APIC_MODE_X2APIC,
1044 	/*
1045 	 * Optimized map disabled, e.g. not all local APICs in the same logical
1046 	 * mode, same logical ID assigned to multiple APICs, etc.
1047 	 */
1048 	KVM_APIC_MODE_MAP_DISABLED,
1049 };
1050 
1051 struct kvm_apic_map {
1052 	struct rcu_head rcu;
1053 	enum kvm_apic_logical_mode logical_mode;
1054 	u32 max_apic_id;
1055 	union {
1056 		struct kvm_lapic *xapic_flat_map[8];
1057 		struct kvm_lapic *xapic_cluster_map[16][4];
1058 	};
1059 	struct kvm_lapic *phys_map[];
1060 };
1061 
1062 /* Hyper-V synthetic debugger (SynDbg)*/
1063 struct kvm_hv_syndbg {
1064 	struct {
1065 		u64 control;
1066 		u64 status;
1067 		u64 send_page;
1068 		u64 recv_page;
1069 		u64 pending_page;
1070 	} control;
1071 	u64 options;
1072 };
1073 
1074 /* Current state of Hyper-V TSC page clocksource */
1075 enum hv_tsc_page_status {
1076 	/* TSC page was not set up or disabled */
1077 	HV_TSC_PAGE_UNSET = 0,
1078 	/* TSC page MSR was written by the guest, update pending */
1079 	HV_TSC_PAGE_GUEST_CHANGED,
1080 	/* TSC page update was triggered from the host side */
1081 	HV_TSC_PAGE_HOST_CHANGED,
1082 	/* TSC page was properly set up and is currently active  */
1083 	HV_TSC_PAGE_SET,
1084 	/* TSC page was set up with an inaccessible GPA */
1085 	HV_TSC_PAGE_BROKEN,
1086 };
1087 
1088 /* Hyper-V emulation context */
1089 struct kvm_hv {
1090 	struct mutex hv_lock;
1091 	u64 hv_guest_os_id;
1092 	u64 hv_hypercall;
1093 	u64 hv_tsc_page;
1094 	enum hv_tsc_page_status hv_tsc_page_status;
1095 
1096 	/* Hyper-v based guest crash (NT kernel bugcheck) parameters */
1097 	u64 hv_crash_param[HV_X64_MSR_CRASH_PARAMS];
1098 	u64 hv_crash_ctl;
1099 
1100 	struct ms_hyperv_tsc_page tsc_ref;
1101 
1102 	struct idr conn_to_evt;
1103 
1104 	u64 hv_reenlightenment_control;
1105 	u64 hv_tsc_emulation_control;
1106 	u64 hv_tsc_emulation_status;
1107 	u64 hv_invtsc_control;
1108 
1109 	/* How many vCPUs have VP index != vCPU index */
1110 	atomic_t num_mismatched_vp_indexes;
1111 
1112 	/*
1113 	 * How many SynICs use 'AutoEOI' feature
1114 	 * (protected by arch.apicv_update_lock)
1115 	 */
1116 	unsigned int synic_auto_eoi_used;
1117 
1118 	struct hv_partition_assist_pg *hv_pa_pg;
1119 	struct kvm_hv_syndbg hv_syndbg;
1120 };
1121 
1122 struct msr_bitmap_range {
1123 	u32 flags;
1124 	u32 nmsrs;
1125 	u32 base;
1126 	unsigned long *bitmap;
1127 };
1128 
1129 /* Xen emulation context */
1130 struct kvm_xen {
1131 	struct mutex xen_lock;
1132 	u32 xen_version;
1133 	bool long_mode;
1134 	bool runstate_update_flag;
1135 	u8 upcall_vector;
1136 	struct gfn_to_pfn_cache shinfo_cache;
1137 	struct idr evtchn_ports;
1138 	unsigned long poll_mask[BITS_TO_LONGS(KVM_MAX_VCPUS)];
1139 };
1140 
1141 enum kvm_irqchip_mode {
1142 	KVM_IRQCHIP_NONE,
1143 	KVM_IRQCHIP_KERNEL,       /* created with KVM_CREATE_IRQCHIP */
1144 	KVM_IRQCHIP_SPLIT,        /* created with KVM_CAP_SPLIT_IRQCHIP */
1145 };
1146 
1147 struct kvm_x86_msr_filter {
1148 	u8 count;
1149 	bool default_allow:1;
1150 	struct msr_bitmap_range ranges[16];
1151 };
1152 
1153 struct kvm_x86_pmu_event_filter {
1154 	__u32 action;
1155 	__u32 nevents;
1156 	__u32 fixed_counter_bitmap;
1157 	__u32 flags;
1158 	__u32 nr_includes;
1159 	__u32 nr_excludes;
1160 	__u64 *includes;
1161 	__u64 *excludes;
1162 	__u64 events[];
1163 };
1164 
1165 enum kvm_apicv_inhibit {
1166 
1167 	/********************************************************************/
1168 	/* INHIBITs that are relevant to both Intel's APICv and AMD's AVIC. */
1169 	/********************************************************************/
1170 
1171 	/*
1172 	 * APIC acceleration is disabled by a module parameter
1173 	 * and/or not supported in hardware.
1174 	 */
1175 	APICV_INHIBIT_REASON_DISABLE,
1176 
1177 	/*
1178 	 * APIC acceleration is inhibited because AutoEOI feature is
1179 	 * being used by a HyperV guest.
1180 	 */
1181 	APICV_INHIBIT_REASON_HYPERV,
1182 
1183 	/*
1184 	 * APIC acceleration is inhibited because the userspace didn't yet
1185 	 * enable the kernel/split irqchip.
1186 	 */
1187 	APICV_INHIBIT_REASON_ABSENT,
1188 
1189 	/* APIC acceleration is inhibited because KVM_GUESTDBG_BLOCKIRQ
1190 	 * (out of band, debug measure of blocking all interrupts on this vCPU)
1191 	 * was enabled, to avoid AVIC/APICv bypassing it.
1192 	 */
1193 	APICV_INHIBIT_REASON_BLOCKIRQ,
1194 
1195 	/*
1196 	 * APICv is disabled because not all vCPUs have a 1:1 mapping between
1197 	 * APIC ID and vCPU, _and_ KVM is not applying its x2APIC hotplug hack.
1198 	 */
1199 	APICV_INHIBIT_REASON_PHYSICAL_ID_ALIASED,
1200 
1201 	/*
1202 	 * For simplicity, the APIC acceleration is inhibited
1203 	 * first time either APIC ID or APIC base are changed by the guest
1204 	 * from their reset values.
1205 	 */
1206 	APICV_INHIBIT_REASON_APIC_ID_MODIFIED,
1207 	APICV_INHIBIT_REASON_APIC_BASE_MODIFIED,
1208 
1209 	/******************************************************/
1210 	/* INHIBITs that are relevant only to the AMD's AVIC. */
1211 	/******************************************************/
1212 
1213 	/*
1214 	 * AVIC is inhibited on a vCPU because it runs a nested guest.
1215 	 *
1216 	 * This is needed because unlike APICv, the peers of this vCPU
1217 	 * cannot use the doorbell mechanism to signal interrupts via AVIC when
1218 	 * a vCPU runs nested.
1219 	 */
1220 	APICV_INHIBIT_REASON_NESTED,
1221 
1222 	/*
1223 	 * On SVM, the wait for the IRQ window is implemented with pending vIRQ,
1224 	 * which cannot be injected when the AVIC is enabled, thus AVIC
1225 	 * is inhibited while KVM waits for IRQ window.
1226 	 */
1227 	APICV_INHIBIT_REASON_IRQWIN,
1228 
1229 	/*
1230 	 * PIT (i8254) 're-inject' mode, relies on EOI intercept,
1231 	 * which AVIC doesn't support for edge triggered interrupts.
1232 	 */
1233 	APICV_INHIBIT_REASON_PIT_REINJ,
1234 
1235 	/*
1236 	 * AVIC is disabled because SEV doesn't support it.
1237 	 */
1238 	APICV_INHIBIT_REASON_SEV,
1239 
1240 	/*
1241 	 * AVIC is disabled because not all vCPUs with a valid LDR have a 1:1
1242 	 * mapping between logical ID and vCPU.
1243 	 */
1244 	APICV_INHIBIT_REASON_LOGICAL_ID_ALIASED,
1245 };
1246 
1247 struct kvm_arch {
1248 	unsigned long n_used_mmu_pages;
1249 	unsigned long n_requested_mmu_pages;
1250 	unsigned long n_max_mmu_pages;
1251 	unsigned int indirect_shadow_pages;
1252 	u8 mmu_valid_gen;
1253 	struct hlist_head mmu_page_hash[KVM_NUM_MMU_PAGES];
1254 	struct list_head active_mmu_pages;
1255 	struct list_head zapped_obsolete_pages;
1256 	/*
1257 	 * A list of kvm_mmu_page structs that, if zapped, could possibly be
1258 	 * replaced by an NX huge page.  A shadow page is on this list if its
1259 	 * existence disallows an NX huge page (nx_huge_page_disallowed is set)
1260 	 * and there are no other conditions that prevent a huge page, e.g.
1261 	 * the backing host page is huge, dirtly logging is not enabled for its
1262 	 * memslot, etc...  Note, zapping shadow pages on this list doesn't
1263 	 * guarantee an NX huge page will be created in its stead, e.g. if the
1264 	 * guest attempts to execute from the region then KVM obviously can't
1265 	 * create an NX huge page (without hanging the guest).
1266 	 */
1267 	struct list_head possible_nx_huge_pages;
1268 	struct kvm_page_track_notifier_node mmu_sp_tracker;
1269 	struct kvm_page_track_notifier_head track_notifier_head;
1270 	/*
1271 	 * Protects marking pages unsync during page faults, as TDP MMU page
1272 	 * faults only take mmu_lock for read.  For simplicity, the unsync
1273 	 * pages lock is always taken when marking pages unsync regardless of
1274 	 * whether mmu_lock is held for read or write.
1275 	 */
1276 	spinlock_t mmu_unsync_pages_lock;
1277 
1278 	struct list_head assigned_dev_head;
1279 	struct iommu_domain *iommu_domain;
1280 	bool iommu_noncoherent;
1281 #define __KVM_HAVE_ARCH_NONCOHERENT_DMA
1282 	atomic_t noncoherent_dma_count;
1283 #define __KVM_HAVE_ARCH_ASSIGNED_DEVICE
1284 	atomic_t assigned_device_count;
1285 	struct kvm_pic *vpic;
1286 	struct kvm_ioapic *vioapic;
1287 	struct kvm_pit *vpit;
1288 	atomic_t vapics_in_nmi_mode;
1289 	struct mutex apic_map_lock;
1290 	struct kvm_apic_map __rcu *apic_map;
1291 	atomic_t apic_map_dirty;
1292 
1293 	bool apic_access_memslot_enabled;
1294 	bool apic_access_memslot_inhibited;
1295 
1296 	/* Protects apicv_inhibit_reasons */
1297 	struct rw_semaphore apicv_update_lock;
1298 	unsigned long apicv_inhibit_reasons;
1299 
1300 	gpa_t wall_clock;
1301 
1302 	bool mwait_in_guest;
1303 	bool hlt_in_guest;
1304 	bool pause_in_guest;
1305 	bool cstate_in_guest;
1306 
1307 	unsigned long irq_sources_bitmap;
1308 	s64 kvmclock_offset;
1309 
1310 	/*
1311 	 * This also protects nr_vcpus_matched_tsc which is read from a
1312 	 * preemption-disabled region, so it must be a raw spinlock.
1313 	 */
1314 	raw_spinlock_t tsc_write_lock;
1315 	u64 last_tsc_nsec;
1316 	u64 last_tsc_write;
1317 	u32 last_tsc_khz;
1318 	u64 last_tsc_offset;
1319 	u64 cur_tsc_nsec;
1320 	u64 cur_tsc_write;
1321 	u64 cur_tsc_offset;
1322 	u64 cur_tsc_generation;
1323 	int nr_vcpus_matched_tsc;
1324 
1325 	u32 default_tsc_khz;
1326 
1327 	seqcount_raw_spinlock_t pvclock_sc;
1328 	bool use_master_clock;
1329 	u64 master_kernel_ns;
1330 	u64 master_cycle_now;
1331 	struct delayed_work kvmclock_update_work;
1332 	struct delayed_work kvmclock_sync_work;
1333 
1334 	struct kvm_xen_hvm_config xen_hvm_config;
1335 
1336 	/* reads protected by irq_srcu, writes by irq_lock */
1337 	struct hlist_head mask_notifier_list;
1338 
1339 	struct kvm_hv hyperv;
1340 	struct kvm_xen xen;
1341 
1342 	bool backwards_tsc_observed;
1343 	bool boot_vcpu_runs_old_kvmclock;
1344 	u32 bsp_vcpu_id;
1345 
1346 	u64 disabled_quirks;
1347 
1348 	enum kvm_irqchip_mode irqchip_mode;
1349 	u8 nr_reserved_ioapic_pins;
1350 
1351 	bool disabled_lapic_found;
1352 
1353 	bool x2apic_format;
1354 	bool x2apic_broadcast_quirk_disabled;
1355 
1356 	bool guest_can_read_msr_platform_info;
1357 	bool exception_payload_enabled;
1358 
1359 	bool triple_fault_event;
1360 
1361 	bool bus_lock_detection_enabled;
1362 	bool enable_pmu;
1363 
1364 	u32 notify_window;
1365 	u32 notify_vmexit_flags;
1366 	/*
1367 	 * If exit_on_emulation_error is set, and the in-kernel instruction
1368 	 * emulator fails to emulate an instruction, allow userspace
1369 	 * the opportunity to look at it.
1370 	 */
1371 	bool exit_on_emulation_error;
1372 
1373 	/* Deflect RDMSR and WRMSR to user space when they trigger a #GP */
1374 	u32 user_space_msr_mask;
1375 	struct kvm_x86_msr_filter __rcu *msr_filter;
1376 
1377 	u32 hypercall_exit_enabled;
1378 
1379 	/* Guest can access the SGX PROVISIONKEY. */
1380 	bool sgx_provisioning_allowed;
1381 
1382 	struct kvm_x86_pmu_event_filter __rcu *pmu_event_filter;
1383 	struct task_struct *nx_huge_page_recovery_thread;
1384 
1385 #ifdef CONFIG_X86_64
1386 	/* The number of TDP MMU pages across all roots. */
1387 	atomic64_t tdp_mmu_pages;
1388 
1389 	/*
1390 	 * List of struct kvm_mmu_pages being used as roots.
1391 	 * All struct kvm_mmu_pages in the list should have
1392 	 * tdp_mmu_page set.
1393 	 *
1394 	 * For reads, this list is protected by:
1395 	 *	the MMU lock in read mode + RCU or
1396 	 *	the MMU lock in write mode
1397 	 *
1398 	 * For writes, this list is protected by:
1399 	 *	the MMU lock in read mode + the tdp_mmu_pages_lock or
1400 	 *	the MMU lock in write mode
1401 	 *
1402 	 * Roots will remain in the list until their tdp_mmu_root_count
1403 	 * drops to zero, at which point the thread that decremented the
1404 	 * count to zero should removed the root from the list and clean
1405 	 * it up, freeing the root after an RCU grace period.
1406 	 */
1407 	struct list_head tdp_mmu_roots;
1408 
1409 	/*
1410 	 * Protects accesses to the following fields when the MMU lock
1411 	 * is held in read mode:
1412 	 *  - tdp_mmu_roots (above)
1413 	 *  - the link field of kvm_mmu_page structs used by the TDP MMU
1414 	 *  - possible_nx_huge_pages;
1415 	 *  - the possible_nx_huge_page_link field of kvm_mmu_page structs used
1416 	 *    by the TDP MMU
1417 	 * It is acceptable, but not necessary, to acquire this lock when
1418 	 * the thread holds the MMU lock in write mode.
1419 	 */
1420 	spinlock_t tdp_mmu_pages_lock;
1421 	struct workqueue_struct *tdp_mmu_zap_wq;
1422 #endif /* CONFIG_X86_64 */
1423 
1424 	/*
1425 	 * If set, at least one shadow root has been allocated. This flag
1426 	 * is used as one input when determining whether certain memslot
1427 	 * related allocations are necessary.
1428 	 */
1429 	bool shadow_root_allocated;
1430 
1431 #if IS_ENABLED(CONFIG_HYPERV)
1432 	hpa_t	hv_root_tdp;
1433 	spinlock_t hv_root_tdp_lock;
1434 #endif
1435 	/*
1436 	 * VM-scope maximum vCPU ID. Used to determine the size of structures
1437 	 * that increase along with the maximum vCPU ID, in which case, using
1438 	 * the global KVM_MAX_VCPU_IDS may lead to significant memory waste.
1439 	 */
1440 	u32 max_vcpu_ids;
1441 
1442 	bool disable_nx_huge_pages;
1443 
1444 	/*
1445 	 * Memory caches used to allocate shadow pages when performing eager
1446 	 * page splitting. No need for a shadowed_info_cache since eager page
1447 	 * splitting only allocates direct shadow pages.
1448 	 *
1449 	 * Protected by kvm->slots_lock.
1450 	 */
1451 	struct kvm_mmu_memory_cache split_shadow_page_cache;
1452 	struct kvm_mmu_memory_cache split_page_header_cache;
1453 
1454 	/*
1455 	 * Memory cache used to allocate pte_list_desc structs while splitting
1456 	 * huge pages. In the worst case, to split one huge page, 512
1457 	 * pte_list_desc structs are needed to add each lower level leaf sptep
1458 	 * to the rmap plus 1 to extend the parent_ptes rmap of the lower level
1459 	 * page table.
1460 	 *
1461 	 * Protected by kvm->slots_lock.
1462 	 */
1463 #define SPLIT_DESC_CACHE_MIN_NR_OBJECTS (SPTE_ENT_PER_PAGE + 1)
1464 	struct kvm_mmu_memory_cache split_desc_cache;
1465 };
1466 
1467 struct kvm_vm_stat {
1468 	struct kvm_vm_stat_generic generic;
1469 	u64 mmu_shadow_zapped;
1470 	u64 mmu_pte_write;
1471 	u64 mmu_pde_zapped;
1472 	u64 mmu_flooded;
1473 	u64 mmu_recycled;
1474 	u64 mmu_cache_miss;
1475 	u64 mmu_unsync;
1476 	union {
1477 		struct {
1478 			atomic64_t pages_4k;
1479 			atomic64_t pages_2m;
1480 			atomic64_t pages_1g;
1481 		};
1482 		atomic64_t pages[KVM_NR_PAGE_SIZES];
1483 	};
1484 	u64 nx_lpage_splits;
1485 	u64 max_mmu_page_hash_collisions;
1486 	u64 max_mmu_rmap_size;
1487 };
1488 
1489 struct kvm_vcpu_stat {
1490 	struct kvm_vcpu_stat_generic generic;
1491 	u64 pf_taken;
1492 	u64 pf_fixed;
1493 	u64 pf_emulate;
1494 	u64 pf_spurious;
1495 	u64 pf_fast;
1496 	u64 pf_mmio_spte_created;
1497 	u64 pf_guest;
1498 	u64 tlb_flush;
1499 	u64 invlpg;
1500 
1501 	u64 exits;
1502 	u64 io_exits;
1503 	u64 mmio_exits;
1504 	u64 signal_exits;
1505 	u64 irq_window_exits;
1506 	u64 nmi_window_exits;
1507 	u64 l1d_flush;
1508 	u64 halt_exits;
1509 	u64 request_irq_exits;
1510 	u64 irq_exits;
1511 	u64 host_state_reload;
1512 	u64 fpu_reload;
1513 	u64 insn_emulation;
1514 	u64 insn_emulation_fail;
1515 	u64 hypercalls;
1516 	u64 irq_injections;
1517 	u64 nmi_injections;
1518 	u64 req_event;
1519 	u64 nested_run;
1520 	u64 directed_yield_attempted;
1521 	u64 directed_yield_successful;
1522 	u64 preemption_reported;
1523 	u64 preemption_other;
1524 	u64 guest_mode;
1525 	u64 notify_window_exits;
1526 };
1527 
1528 struct x86_instruction_info;
1529 
1530 struct msr_data {
1531 	bool host_initiated;
1532 	u32 index;
1533 	u64 data;
1534 };
1535 
1536 struct kvm_lapic_irq {
1537 	u32 vector;
1538 	u16 delivery_mode;
1539 	u16 dest_mode;
1540 	bool level;
1541 	u16 trig_mode;
1542 	u32 shorthand;
1543 	u32 dest_id;
1544 	bool msi_redir_hint;
1545 };
1546 
1547 static inline u16 kvm_lapic_irq_dest_mode(bool dest_mode_logical)
1548 {
1549 	return dest_mode_logical ? APIC_DEST_LOGICAL : APIC_DEST_PHYSICAL;
1550 }
1551 
1552 struct kvm_x86_ops {
1553 	const char *name;
1554 
1555 	int (*check_processor_compatibility)(void);
1556 
1557 	int (*hardware_enable)(void);
1558 	void (*hardware_disable)(void);
1559 	void (*hardware_unsetup)(void);
1560 	bool (*has_emulated_msr)(struct kvm *kvm, u32 index);
1561 	void (*vcpu_after_set_cpuid)(struct kvm_vcpu *vcpu);
1562 
1563 	unsigned int vm_size;
1564 	int (*vm_init)(struct kvm *kvm);
1565 	void (*vm_destroy)(struct kvm *kvm);
1566 
1567 	/* Create, but do not attach this VCPU */
1568 	int (*vcpu_precreate)(struct kvm *kvm);
1569 	int (*vcpu_create)(struct kvm_vcpu *vcpu);
1570 	void (*vcpu_free)(struct kvm_vcpu *vcpu);
1571 	void (*vcpu_reset)(struct kvm_vcpu *vcpu, bool init_event);
1572 
1573 	void (*prepare_switch_to_guest)(struct kvm_vcpu *vcpu);
1574 	void (*vcpu_load)(struct kvm_vcpu *vcpu, int cpu);
1575 	void (*vcpu_put)(struct kvm_vcpu *vcpu);
1576 
1577 	void (*update_exception_bitmap)(struct kvm_vcpu *vcpu);
1578 	int (*get_msr)(struct kvm_vcpu *vcpu, struct msr_data *msr);
1579 	int (*set_msr)(struct kvm_vcpu *vcpu, struct msr_data *msr);
1580 	u64 (*get_segment_base)(struct kvm_vcpu *vcpu, int seg);
1581 	void (*get_segment)(struct kvm_vcpu *vcpu,
1582 			    struct kvm_segment *var, int seg);
1583 	int (*get_cpl)(struct kvm_vcpu *vcpu);
1584 	void (*set_segment)(struct kvm_vcpu *vcpu,
1585 			    struct kvm_segment *var, int seg);
1586 	void (*get_cs_db_l_bits)(struct kvm_vcpu *vcpu, int *db, int *l);
1587 	void (*set_cr0)(struct kvm_vcpu *vcpu, unsigned long cr0);
1588 	void (*post_set_cr3)(struct kvm_vcpu *vcpu, unsigned long cr3);
1589 	bool (*is_valid_cr4)(struct kvm_vcpu *vcpu, unsigned long cr0);
1590 	void (*set_cr4)(struct kvm_vcpu *vcpu, unsigned long cr4);
1591 	int (*set_efer)(struct kvm_vcpu *vcpu, u64 efer);
1592 	void (*get_idt)(struct kvm_vcpu *vcpu, struct desc_ptr *dt);
1593 	void (*set_idt)(struct kvm_vcpu *vcpu, struct desc_ptr *dt);
1594 	void (*get_gdt)(struct kvm_vcpu *vcpu, struct desc_ptr *dt);
1595 	void (*set_gdt)(struct kvm_vcpu *vcpu, struct desc_ptr *dt);
1596 	void (*sync_dirty_debug_regs)(struct kvm_vcpu *vcpu);
1597 	void (*set_dr7)(struct kvm_vcpu *vcpu, unsigned long value);
1598 	void (*cache_reg)(struct kvm_vcpu *vcpu, enum kvm_reg reg);
1599 	unsigned long (*get_rflags)(struct kvm_vcpu *vcpu);
1600 	void (*set_rflags)(struct kvm_vcpu *vcpu, unsigned long rflags);
1601 	bool (*get_if_flag)(struct kvm_vcpu *vcpu);
1602 
1603 	void (*flush_tlb_all)(struct kvm_vcpu *vcpu);
1604 	void (*flush_tlb_current)(struct kvm_vcpu *vcpu);
1605 	int  (*tlb_remote_flush)(struct kvm *kvm);
1606 	int  (*tlb_remote_flush_with_range)(struct kvm *kvm,
1607 			struct kvm_tlb_range *range);
1608 
1609 	/*
1610 	 * Flush any TLB entries associated with the given GVA.
1611 	 * Does not need to flush GPA->HPA mappings.
1612 	 * Can potentially get non-canonical addresses through INVLPGs, which
1613 	 * the implementation may choose to ignore if appropriate.
1614 	 */
1615 	void (*flush_tlb_gva)(struct kvm_vcpu *vcpu, gva_t addr);
1616 
1617 	/*
1618 	 * Flush any TLB entries created by the guest.  Like tlb_flush_gva(),
1619 	 * does not need to flush GPA->HPA mappings.
1620 	 */
1621 	void (*flush_tlb_guest)(struct kvm_vcpu *vcpu);
1622 
1623 	int (*vcpu_pre_run)(struct kvm_vcpu *vcpu);
1624 	enum exit_fastpath_completion (*vcpu_run)(struct kvm_vcpu *vcpu);
1625 	int (*handle_exit)(struct kvm_vcpu *vcpu,
1626 		enum exit_fastpath_completion exit_fastpath);
1627 	int (*skip_emulated_instruction)(struct kvm_vcpu *vcpu);
1628 	void (*update_emulated_instruction)(struct kvm_vcpu *vcpu);
1629 	void (*set_interrupt_shadow)(struct kvm_vcpu *vcpu, int mask);
1630 	u32 (*get_interrupt_shadow)(struct kvm_vcpu *vcpu);
1631 	void (*patch_hypercall)(struct kvm_vcpu *vcpu,
1632 				unsigned char *hypercall_addr);
1633 	void (*inject_irq)(struct kvm_vcpu *vcpu, bool reinjected);
1634 	void (*inject_nmi)(struct kvm_vcpu *vcpu);
1635 	void (*inject_exception)(struct kvm_vcpu *vcpu);
1636 	void (*cancel_injection)(struct kvm_vcpu *vcpu);
1637 	int (*interrupt_allowed)(struct kvm_vcpu *vcpu, bool for_injection);
1638 	int (*nmi_allowed)(struct kvm_vcpu *vcpu, bool for_injection);
1639 	bool (*get_nmi_mask)(struct kvm_vcpu *vcpu);
1640 	void (*set_nmi_mask)(struct kvm_vcpu *vcpu, bool masked);
1641 	void (*enable_nmi_window)(struct kvm_vcpu *vcpu);
1642 	void (*enable_irq_window)(struct kvm_vcpu *vcpu);
1643 	void (*update_cr8_intercept)(struct kvm_vcpu *vcpu, int tpr, int irr);
1644 	bool (*check_apicv_inhibit_reasons)(enum kvm_apicv_inhibit reason);
1645 	const unsigned long required_apicv_inhibits;
1646 	bool allow_apicv_in_x2apic_without_x2apic_virtualization;
1647 	void (*refresh_apicv_exec_ctrl)(struct kvm_vcpu *vcpu);
1648 	void (*hwapic_irr_update)(struct kvm_vcpu *vcpu, int max_irr);
1649 	void (*hwapic_isr_update)(int isr);
1650 	bool (*guest_apic_has_interrupt)(struct kvm_vcpu *vcpu);
1651 	void (*load_eoi_exitmap)(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap);
1652 	void (*set_virtual_apic_mode)(struct kvm_vcpu *vcpu);
1653 	void (*set_apic_access_page_addr)(struct kvm_vcpu *vcpu);
1654 	void (*deliver_interrupt)(struct kvm_lapic *apic, int delivery_mode,
1655 				  int trig_mode, int vector);
1656 	int (*sync_pir_to_irr)(struct kvm_vcpu *vcpu);
1657 	int (*set_tss_addr)(struct kvm *kvm, unsigned int addr);
1658 	int (*set_identity_map_addr)(struct kvm *kvm, u64 ident_addr);
1659 	u8 (*get_mt_mask)(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio);
1660 
1661 	void (*load_mmu_pgd)(struct kvm_vcpu *vcpu, hpa_t root_hpa,
1662 			     int root_level);
1663 
1664 	bool (*has_wbinvd_exit)(void);
1665 
1666 	u64 (*get_l2_tsc_offset)(struct kvm_vcpu *vcpu);
1667 	u64 (*get_l2_tsc_multiplier)(struct kvm_vcpu *vcpu);
1668 	void (*write_tsc_offset)(struct kvm_vcpu *vcpu, u64 offset);
1669 	void (*write_tsc_multiplier)(struct kvm_vcpu *vcpu, u64 multiplier);
1670 
1671 	/*
1672 	 * Retrieve somewhat arbitrary exit information.  Intended to
1673 	 * be used only from within tracepoints or error paths.
1674 	 */
1675 	void (*get_exit_info)(struct kvm_vcpu *vcpu, u32 *reason,
1676 			      u64 *info1, u64 *info2,
1677 			      u32 *exit_int_info, u32 *exit_int_info_err_code);
1678 
1679 	int (*check_intercept)(struct kvm_vcpu *vcpu,
1680 			       struct x86_instruction_info *info,
1681 			       enum x86_intercept_stage stage,
1682 			       struct x86_exception *exception);
1683 	void (*handle_exit_irqoff)(struct kvm_vcpu *vcpu);
1684 
1685 	void (*request_immediate_exit)(struct kvm_vcpu *vcpu);
1686 
1687 	void (*sched_in)(struct kvm_vcpu *kvm, int cpu);
1688 
1689 	/*
1690 	 * Size of the CPU's dirty log buffer, i.e. VMX's PML buffer.  A zero
1691 	 * value indicates CPU dirty logging is unsupported or disabled.
1692 	 */
1693 	int cpu_dirty_log_size;
1694 	void (*update_cpu_dirty_logging)(struct kvm_vcpu *vcpu);
1695 
1696 	const struct kvm_x86_nested_ops *nested_ops;
1697 
1698 	void (*vcpu_blocking)(struct kvm_vcpu *vcpu);
1699 	void (*vcpu_unblocking)(struct kvm_vcpu *vcpu);
1700 
1701 	int (*pi_update_irte)(struct kvm *kvm, unsigned int host_irq,
1702 			      uint32_t guest_irq, bool set);
1703 	void (*pi_start_assignment)(struct kvm *kvm);
1704 	void (*apicv_post_state_restore)(struct kvm_vcpu *vcpu);
1705 	bool (*dy_apicv_has_pending_interrupt)(struct kvm_vcpu *vcpu);
1706 
1707 	int (*set_hv_timer)(struct kvm_vcpu *vcpu, u64 guest_deadline_tsc,
1708 			    bool *expired);
1709 	void (*cancel_hv_timer)(struct kvm_vcpu *vcpu);
1710 
1711 	void (*setup_mce)(struct kvm_vcpu *vcpu);
1712 
1713 #ifdef CONFIG_KVM_SMM
1714 	int (*smi_allowed)(struct kvm_vcpu *vcpu, bool for_injection);
1715 	int (*enter_smm)(struct kvm_vcpu *vcpu, union kvm_smram *smram);
1716 	int (*leave_smm)(struct kvm_vcpu *vcpu, const union kvm_smram *smram);
1717 	void (*enable_smi_window)(struct kvm_vcpu *vcpu);
1718 #endif
1719 
1720 	int (*mem_enc_ioctl)(struct kvm *kvm, void __user *argp);
1721 	int (*mem_enc_register_region)(struct kvm *kvm, struct kvm_enc_region *argp);
1722 	int (*mem_enc_unregister_region)(struct kvm *kvm, struct kvm_enc_region *argp);
1723 	int (*vm_copy_enc_context_from)(struct kvm *kvm, unsigned int source_fd);
1724 	int (*vm_move_enc_context_from)(struct kvm *kvm, unsigned int source_fd);
1725 	void (*guest_memory_reclaimed)(struct kvm *kvm);
1726 
1727 	int (*get_msr_feature)(struct kvm_msr_entry *entry);
1728 
1729 	bool (*can_emulate_instruction)(struct kvm_vcpu *vcpu, int emul_type,
1730 					void *insn, int insn_len);
1731 
1732 	bool (*apic_init_signal_blocked)(struct kvm_vcpu *vcpu);
1733 	int (*enable_l2_tlb_flush)(struct kvm_vcpu *vcpu);
1734 
1735 	void (*migrate_timers)(struct kvm_vcpu *vcpu);
1736 	void (*msr_filter_changed)(struct kvm_vcpu *vcpu);
1737 	int (*complete_emulated_msr)(struct kvm_vcpu *vcpu, int err);
1738 
1739 	void (*vcpu_deliver_sipi_vector)(struct kvm_vcpu *vcpu, u8 vector);
1740 
1741 	/*
1742 	 * Returns vCPU specific APICv inhibit reasons
1743 	 */
1744 	unsigned long (*vcpu_get_apicv_inhibit_reasons)(struct kvm_vcpu *vcpu);
1745 };
1746 
1747 struct kvm_x86_nested_ops {
1748 	void (*leave_nested)(struct kvm_vcpu *vcpu);
1749 	bool (*is_exception_vmexit)(struct kvm_vcpu *vcpu, u8 vector,
1750 				    u32 error_code);
1751 	int (*check_events)(struct kvm_vcpu *vcpu);
1752 	bool (*has_events)(struct kvm_vcpu *vcpu);
1753 	void (*triple_fault)(struct kvm_vcpu *vcpu);
1754 	int (*get_state)(struct kvm_vcpu *vcpu,
1755 			 struct kvm_nested_state __user *user_kvm_nested_state,
1756 			 unsigned user_data_size);
1757 	int (*set_state)(struct kvm_vcpu *vcpu,
1758 			 struct kvm_nested_state __user *user_kvm_nested_state,
1759 			 struct kvm_nested_state *kvm_state);
1760 	bool (*get_nested_state_pages)(struct kvm_vcpu *vcpu);
1761 	int (*write_log_dirty)(struct kvm_vcpu *vcpu, gpa_t l2_gpa);
1762 
1763 	int (*enable_evmcs)(struct kvm_vcpu *vcpu,
1764 			    uint16_t *vmcs_version);
1765 	uint16_t (*get_evmcs_version)(struct kvm_vcpu *vcpu);
1766 	void (*hv_inject_synthetic_vmexit_post_tlb_flush)(struct kvm_vcpu *vcpu);
1767 };
1768 
1769 struct kvm_x86_init_ops {
1770 	int (*hardware_setup)(void);
1771 	unsigned int (*handle_intel_pt_intr)(void);
1772 
1773 	struct kvm_x86_ops *runtime_ops;
1774 	struct kvm_pmu_ops *pmu_ops;
1775 };
1776 
1777 struct kvm_arch_async_pf {
1778 	u32 token;
1779 	gfn_t gfn;
1780 	unsigned long cr3;
1781 	bool direct_map;
1782 };
1783 
1784 extern u32 __read_mostly kvm_nr_uret_msrs;
1785 extern u64 __read_mostly host_efer;
1786 extern bool __read_mostly allow_smaller_maxphyaddr;
1787 extern bool __read_mostly enable_apicv;
1788 extern struct kvm_x86_ops kvm_x86_ops;
1789 
1790 #define KVM_X86_OP(func) \
1791 	DECLARE_STATIC_CALL(kvm_x86_##func, *(((struct kvm_x86_ops *)0)->func));
1792 #define KVM_X86_OP_OPTIONAL KVM_X86_OP
1793 #define KVM_X86_OP_OPTIONAL_RET0 KVM_X86_OP
1794 #include <asm/kvm-x86-ops.h>
1795 
1796 int kvm_x86_vendor_init(struct kvm_x86_init_ops *ops);
1797 void kvm_x86_vendor_exit(void);
1798 
1799 #define __KVM_HAVE_ARCH_VM_ALLOC
1800 static inline struct kvm *kvm_arch_alloc_vm(void)
1801 {
1802 	return __vmalloc(kvm_x86_ops.vm_size, GFP_KERNEL_ACCOUNT | __GFP_ZERO);
1803 }
1804 
1805 #define __KVM_HAVE_ARCH_VM_FREE
1806 void kvm_arch_free_vm(struct kvm *kvm);
1807 
1808 #define __KVM_HAVE_ARCH_FLUSH_REMOTE_TLB
1809 static inline int kvm_arch_flush_remote_tlb(struct kvm *kvm)
1810 {
1811 	if (kvm_x86_ops.tlb_remote_flush &&
1812 	    !static_call(kvm_x86_tlb_remote_flush)(kvm))
1813 		return 0;
1814 	else
1815 		return -ENOTSUPP;
1816 }
1817 
1818 #define kvm_arch_pmi_in_guest(vcpu) \
1819 	((vcpu) && (vcpu)->arch.handling_intr_from_guest)
1820 
1821 void __init kvm_mmu_x86_module_init(void);
1822 int kvm_mmu_vendor_module_init(void);
1823 void kvm_mmu_vendor_module_exit(void);
1824 
1825 void kvm_mmu_destroy(struct kvm_vcpu *vcpu);
1826 int kvm_mmu_create(struct kvm_vcpu *vcpu);
1827 int kvm_mmu_init_vm(struct kvm *kvm);
1828 void kvm_mmu_uninit_vm(struct kvm *kvm);
1829 
1830 void kvm_mmu_after_set_cpuid(struct kvm_vcpu *vcpu);
1831 void kvm_mmu_reset_context(struct kvm_vcpu *vcpu);
1832 void kvm_mmu_slot_remove_write_access(struct kvm *kvm,
1833 				      const struct kvm_memory_slot *memslot,
1834 				      int start_level);
1835 void kvm_mmu_slot_try_split_huge_pages(struct kvm *kvm,
1836 				       const struct kvm_memory_slot *memslot,
1837 				       int target_level);
1838 void kvm_mmu_try_split_huge_pages(struct kvm *kvm,
1839 				  const struct kvm_memory_slot *memslot,
1840 				  u64 start, u64 end,
1841 				  int target_level);
1842 void kvm_mmu_zap_collapsible_sptes(struct kvm *kvm,
1843 				   const struct kvm_memory_slot *memslot);
1844 void kvm_mmu_slot_leaf_clear_dirty(struct kvm *kvm,
1845 				   const struct kvm_memory_slot *memslot);
1846 void kvm_mmu_zap_all(struct kvm *kvm);
1847 void kvm_mmu_invalidate_mmio_sptes(struct kvm *kvm, u64 gen);
1848 void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned long kvm_nr_mmu_pages);
1849 
1850 int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3);
1851 
1852 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
1853 			  const void *val, int bytes);
1854 
1855 struct kvm_irq_mask_notifier {
1856 	void (*func)(struct kvm_irq_mask_notifier *kimn, bool masked);
1857 	int irq;
1858 	struct hlist_node link;
1859 };
1860 
1861 void kvm_register_irq_mask_notifier(struct kvm *kvm, int irq,
1862 				    struct kvm_irq_mask_notifier *kimn);
1863 void kvm_unregister_irq_mask_notifier(struct kvm *kvm, int irq,
1864 				      struct kvm_irq_mask_notifier *kimn);
1865 void kvm_fire_mask_notifiers(struct kvm *kvm, unsigned irqchip, unsigned pin,
1866 			     bool mask);
1867 
1868 extern bool tdp_enabled;
1869 
1870 u64 vcpu_tsc_khz(struct kvm_vcpu *vcpu);
1871 
1872 /*
1873  * EMULTYPE_NO_DECODE - Set when re-emulating an instruction (after completing
1874  *			userspace I/O) to indicate that the emulation context
1875  *			should be reused as is, i.e. skip initialization of
1876  *			emulation context, instruction fetch and decode.
1877  *
1878  * EMULTYPE_TRAP_UD - Set when emulating an intercepted #UD from hardware.
1879  *		      Indicates that only select instructions (tagged with
1880  *		      EmulateOnUD) should be emulated (to minimize the emulator
1881  *		      attack surface).  See also EMULTYPE_TRAP_UD_FORCED.
1882  *
1883  * EMULTYPE_SKIP - Set when emulating solely to skip an instruction, i.e. to
1884  *		   decode the instruction length.  For use *only* by
1885  *		   kvm_x86_ops.skip_emulated_instruction() implementations if
1886  *		   EMULTYPE_COMPLETE_USER_EXIT is not set.
1887  *
1888  * EMULTYPE_ALLOW_RETRY_PF - Set when the emulator should resume the guest to
1889  *			     retry native execution under certain conditions,
1890  *			     Can only be set in conjunction with EMULTYPE_PF.
1891  *
1892  * EMULTYPE_TRAP_UD_FORCED - Set when emulating an intercepted #UD that was
1893  *			     triggered by KVM's magic "force emulation" prefix,
1894  *			     which is opt in via module param (off by default).
1895  *			     Bypasses EmulateOnUD restriction despite emulating
1896  *			     due to an intercepted #UD (see EMULTYPE_TRAP_UD).
1897  *			     Used to test the full emulator from userspace.
1898  *
1899  * EMULTYPE_VMWARE_GP - Set when emulating an intercepted #GP for VMware
1900  *			backdoor emulation, which is opt in via module param.
1901  *			VMware backdoor emulation handles select instructions
1902  *			and reinjects the #GP for all other cases.
1903  *
1904  * EMULTYPE_PF - Set when emulating MMIO by way of an intercepted #PF, in which
1905  *		 case the CR2/GPA value pass on the stack is valid.
1906  *
1907  * EMULTYPE_COMPLETE_USER_EXIT - Set when the emulator should update interruptibility
1908  *				 state and inject single-step #DBs after skipping
1909  *				 an instruction (after completing userspace I/O).
1910  */
1911 #define EMULTYPE_NO_DECODE	    (1 << 0)
1912 #define EMULTYPE_TRAP_UD	    (1 << 1)
1913 #define EMULTYPE_SKIP		    (1 << 2)
1914 #define EMULTYPE_ALLOW_RETRY_PF	    (1 << 3)
1915 #define EMULTYPE_TRAP_UD_FORCED	    (1 << 4)
1916 #define EMULTYPE_VMWARE_GP	    (1 << 5)
1917 #define EMULTYPE_PF		    (1 << 6)
1918 #define EMULTYPE_COMPLETE_USER_EXIT (1 << 7)
1919 
1920 int kvm_emulate_instruction(struct kvm_vcpu *vcpu, int emulation_type);
1921 int kvm_emulate_instruction_from_buffer(struct kvm_vcpu *vcpu,
1922 					void *insn, int insn_len);
1923 void __kvm_prepare_emulation_failure_exit(struct kvm_vcpu *vcpu,
1924 					  u64 *data, u8 ndata);
1925 void kvm_prepare_emulation_failure_exit(struct kvm_vcpu *vcpu);
1926 
1927 void kvm_enable_efer_bits(u64);
1928 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer);
1929 int __kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data, bool host_initiated);
1930 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data);
1931 int kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data);
1932 int kvm_emulate_rdmsr(struct kvm_vcpu *vcpu);
1933 int kvm_emulate_wrmsr(struct kvm_vcpu *vcpu);
1934 int kvm_emulate_as_nop(struct kvm_vcpu *vcpu);
1935 int kvm_emulate_invd(struct kvm_vcpu *vcpu);
1936 int kvm_emulate_mwait(struct kvm_vcpu *vcpu);
1937 int kvm_handle_invalid_op(struct kvm_vcpu *vcpu);
1938 int kvm_emulate_monitor(struct kvm_vcpu *vcpu);
1939 
1940 int kvm_fast_pio(struct kvm_vcpu *vcpu, int size, unsigned short port, int in);
1941 int kvm_emulate_cpuid(struct kvm_vcpu *vcpu);
1942 int kvm_emulate_halt(struct kvm_vcpu *vcpu);
1943 int kvm_emulate_halt_noskip(struct kvm_vcpu *vcpu);
1944 int kvm_emulate_ap_reset_hold(struct kvm_vcpu *vcpu);
1945 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu);
1946 
1947 void kvm_get_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg);
1948 void kvm_set_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg);
1949 int kvm_load_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector, int seg);
1950 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector);
1951 
1952 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
1953 		    int reason, bool has_error_code, u32 error_code);
1954 
1955 void kvm_post_set_cr0(struct kvm_vcpu *vcpu, unsigned long old_cr0, unsigned long cr0);
1956 void kvm_post_set_cr4(struct kvm_vcpu *vcpu, unsigned long old_cr4, unsigned long cr4);
1957 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0);
1958 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3);
1959 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4);
1960 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8);
1961 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val);
1962 void kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val);
1963 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu);
1964 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw);
1965 int kvm_emulate_xsetbv(struct kvm_vcpu *vcpu);
1966 
1967 int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr);
1968 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr);
1969 
1970 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu);
1971 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags);
1972 int kvm_emulate_rdpmc(struct kvm_vcpu *vcpu);
1973 
1974 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr);
1975 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code);
1976 void kvm_queue_exception_p(struct kvm_vcpu *vcpu, unsigned nr, unsigned long payload);
1977 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr);
1978 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code);
1979 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault);
1980 void kvm_inject_emulated_page_fault(struct kvm_vcpu *vcpu,
1981 				    struct x86_exception *fault);
1982 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl);
1983 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr);
1984 
1985 static inline int __kvm_irq_line_state(unsigned long *irq_state,
1986 				       int irq_source_id, int level)
1987 {
1988 	/* Logical OR for level trig interrupt */
1989 	if (level)
1990 		__set_bit(irq_source_id, irq_state);
1991 	else
1992 		__clear_bit(irq_source_id, irq_state);
1993 
1994 	return !!(*irq_state);
1995 }
1996 
1997 #define KVM_MMU_ROOT_CURRENT		BIT(0)
1998 #define KVM_MMU_ROOT_PREVIOUS(i)	BIT(1+i)
1999 #define KVM_MMU_ROOTS_ALL		(~0UL)
2000 
2001 int kvm_pic_set_irq(struct kvm_pic *pic, int irq, int irq_source_id, int level);
2002 void kvm_pic_clear_all(struct kvm_pic *pic, int irq_source_id);
2003 
2004 void kvm_inject_nmi(struct kvm_vcpu *vcpu);
2005 
2006 void kvm_update_dr7(struct kvm_vcpu *vcpu);
2007 
2008 int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn);
2009 void kvm_mmu_free_roots(struct kvm *kvm, struct kvm_mmu *mmu,
2010 			ulong roots_to_free);
2011 void kvm_mmu_free_guest_mode_roots(struct kvm *kvm, struct kvm_mmu *mmu);
2012 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
2013 			      struct x86_exception *exception);
2014 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
2015 			       struct x86_exception *exception);
2016 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
2017 				struct x86_exception *exception);
2018 
2019 bool kvm_apicv_activated(struct kvm *kvm);
2020 bool kvm_vcpu_apicv_activated(struct kvm_vcpu *vcpu);
2021 void __kvm_vcpu_update_apicv(struct kvm_vcpu *vcpu);
2022 void __kvm_set_or_clear_apicv_inhibit(struct kvm *kvm,
2023 				      enum kvm_apicv_inhibit reason, bool set);
2024 void kvm_set_or_clear_apicv_inhibit(struct kvm *kvm,
2025 				    enum kvm_apicv_inhibit reason, bool set);
2026 
2027 static inline void kvm_set_apicv_inhibit(struct kvm *kvm,
2028 					 enum kvm_apicv_inhibit reason)
2029 {
2030 	kvm_set_or_clear_apicv_inhibit(kvm, reason, true);
2031 }
2032 
2033 static inline void kvm_clear_apicv_inhibit(struct kvm *kvm,
2034 					   enum kvm_apicv_inhibit reason)
2035 {
2036 	kvm_set_or_clear_apicv_inhibit(kvm, reason, false);
2037 }
2038 
2039 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu);
2040 
2041 int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, u64 error_code,
2042 		       void *insn, int insn_len);
2043 void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva);
2044 void kvm_mmu_invalidate_gva(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
2045 			    gva_t gva, hpa_t root_hpa);
2046 void kvm_mmu_invpcid_gva(struct kvm_vcpu *vcpu, gva_t gva, unsigned long pcid);
2047 void kvm_mmu_new_pgd(struct kvm_vcpu *vcpu, gpa_t new_pgd);
2048 
2049 void kvm_configure_mmu(bool enable_tdp, int tdp_forced_root_level,
2050 		       int tdp_max_root_level, int tdp_huge_page_level);
2051 
2052 static inline u16 kvm_read_ldt(void)
2053 {
2054 	u16 ldt;
2055 	asm("sldt %0" : "=g"(ldt));
2056 	return ldt;
2057 }
2058 
2059 static inline void kvm_load_ldt(u16 sel)
2060 {
2061 	asm("lldt %0" : : "rm"(sel));
2062 }
2063 
2064 #ifdef CONFIG_X86_64
2065 static inline unsigned long read_msr(unsigned long msr)
2066 {
2067 	u64 value;
2068 
2069 	rdmsrl(msr, value);
2070 	return value;
2071 }
2072 #endif
2073 
2074 static inline void kvm_inject_gp(struct kvm_vcpu *vcpu, u32 error_code)
2075 {
2076 	kvm_queue_exception_e(vcpu, GP_VECTOR, error_code);
2077 }
2078 
2079 #define TSS_IOPB_BASE_OFFSET 0x66
2080 #define TSS_BASE_SIZE 0x68
2081 #define TSS_IOPB_SIZE (65536 / 8)
2082 #define TSS_REDIRECTION_SIZE (256 / 8)
2083 #define RMODE_TSS_SIZE							\
2084 	(TSS_BASE_SIZE + TSS_REDIRECTION_SIZE + TSS_IOPB_SIZE + 1)
2085 
2086 enum {
2087 	TASK_SWITCH_CALL = 0,
2088 	TASK_SWITCH_IRET = 1,
2089 	TASK_SWITCH_JMP = 2,
2090 	TASK_SWITCH_GATE = 3,
2091 };
2092 
2093 #define HF_GUEST_MASK		(1 << 0) /* VCPU is in guest-mode */
2094 
2095 #ifdef CONFIG_KVM_SMM
2096 #define HF_SMM_MASK		(1 << 1)
2097 #define HF_SMM_INSIDE_NMI_MASK	(1 << 2)
2098 
2099 # define __KVM_VCPU_MULTIPLE_ADDRESS_SPACE
2100 # define KVM_ADDRESS_SPACE_NUM 2
2101 # define kvm_arch_vcpu_memslots_id(vcpu) ((vcpu)->arch.hflags & HF_SMM_MASK ? 1 : 0)
2102 # define kvm_memslots_for_spte_role(kvm, role) __kvm_memslots(kvm, (role).smm)
2103 #else
2104 # define kvm_memslots_for_spte_role(kvm, role) __kvm_memslots(kvm, 0)
2105 #endif
2106 
2107 #define KVM_ARCH_WANT_MMU_NOTIFIER
2108 
2109 int kvm_cpu_has_injectable_intr(struct kvm_vcpu *v);
2110 int kvm_cpu_has_interrupt(struct kvm_vcpu *vcpu);
2111 int kvm_cpu_has_extint(struct kvm_vcpu *v);
2112 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu);
2113 int kvm_cpu_get_interrupt(struct kvm_vcpu *v);
2114 void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event);
2115 
2116 int kvm_pv_send_ipi(struct kvm *kvm, unsigned long ipi_bitmap_low,
2117 		    unsigned long ipi_bitmap_high, u32 min,
2118 		    unsigned long icr, int op_64_bit);
2119 
2120 int kvm_add_user_return_msr(u32 msr);
2121 int kvm_find_user_return_msr(u32 msr);
2122 int kvm_set_user_return_msr(unsigned index, u64 val, u64 mask);
2123 
2124 static inline bool kvm_is_supported_user_return_msr(u32 msr)
2125 {
2126 	return kvm_find_user_return_msr(msr) >= 0;
2127 }
2128 
2129 u64 kvm_scale_tsc(u64 tsc, u64 ratio);
2130 u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc);
2131 u64 kvm_calc_nested_tsc_offset(u64 l1_offset, u64 l2_offset, u64 l2_multiplier);
2132 u64 kvm_calc_nested_tsc_multiplier(u64 l1_multiplier, u64 l2_multiplier);
2133 
2134 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu);
2135 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip);
2136 
2137 void kvm_make_scan_ioapic_request(struct kvm *kvm);
2138 void kvm_make_scan_ioapic_request_mask(struct kvm *kvm,
2139 				       unsigned long *vcpu_bitmap);
2140 
2141 bool kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
2142 				     struct kvm_async_pf *work);
2143 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
2144 				 struct kvm_async_pf *work);
2145 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu,
2146 			       struct kvm_async_pf *work);
2147 void kvm_arch_async_page_present_queued(struct kvm_vcpu *vcpu);
2148 bool kvm_arch_can_dequeue_async_page_present(struct kvm_vcpu *vcpu);
2149 extern bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn);
2150 
2151 int kvm_skip_emulated_instruction(struct kvm_vcpu *vcpu);
2152 int kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err);
2153 void __kvm_request_immediate_exit(struct kvm_vcpu *vcpu);
2154 
2155 void __user *__x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa,
2156 				     u32 size);
2157 bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu);
2158 bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu);
2159 
2160 bool kvm_intr_is_single_vcpu(struct kvm *kvm, struct kvm_lapic_irq *irq,
2161 			     struct kvm_vcpu **dest_vcpu);
2162 
2163 void kvm_set_msi_irq(struct kvm *kvm, struct kvm_kernel_irq_routing_entry *e,
2164 		     struct kvm_lapic_irq *irq);
2165 
2166 static inline bool kvm_irq_is_postable(struct kvm_lapic_irq *irq)
2167 {
2168 	/* We can only post Fixed and LowPrio IRQs */
2169 	return (irq->delivery_mode == APIC_DM_FIXED ||
2170 		irq->delivery_mode == APIC_DM_LOWEST);
2171 }
2172 
2173 static inline void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu)
2174 {
2175 	static_call_cond(kvm_x86_vcpu_blocking)(vcpu);
2176 }
2177 
2178 static inline void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu)
2179 {
2180 	static_call_cond(kvm_x86_vcpu_unblocking)(vcpu);
2181 }
2182 
2183 static inline int kvm_cpu_get_apicid(int mps_cpu)
2184 {
2185 #ifdef CONFIG_X86_LOCAL_APIC
2186 	return default_cpu_present_to_apicid(mps_cpu);
2187 #else
2188 	WARN_ON_ONCE(1);
2189 	return BAD_APICID;
2190 #endif
2191 }
2192 
2193 int memslot_rmap_alloc(struct kvm_memory_slot *slot, unsigned long npages);
2194 
2195 #define KVM_CLOCK_VALID_FLAGS						\
2196 	(KVM_CLOCK_TSC_STABLE | KVM_CLOCK_REALTIME | KVM_CLOCK_HOST_TSC)
2197 
2198 #define KVM_X86_VALID_QUIRKS			\
2199 	(KVM_X86_QUIRK_LINT0_REENABLED |	\
2200 	 KVM_X86_QUIRK_CD_NW_CLEARED |		\
2201 	 KVM_X86_QUIRK_LAPIC_MMIO_HOLE |	\
2202 	 KVM_X86_QUIRK_OUT_7E_INC_RIP |		\
2203 	 KVM_X86_QUIRK_MISC_ENABLE_NO_MWAIT |	\
2204 	 KVM_X86_QUIRK_FIX_HYPERCALL_INSN |	\
2205 	 KVM_X86_QUIRK_MWAIT_NEVER_UD_FAULTS)
2206 
2207 #endif /* _ASM_X86_KVM_HOST_H */
2208