1 /* SPDX-License-Identifier: GPL-2.0-only */ 2 /* 3 * Kernel-based Virtual Machine driver for Linux 4 * 5 * This header defines architecture specific interfaces, x86 version 6 */ 7 8 #ifndef _ASM_X86_KVM_HOST_H 9 #define _ASM_X86_KVM_HOST_H 10 11 #include <linux/types.h> 12 #include <linux/mm.h> 13 #include <linux/mmu_notifier.h> 14 #include <linux/tracepoint.h> 15 #include <linux/cpumask.h> 16 #include <linux/irq_work.h> 17 #include <linux/irq.h> 18 #include <linux/workqueue.h> 19 20 #include <linux/kvm.h> 21 #include <linux/kvm_para.h> 22 #include <linux/kvm_types.h> 23 #include <linux/perf_event.h> 24 #include <linux/pvclock_gtod.h> 25 #include <linux/clocksource.h> 26 #include <linux/irqbypass.h> 27 #include <linux/hyperv.h> 28 #include <linux/kfifo.h> 29 30 #include <asm/apic.h> 31 #include <asm/pvclock-abi.h> 32 #include <asm/desc.h> 33 #include <asm/mtrr.h> 34 #include <asm/msr-index.h> 35 #include <asm/asm.h> 36 #include <asm/kvm_page_track.h> 37 #include <asm/kvm_vcpu_regs.h> 38 #include <asm/hyperv-tlfs.h> 39 40 #define __KVM_HAVE_ARCH_VCPU_DEBUGFS 41 42 #define KVM_MAX_VCPUS 1024 43 44 /* 45 * In x86, the VCPU ID corresponds to the APIC ID, and APIC IDs 46 * might be larger than the actual number of VCPUs because the 47 * APIC ID encodes CPU topology information. 48 * 49 * In the worst case, we'll need less than one extra bit for the 50 * Core ID, and less than one extra bit for the Package (Die) ID, 51 * so ratio of 4 should be enough. 52 */ 53 #define KVM_VCPU_ID_RATIO 4 54 #define KVM_MAX_VCPU_IDS (KVM_MAX_VCPUS * KVM_VCPU_ID_RATIO) 55 56 /* memory slots that are not exposed to userspace */ 57 #define KVM_INTERNAL_MEM_SLOTS 3 58 59 #define KVM_HALT_POLL_NS_DEFAULT 200000 60 61 #define KVM_IRQCHIP_NUM_PINS KVM_IOAPIC_NUM_PINS 62 63 #define KVM_DIRTY_LOG_MANUAL_CAPS (KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE | \ 64 KVM_DIRTY_LOG_INITIALLY_SET) 65 66 #define KVM_BUS_LOCK_DETECTION_VALID_MODE (KVM_BUS_LOCK_DETECTION_OFF | \ 67 KVM_BUS_LOCK_DETECTION_EXIT) 68 69 #define KVM_X86_NOTIFY_VMEXIT_VALID_BITS (KVM_X86_NOTIFY_VMEXIT_ENABLED | \ 70 KVM_X86_NOTIFY_VMEXIT_USER) 71 72 /* x86-specific vcpu->requests bit members */ 73 #define KVM_REQ_MIGRATE_TIMER KVM_ARCH_REQ(0) 74 #define KVM_REQ_REPORT_TPR_ACCESS KVM_ARCH_REQ(1) 75 #define KVM_REQ_TRIPLE_FAULT KVM_ARCH_REQ(2) 76 #define KVM_REQ_MMU_SYNC KVM_ARCH_REQ(3) 77 #define KVM_REQ_CLOCK_UPDATE KVM_ARCH_REQ(4) 78 #define KVM_REQ_LOAD_MMU_PGD KVM_ARCH_REQ(5) 79 #define KVM_REQ_EVENT KVM_ARCH_REQ(6) 80 #define KVM_REQ_APF_HALT KVM_ARCH_REQ(7) 81 #define KVM_REQ_STEAL_UPDATE KVM_ARCH_REQ(8) 82 #define KVM_REQ_NMI KVM_ARCH_REQ(9) 83 #define KVM_REQ_PMU KVM_ARCH_REQ(10) 84 #define KVM_REQ_PMI KVM_ARCH_REQ(11) 85 #ifdef CONFIG_KVM_SMM 86 #define KVM_REQ_SMI KVM_ARCH_REQ(12) 87 #endif 88 #define KVM_REQ_MASTERCLOCK_UPDATE KVM_ARCH_REQ(13) 89 #define KVM_REQ_MCLOCK_INPROGRESS \ 90 KVM_ARCH_REQ_FLAGS(14, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP) 91 #define KVM_REQ_SCAN_IOAPIC \ 92 KVM_ARCH_REQ_FLAGS(15, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP) 93 #define KVM_REQ_GLOBAL_CLOCK_UPDATE KVM_ARCH_REQ(16) 94 #define KVM_REQ_APIC_PAGE_RELOAD \ 95 KVM_ARCH_REQ_FLAGS(17, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP) 96 #define KVM_REQ_HV_CRASH KVM_ARCH_REQ(18) 97 #define KVM_REQ_IOAPIC_EOI_EXIT KVM_ARCH_REQ(19) 98 #define KVM_REQ_HV_RESET KVM_ARCH_REQ(20) 99 #define KVM_REQ_HV_EXIT KVM_ARCH_REQ(21) 100 #define KVM_REQ_HV_STIMER KVM_ARCH_REQ(22) 101 #define KVM_REQ_LOAD_EOI_EXITMAP KVM_ARCH_REQ(23) 102 #define KVM_REQ_GET_NESTED_STATE_PAGES KVM_ARCH_REQ(24) 103 #define KVM_REQ_APICV_UPDATE \ 104 KVM_ARCH_REQ_FLAGS(25, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP) 105 #define KVM_REQ_TLB_FLUSH_CURRENT KVM_ARCH_REQ(26) 106 #define KVM_REQ_TLB_FLUSH_GUEST \ 107 KVM_ARCH_REQ_FLAGS(27, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP) 108 #define KVM_REQ_APF_READY KVM_ARCH_REQ(28) 109 #define KVM_REQ_MSR_FILTER_CHANGED KVM_ARCH_REQ(29) 110 #define KVM_REQ_UPDATE_CPU_DIRTY_LOGGING \ 111 KVM_ARCH_REQ_FLAGS(30, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP) 112 #define KVM_REQ_MMU_FREE_OBSOLETE_ROOTS \ 113 KVM_ARCH_REQ_FLAGS(31, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP) 114 #define KVM_REQ_HV_TLB_FLUSH \ 115 KVM_ARCH_REQ_FLAGS(32, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP) 116 117 #define CR0_RESERVED_BITS \ 118 (~(unsigned long)(X86_CR0_PE | X86_CR0_MP | X86_CR0_EM | X86_CR0_TS \ 119 | X86_CR0_ET | X86_CR0_NE | X86_CR0_WP | X86_CR0_AM \ 120 | X86_CR0_NW | X86_CR0_CD | X86_CR0_PG)) 121 122 #define CR4_RESERVED_BITS \ 123 (~(unsigned long)(X86_CR4_VME | X86_CR4_PVI | X86_CR4_TSD | X86_CR4_DE\ 124 | X86_CR4_PSE | X86_CR4_PAE | X86_CR4_MCE \ 125 | X86_CR4_PGE | X86_CR4_PCE | X86_CR4_OSFXSR | X86_CR4_PCIDE \ 126 | X86_CR4_OSXSAVE | X86_CR4_SMEP | X86_CR4_FSGSBASE \ 127 | X86_CR4_OSXMMEXCPT | X86_CR4_LA57 | X86_CR4_VMXE \ 128 | X86_CR4_SMAP | X86_CR4_PKE | X86_CR4_UMIP)) 129 130 #define CR8_RESERVED_BITS (~(unsigned long)X86_CR8_TPR) 131 132 133 134 #define INVALID_PAGE (~(hpa_t)0) 135 #define VALID_PAGE(x) ((x) != INVALID_PAGE) 136 137 /* KVM Hugepage definitions for x86 */ 138 #define KVM_MAX_HUGEPAGE_LEVEL PG_LEVEL_1G 139 #define KVM_NR_PAGE_SIZES (KVM_MAX_HUGEPAGE_LEVEL - PG_LEVEL_4K + 1) 140 #define KVM_HPAGE_GFN_SHIFT(x) (((x) - 1) * 9) 141 #define KVM_HPAGE_SHIFT(x) (PAGE_SHIFT + KVM_HPAGE_GFN_SHIFT(x)) 142 #define KVM_HPAGE_SIZE(x) (1UL << KVM_HPAGE_SHIFT(x)) 143 #define KVM_HPAGE_MASK(x) (~(KVM_HPAGE_SIZE(x) - 1)) 144 #define KVM_PAGES_PER_HPAGE(x) (KVM_HPAGE_SIZE(x) / PAGE_SIZE) 145 146 #define KVM_MEMSLOT_PAGES_TO_MMU_PAGES_RATIO 50 147 #define KVM_MIN_ALLOC_MMU_PAGES 64UL 148 #define KVM_MMU_HASH_SHIFT 12 149 #define KVM_NUM_MMU_PAGES (1 << KVM_MMU_HASH_SHIFT) 150 #define KVM_MIN_FREE_MMU_PAGES 5 151 #define KVM_REFILL_PAGES 25 152 #define KVM_MAX_CPUID_ENTRIES 256 153 #define KVM_NR_FIXED_MTRR_REGION 88 154 #define KVM_NR_VAR_MTRR 8 155 156 #define ASYNC_PF_PER_VCPU 64 157 158 enum kvm_reg { 159 VCPU_REGS_RAX = __VCPU_REGS_RAX, 160 VCPU_REGS_RCX = __VCPU_REGS_RCX, 161 VCPU_REGS_RDX = __VCPU_REGS_RDX, 162 VCPU_REGS_RBX = __VCPU_REGS_RBX, 163 VCPU_REGS_RSP = __VCPU_REGS_RSP, 164 VCPU_REGS_RBP = __VCPU_REGS_RBP, 165 VCPU_REGS_RSI = __VCPU_REGS_RSI, 166 VCPU_REGS_RDI = __VCPU_REGS_RDI, 167 #ifdef CONFIG_X86_64 168 VCPU_REGS_R8 = __VCPU_REGS_R8, 169 VCPU_REGS_R9 = __VCPU_REGS_R9, 170 VCPU_REGS_R10 = __VCPU_REGS_R10, 171 VCPU_REGS_R11 = __VCPU_REGS_R11, 172 VCPU_REGS_R12 = __VCPU_REGS_R12, 173 VCPU_REGS_R13 = __VCPU_REGS_R13, 174 VCPU_REGS_R14 = __VCPU_REGS_R14, 175 VCPU_REGS_R15 = __VCPU_REGS_R15, 176 #endif 177 VCPU_REGS_RIP, 178 NR_VCPU_REGS, 179 180 VCPU_EXREG_PDPTR = NR_VCPU_REGS, 181 VCPU_EXREG_CR0, 182 VCPU_EXREG_CR3, 183 VCPU_EXREG_CR4, 184 VCPU_EXREG_RFLAGS, 185 VCPU_EXREG_SEGMENTS, 186 VCPU_EXREG_EXIT_INFO_1, 187 VCPU_EXREG_EXIT_INFO_2, 188 }; 189 190 enum { 191 VCPU_SREG_ES, 192 VCPU_SREG_CS, 193 VCPU_SREG_SS, 194 VCPU_SREG_DS, 195 VCPU_SREG_FS, 196 VCPU_SREG_GS, 197 VCPU_SREG_TR, 198 VCPU_SREG_LDTR, 199 }; 200 201 enum exit_fastpath_completion { 202 EXIT_FASTPATH_NONE, 203 EXIT_FASTPATH_REENTER_GUEST, 204 EXIT_FASTPATH_EXIT_HANDLED, 205 }; 206 typedef enum exit_fastpath_completion fastpath_t; 207 208 struct x86_emulate_ctxt; 209 struct x86_exception; 210 union kvm_smram; 211 enum x86_intercept; 212 enum x86_intercept_stage; 213 214 #define KVM_NR_DB_REGS 4 215 216 #define DR6_BUS_LOCK (1 << 11) 217 #define DR6_BD (1 << 13) 218 #define DR6_BS (1 << 14) 219 #define DR6_BT (1 << 15) 220 #define DR6_RTM (1 << 16) 221 /* 222 * DR6_ACTIVE_LOW combines fixed-1 and active-low bits. 223 * We can regard all the bits in DR6_FIXED_1 as active_low bits; 224 * they will never be 0 for now, but when they are defined 225 * in the future it will require no code change. 226 * 227 * DR6_ACTIVE_LOW is also used as the init/reset value for DR6. 228 */ 229 #define DR6_ACTIVE_LOW 0xffff0ff0 230 #define DR6_VOLATILE 0x0001e80f 231 #define DR6_FIXED_1 (DR6_ACTIVE_LOW & ~DR6_VOLATILE) 232 233 #define DR7_BP_EN_MASK 0x000000ff 234 #define DR7_GE (1 << 9) 235 #define DR7_GD (1 << 13) 236 #define DR7_FIXED_1 0x00000400 237 #define DR7_VOLATILE 0xffff2bff 238 239 #define KVM_GUESTDBG_VALID_MASK \ 240 (KVM_GUESTDBG_ENABLE | \ 241 KVM_GUESTDBG_SINGLESTEP | \ 242 KVM_GUESTDBG_USE_HW_BP | \ 243 KVM_GUESTDBG_USE_SW_BP | \ 244 KVM_GUESTDBG_INJECT_BP | \ 245 KVM_GUESTDBG_INJECT_DB | \ 246 KVM_GUESTDBG_BLOCKIRQ) 247 248 249 #define PFERR_PRESENT_BIT 0 250 #define PFERR_WRITE_BIT 1 251 #define PFERR_USER_BIT 2 252 #define PFERR_RSVD_BIT 3 253 #define PFERR_FETCH_BIT 4 254 #define PFERR_PK_BIT 5 255 #define PFERR_SGX_BIT 15 256 #define PFERR_GUEST_FINAL_BIT 32 257 #define PFERR_GUEST_PAGE_BIT 33 258 #define PFERR_IMPLICIT_ACCESS_BIT 48 259 260 #define PFERR_PRESENT_MASK BIT(PFERR_PRESENT_BIT) 261 #define PFERR_WRITE_MASK BIT(PFERR_WRITE_BIT) 262 #define PFERR_USER_MASK BIT(PFERR_USER_BIT) 263 #define PFERR_RSVD_MASK BIT(PFERR_RSVD_BIT) 264 #define PFERR_FETCH_MASK BIT(PFERR_FETCH_BIT) 265 #define PFERR_PK_MASK BIT(PFERR_PK_BIT) 266 #define PFERR_SGX_MASK BIT(PFERR_SGX_BIT) 267 #define PFERR_GUEST_FINAL_MASK BIT_ULL(PFERR_GUEST_FINAL_BIT) 268 #define PFERR_GUEST_PAGE_MASK BIT_ULL(PFERR_GUEST_PAGE_BIT) 269 #define PFERR_IMPLICIT_ACCESS BIT_ULL(PFERR_IMPLICIT_ACCESS_BIT) 270 271 #define PFERR_NESTED_GUEST_PAGE (PFERR_GUEST_PAGE_MASK | \ 272 PFERR_WRITE_MASK | \ 273 PFERR_PRESENT_MASK) 274 275 /* apic attention bits */ 276 #define KVM_APIC_CHECK_VAPIC 0 277 /* 278 * The following bit is set with PV-EOI, unset on EOI. 279 * We detect PV-EOI changes by guest by comparing 280 * this bit with PV-EOI in guest memory. 281 * See the implementation in apic_update_pv_eoi. 282 */ 283 #define KVM_APIC_PV_EOI_PENDING 1 284 285 struct kvm_kernel_irq_routing_entry; 286 287 /* 288 * kvm_mmu_page_role tracks the properties of a shadow page (where shadow page 289 * also includes TDP pages) to determine whether or not a page can be used in 290 * the given MMU context. This is a subset of the overall kvm_cpu_role to 291 * minimize the size of kvm_memory_slot.arch.gfn_track, i.e. allows allocating 292 * 2 bytes per gfn instead of 4 bytes per gfn. 293 * 294 * Upper-level shadow pages having gptes are tracked for write-protection via 295 * gfn_track. As above, gfn_track is a 16 bit counter, so KVM must not create 296 * more than 2^16-1 upper-level shadow pages at a single gfn, otherwise 297 * gfn_track will overflow and explosions will ensure. 298 * 299 * A unique shadow page (SP) for a gfn is created if and only if an existing SP 300 * cannot be reused. The ability to reuse a SP is tracked by its role, which 301 * incorporates various mode bits and properties of the SP. Roughly speaking, 302 * the number of unique SPs that can theoretically be created is 2^n, where n 303 * is the number of bits that are used to compute the role. 304 * 305 * But, even though there are 19 bits in the mask below, not all combinations 306 * of modes and flags are possible: 307 * 308 * - invalid shadow pages are not accounted, so the bits are effectively 18 309 * 310 * - quadrant will only be used if has_4_byte_gpte=1 (non-PAE paging); 311 * execonly and ad_disabled are only used for nested EPT which has 312 * has_4_byte_gpte=0. Therefore, 2 bits are always unused. 313 * 314 * - the 4 bits of level are effectively limited to the values 2/3/4/5, 315 * as 4k SPs are not tracked (allowed to go unsync). In addition non-PAE 316 * paging has exactly one upper level, making level completely redundant 317 * when has_4_byte_gpte=1. 318 * 319 * - on top of this, smep_andnot_wp and smap_andnot_wp are only set if 320 * cr0_wp=0, therefore these three bits only give rise to 5 possibilities. 321 * 322 * Therefore, the maximum number of possible upper-level shadow pages for a 323 * single gfn is a bit less than 2^13. 324 */ 325 union kvm_mmu_page_role { 326 u32 word; 327 struct { 328 unsigned level:4; 329 unsigned has_4_byte_gpte:1; 330 unsigned quadrant:2; 331 unsigned direct:1; 332 unsigned access:3; 333 unsigned invalid:1; 334 unsigned efer_nx:1; 335 unsigned cr0_wp:1; 336 unsigned smep_andnot_wp:1; 337 unsigned smap_andnot_wp:1; 338 unsigned ad_disabled:1; 339 unsigned guest_mode:1; 340 unsigned passthrough:1; 341 unsigned :5; 342 343 /* 344 * This is left at the top of the word so that 345 * kvm_memslots_for_spte_role can extract it with a 346 * simple shift. While there is room, give it a whole 347 * byte so it is also faster to load it from memory. 348 */ 349 unsigned smm:8; 350 }; 351 }; 352 353 /* 354 * kvm_mmu_extended_role complements kvm_mmu_page_role, tracking properties 355 * relevant to the current MMU configuration. When loading CR0, CR4, or EFER, 356 * including on nested transitions, if nothing in the full role changes then 357 * MMU re-configuration can be skipped. @valid bit is set on first usage so we 358 * don't treat all-zero structure as valid data. 359 * 360 * The properties that are tracked in the extended role but not the page role 361 * are for things that either (a) do not affect the validity of the shadow page 362 * or (b) are indirectly reflected in the shadow page's role. For example, 363 * CR4.PKE only affects permission checks for software walks of the guest page 364 * tables (because KVM doesn't support Protection Keys with shadow paging), and 365 * CR0.PG, CR4.PAE, and CR4.PSE are indirectly reflected in role.level. 366 * 367 * Note, SMEP and SMAP are not redundant with sm*p_andnot_wp in the page role. 368 * If CR0.WP=1, KVM can reuse shadow pages for the guest regardless of SMEP and 369 * SMAP, but the MMU's permission checks for software walks need to be SMEP and 370 * SMAP aware regardless of CR0.WP. 371 */ 372 union kvm_mmu_extended_role { 373 u32 word; 374 struct { 375 unsigned int valid:1; 376 unsigned int execonly:1; 377 unsigned int cr4_pse:1; 378 unsigned int cr4_pke:1; 379 unsigned int cr4_smap:1; 380 unsigned int cr4_smep:1; 381 unsigned int cr4_la57:1; 382 unsigned int efer_lma:1; 383 }; 384 }; 385 386 union kvm_cpu_role { 387 u64 as_u64; 388 struct { 389 union kvm_mmu_page_role base; 390 union kvm_mmu_extended_role ext; 391 }; 392 }; 393 394 struct kvm_rmap_head { 395 unsigned long val; 396 }; 397 398 struct kvm_pio_request { 399 unsigned long linear_rip; 400 unsigned long count; 401 int in; 402 int port; 403 int size; 404 }; 405 406 #define PT64_ROOT_MAX_LEVEL 5 407 408 struct rsvd_bits_validate { 409 u64 rsvd_bits_mask[2][PT64_ROOT_MAX_LEVEL]; 410 u64 bad_mt_xwr; 411 }; 412 413 struct kvm_mmu_root_info { 414 gpa_t pgd; 415 hpa_t hpa; 416 }; 417 418 #define KVM_MMU_ROOT_INFO_INVALID \ 419 ((struct kvm_mmu_root_info) { .pgd = INVALID_PAGE, .hpa = INVALID_PAGE }) 420 421 #define KVM_MMU_NUM_PREV_ROOTS 3 422 423 #define KVM_MMU_ROOT_CURRENT BIT(0) 424 #define KVM_MMU_ROOT_PREVIOUS(i) BIT(1+i) 425 #define KVM_MMU_ROOTS_ALL (BIT(1 + KVM_MMU_NUM_PREV_ROOTS) - 1) 426 427 #define KVM_HAVE_MMU_RWLOCK 428 429 struct kvm_mmu_page; 430 struct kvm_page_fault; 431 432 /* 433 * x86 supports 4 paging modes (5-level 64-bit, 4-level 64-bit, 3-level 32-bit, 434 * and 2-level 32-bit). The kvm_mmu structure abstracts the details of the 435 * current mmu mode. 436 */ 437 struct kvm_mmu { 438 unsigned long (*get_guest_pgd)(struct kvm_vcpu *vcpu); 439 u64 (*get_pdptr)(struct kvm_vcpu *vcpu, int index); 440 int (*page_fault)(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault); 441 void (*inject_page_fault)(struct kvm_vcpu *vcpu, 442 struct x86_exception *fault); 443 gpa_t (*gva_to_gpa)(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, 444 gpa_t gva_or_gpa, u64 access, 445 struct x86_exception *exception); 446 int (*sync_spte)(struct kvm_vcpu *vcpu, 447 struct kvm_mmu_page *sp, int i); 448 struct kvm_mmu_root_info root; 449 union kvm_cpu_role cpu_role; 450 union kvm_mmu_page_role root_role; 451 452 /* 453 * The pkru_mask indicates if protection key checks are needed. It 454 * consists of 16 domains indexed by page fault error code bits [4:1], 455 * with PFEC.RSVD replaced by ACC_USER_MASK from the page tables. 456 * Each domain has 2 bits which are ANDed with AD and WD from PKRU. 457 */ 458 u32 pkru_mask; 459 460 struct kvm_mmu_root_info prev_roots[KVM_MMU_NUM_PREV_ROOTS]; 461 462 /* 463 * Bitmap; bit set = permission fault 464 * Byte index: page fault error code [4:1] 465 * Bit index: pte permissions in ACC_* format 466 */ 467 u8 permissions[16]; 468 469 u64 *pae_root; 470 u64 *pml4_root; 471 u64 *pml5_root; 472 473 /* 474 * check zero bits on shadow page table entries, these 475 * bits include not only hardware reserved bits but also 476 * the bits spte never used. 477 */ 478 struct rsvd_bits_validate shadow_zero_check; 479 480 struct rsvd_bits_validate guest_rsvd_check; 481 482 u64 pdptrs[4]; /* pae */ 483 }; 484 485 enum pmc_type { 486 KVM_PMC_GP = 0, 487 KVM_PMC_FIXED, 488 }; 489 490 struct kvm_pmc { 491 enum pmc_type type; 492 u8 idx; 493 bool is_paused; 494 bool intr; 495 u64 counter; 496 u64 prev_counter; 497 u64 eventsel; 498 struct perf_event *perf_event; 499 struct kvm_vcpu *vcpu; 500 /* 501 * only for creating or reusing perf_event, 502 * eventsel value for general purpose counters, 503 * ctrl value for fixed counters. 504 */ 505 u64 current_config; 506 }; 507 508 /* More counters may conflict with other existing Architectural MSRs */ 509 #define KVM_INTEL_PMC_MAX_GENERIC 8 510 #define MSR_ARCH_PERFMON_PERFCTR_MAX (MSR_ARCH_PERFMON_PERFCTR0 + KVM_INTEL_PMC_MAX_GENERIC - 1) 511 #define MSR_ARCH_PERFMON_EVENTSEL_MAX (MSR_ARCH_PERFMON_EVENTSEL0 + KVM_INTEL_PMC_MAX_GENERIC - 1) 512 #define KVM_PMC_MAX_FIXED 3 513 #define MSR_ARCH_PERFMON_FIXED_CTR_MAX (MSR_ARCH_PERFMON_FIXED_CTR0 + KVM_PMC_MAX_FIXED - 1) 514 #define KVM_AMD_PMC_MAX_GENERIC 6 515 struct kvm_pmu { 516 u8 version; 517 unsigned nr_arch_gp_counters; 518 unsigned nr_arch_fixed_counters; 519 unsigned available_event_types; 520 u64 fixed_ctr_ctrl; 521 u64 fixed_ctr_ctrl_mask; 522 u64 global_ctrl; 523 u64 global_status; 524 u64 counter_bitmask[2]; 525 u64 global_ctrl_mask; 526 u64 global_status_mask; 527 u64 reserved_bits; 528 u64 raw_event_mask; 529 struct kvm_pmc gp_counters[KVM_INTEL_PMC_MAX_GENERIC]; 530 struct kvm_pmc fixed_counters[KVM_PMC_MAX_FIXED]; 531 struct irq_work irq_work; 532 533 /* 534 * Overlay the bitmap with a 64-bit atomic so that all bits can be 535 * set in a single access, e.g. to reprogram all counters when the PMU 536 * filter changes. 537 */ 538 union { 539 DECLARE_BITMAP(reprogram_pmi, X86_PMC_IDX_MAX); 540 atomic64_t __reprogram_pmi; 541 }; 542 DECLARE_BITMAP(all_valid_pmc_idx, X86_PMC_IDX_MAX); 543 DECLARE_BITMAP(pmc_in_use, X86_PMC_IDX_MAX); 544 545 u64 ds_area; 546 u64 pebs_enable; 547 u64 pebs_enable_mask; 548 u64 pebs_data_cfg; 549 u64 pebs_data_cfg_mask; 550 551 /* 552 * If a guest counter is cross-mapped to host counter with different 553 * index, its PEBS capability will be temporarily disabled. 554 * 555 * The user should make sure that this mask is updated 556 * after disabling interrupts and before perf_guest_get_msrs(); 557 */ 558 u64 host_cross_mapped_mask; 559 560 /* 561 * The gate to release perf_events not marked in 562 * pmc_in_use only once in a vcpu time slice. 563 */ 564 bool need_cleanup; 565 566 /* 567 * The total number of programmed perf_events and it helps to avoid 568 * redundant check before cleanup if guest don't use vPMU at all. 569 */ 570 u8 event_count; 571 }; 572 573 struct kvm_pmu_ops; 574 575 enum { 576 KVM_DEBUGREG_BP_ENABLED = 1, 577 KVM_DEBUGREG_WONT_EXIT = 2, 578 }; 579 580 struct kvm_mtrr_range { 581 u64 base; 582 u64 mask; 583 struct list_head node; 584 }; 585 586 struct kvm_mtrr { 587 struct kvm_mtrr_range var_ranges[KVM_NR_VAR_MTRR]; 588 mtrr_type fixed_ranges[KVM_NR_FIXED_MTRR_REGION]; 589 u64 deftype; 590 591 struct list_head head; 592 }; 593 594 /* Hyper-V SynIC timer */ 595 struct kvm_vcpu_hv_stimer { 596 struct hrtimer timer; 597 int index; 598 union hv_stimer_config config; 599 u64 count; 600 u64 exp_time; 601 struct hv_message msg; 602 bool msg_pending; 603 }; 604 605 /* Hyper-V synthetic interrupt controller (SynIC)*/ 606 struct kvm_vcpu_hv_synic { 607 u64 version; 608 u64 control; 609 u64 msg_page; 610 u64 evt_page; 611 atomic64_t sint[HV_SYNIC_SINT_COUNT]; 612 atomic_t sint_to_gsi[HV_SYNIC_SINT_COUNT]; 613 DECLARE_BITMAP(auto_eoi_bitmap, 256); 614 DECLARE_BITMAP(vec_bitmap, 256); 615 bool active; 616 bool dont_zero_synic_pages; 617 }; 618 619 /* The maximum number of entries on the TLB flush fifo. */ 620 #define KVM_HV_TLB_FLUSH_FIFO_SIZE (16) 621 /* 622 * Note: the following 'magic' entry is made up by KVM to avoid putting 623 * anything besides GVA on the TLB flush fifo. It is theoretically possible 624 * to observe a request to flush 4095 PFNs starting from 0xfffffffffffff000 625 * which will look identical. KVM's action to 'flush everything' instead of 626 * flushing these particular addresses is, however, fully legitimate as 627 * flushing more than requested is always OK. 628 */ 629 #define KVM_HV_TLB_FLUSHALL_ENTRY ((u64)-1) 630 631 enum hv_tlb_flush_fifos { 632 HV_L1_TLB_FLUSH_FIFO, 633 HV_L2_TLB_FLUSH_FIFO, 634 HV_NR_TLB_FLUSH_FIFOS, 635 }; 636 637 struct kvm_vcpu_hv_tlb_flush_fifo { 638 spinlock_t write_lock; 639 DECLARE_KFIFO(entries, u64, KVM_HV_TLB_FLUSH_FIFO_SIZE); 640 }; 641 642 /* Hyper-V per vcpu emulation context */ 643 struct kvm_vcpu_hv { 644 struct kvm_vcpu *vcpu; 645 u32 vp_index; 646 u64 hv_vapic; 647 s64 runtime_offset; 648 struct kvm_vcpu_hv_synic synic; 649 struct kvm_hyperv_exit exit; 650 struct kvm_vcpu_hv_stimer stimer[HV_SYNIC_STIMER_COUNT]; 651 DECLARE_BITMAP(stimer_pending_bitmap, HV_SYNIC_STIMER_COUNT); 652 bool enforce_cpuid; 653 struct { 654 u32 features_eax; /* HYPERV_CPUID_FEATURES.EAX */ 655 u32 features_ebx; /* HYPERV_CPUID_FEATURES.EBX */ 656 u32 features_edx; /* HYPERV_CPUID_FEATURES.EDX */ 657 u32 enlightenments_eax; /* HYPERV_CPUID_ENLIGHTMENT_INFO.EAX */ 658 u32 enlightenments_ebx; /* HYPERV_CPUID_ENLIGHTMENT_INFO.EBX */ 659 u32 syndbg_cap_eax; /* HYPERV_CPUID_SYNDBG_PLATFORM_CAPABILITIES.EAX */ 660 u32 nested_eax; /* HYPERV_CPUID_NESTED_FEATURES.EAX */ 661 u32 nested_ebx; /* HYPERV_CPUID_NESTED_FEATURES.EBX */ 662 } cpuid_cache; 663 664 struct kvm_vcpu_hv_tlb_flush_fifo tlb_flush_fifo[HV_NR_TLB_FLUSH_FIFOS]; 665 666 /* Preallocated buffer for handling hypercalls passing sparse vCPU set */ 667 u64 sparse_banks[HV_MAX_SPARSE_VCPU_BANKS]; 668 669 struct hv_vp_assist_page vp_assist_page; 670 671 struct { 672 u64 pa_page_gpa; 673 u64 vm_id; 674 u32 vp_id; 675 } nested; 676 }; 677 678 struct kvm_hypervisor_cpuid { 679 u32 base; 680 u32 limit; 681 }; 682 683 /* Xen HVM per vcpu emulation context */ 684 struct kvm_vcpu_xen { 685 u64 hypercall_rip; 686 u32 current_runstate; 687 u8 upcall_vector; 688 struct gfn_to_pfn_cache vcpu_info_cache; 689 struct gfn_to_pfn_cache vcpu_time_info_cache; 690 struct gfn_to_pfn_cache runstate_cache; 691 struct gfn_to_pfn_cache runstate2_cache; 692 u64 last_steal; 693 u64 runstate_entry_time; 694 u64 runstate_times[4]; 695 unsigned long evtchn_pending_sel; 696 u32 vcpu_id; /* The Xen / ACPI vCPU ID */ 697 u32 timer_virq; 698 u64 timer_expires; /* In guest epoch */ 699 atomic_t timer_pending; 700 struct hrtimer timer; 701 int poll_evtchn; 702 struct timer_list poll_timer; 703 struct kvm_hypervisor_cpuid cpuid; 704 }; 705 706 struct kvm_queued_exception { 707 bool pending; 708 bool injected; 709 bool has_error_code; 710 u8 vector; 711 u32 error_code; 712 unsigned long payload; 713 bool has_payload; 714 }; 715 716 struct kvm_vcpu_arch { 717 /* 718 * rip and regs accesses must go through 719 * kvm_{register,rip}_{read,write} functions. 720 */ 721 unsigned long regs[NR_VCPU_REGS]; 722 u32 regs_avail; 723 u32 regs_dirty; 724 725 unsigned long cr0; 726 unsigned long cr0_guest_owned_bits; 727 unsigned long cr2; 728 unsigned long cr3; 729 unsigned long cr4; 730 unsigned long cr4_guest_owned_bits; 731 unsigned long cr4_guest_rsvd_bits; 732 unsigned long cr8; 733 u32 host_pkru; 734 u32 pkru; 735 u32 hflags; 736 u64 efer; 737 u64 apic_base; 738 struct kvm_lapic *apic; /* kernel irqchip context */ 739 bool load_eoi_exitmap_pending; 740 DECLARE_BITMAP(ioapic_handled_vectors, 256); 741 unsigned long apic_attention; 742 int32_t apic_arb_prio; 743 int mp_state; 744 u64 ia32_misc_enable_msr; 745 u64 smbase; 746 u64 smi_count; 747 bool at_instruction_boundary; 748 bool tpr_access_reporting; 749 bool xsaves_enabled; 750 bool xfd_no_write_intercept; 751 u64 ia32_xss; 752 u64 microcode_version; 753 u64 arch_capabilities; 754 u64 perf_capabilities; 755 756 /* 757 * Paging state of the vcpu 758 * 759 * If the vcpu runs in guest mode with two level paging this still saves 760 * the paging mode of the l1 guest. This context is always used to 761 * handle faults. 762 */ 763 struct kvm_mmu *mmu; 764 765 /* Non-nested MMU for L1 */ 766 struct kvm_mmu root_mmu; 767 768 /* L1 MMU when running nested */ 769 struct kvm_mmu guest_mmu; 770 771 /* 772 * Paging state of an L2 guest (used for nested npt) 773 * 774 * This context will save all necessary information to walk page tables 775 * of an L2 guest. This context is only initialized for page table 776 * walking and not for faulting since we never handle l2 page faults on 777 * the host. 778 */ 779 struct kvm_mmu nested_mmu; 780 781 /* 782 * Pointer to the mmu context currently used for 783 * gva_to_gpa translations. 784 */ 785 struct kvm_mmu *walk_mmu; 786 787 struct kvm_mmu_memory_cache mmu_pte_list_desc_cache; 788 struct kvm_mmu_memory_cache mmu_shadow_page_cache; 789 struct kvm_mmu_memory_cache mmu_shadowed_info_cache; 790 struct kvm_mmu_memory_cache mmu_page_header_cache; 791 792 /* 793 * QEMU userspace and the guest each have their own FPU state. 794 * In vcpu_run, we switch between the user and guest FPU contexts. 795 * While running a VCPU, the VCPU thread will have the guest FPU 796 * context. 797 * 798 * Note that while the PKRU state lives inside the fpu registers, 799 * it is switched out separately at VMENTER and VMEXIT time. The 800 * "guest_fpstate" state here contains the guest FPU context, with the 801 * host PRKU bits. 802 */ 803 struct fpu_guest guest_fpu; 804 805 u64 xcr0; 806 u64 guest_supported_xcr0; 807 808 struct kvm_pio_request pio; 809 void *pio_data; 810 void *sev_pio_data; 811 unsigned sev_pio_count; 812 813 u8 event_exit_inst_len; 814 815 bool exception_from_userspace; 816 817 /* Exceptions to be injected to the guest. */ 818 struct kvm_queued_exception exception; 819 /* Exception VM-Exits to be synthesized to L1. */ 820 struct kvm_queued_exception exception_vmexit; 821 822 struct kvm_queued_interrupt { 823 bool injected; 824 bool soft; 825 u8 nr; 826 } interrupt; 827 828 int halt_request; /* real mode on Intel only */ 829 830 int cpuid_nent; 831 struct kvm_cpuid_entry2 *cpuid_entries; 832 struct kvm_hypervisor_cpuid kvm_cpuid; 833 834 u64 reserved_gpa_bits; 835 int maxphyaddr; 836 837 /* emulate context */ 838 839 struct x86_emulate_ctxt *emulate_ctxt; 840 bool emulate_regs_need_sync_to_vcpu; 841 bool emulate_regs_need_sync_from_vcpu; 842 int (*complete_userspace_io)(struct kvm_vcpu *vcpu); 843 844 gpa_t time; 845 struct pvclock_vcpu_time_info hv_clock; 846 unsigned int hw_tsc_khz; 847 struct gfn_to_pfn_cache pv_time; 848 /* set guest stopped flag in pvclock flags field */ 849 bool pvclock_set_guest_stopped_request; 850 851 struct { 852 u8 preempted; 853 u64 msr_val; 854 u64 last_steal; 855 struct gfn_to_hva_cache cache; 856 } st; 857 858 u64 l1_tsc_offset; 859 u64 tsc_offset; /* current tsc offset */ 860 u64 last_guest_tsc; 861 u64 last_host_tsc; 862 u64 tsc_offset_adjustment; 863 u64 this_tsc_nsec; 864 u64 this_tsc_write; 865 u64 this_tsc_generation; 866 bool tsc_catchup; 867 bool tsc_always_catchup; 868 s8 virtual_tsc_shift; 869 u32 virtual_tsc_mult; 870 u32 virtual_tsc_khz; 871 s64 ia32_tsc_adjust_msr; 872 u64 msr_ia32_power_ctl; 873 u64 l1_tsc_scaling_ratio; 874 u64 tsc_scaling_ratio; /* current scaling ratio */ 875 876 atomic_t nmi_queued; /* unprocessed asynchronous NMIs */ 877 /* Number of NMIs pending injection, not including hardware vNMIs. */ 878 unsigned int nmi_pending; 879 bool nmi_injected; /* Trying to inject an NMI this entry */ 880 bool smi_pending; /* SMI queued after currently running handler */ 881 u8 handling_intr_from_guest; 882 883 struct kvm_mtrr mtrr_state; 884 u64 pat; 885 886 unsigned switch_db_regs; 887 unsigned long db[KVM_NR_DB_REGS]; 888 unsigned long dr6; 889 unsigned long dr7; 890 unsigned long eff_db[KVM_NR_DB_REGS]; 891 unsigned long guest_debug_dr7; 892 u64 msr_platform_info; 893 u64 msr_misc_features_enables; 894 895 u64 mcg_cap; 896 u64 mcg_status; 897 u64 mcg_ctl; 898 u64 mcg_ext_ctl; 899 u64 *mce_banks; 900 u64 *mci_ctl2_banks; 901 902 /* Cache MMIO info */ 903 u64 mmio_gva; 904 unsigned mmio_access; 905 gfn_t mmio_gfn; 906 u64 mmio_gen; 907 908 struct kvm_pmu pmu; 909 910 /* used for guest single stepping over the given code position */ 911 unsigned long singlestep_rip; 912 913 bool hyperv_enabled; 914 struct kvm_vcpu_hv *hyperv; 915 struct kvm_vcpu_xen xen; 916 917 cpumask_var_t wbinvd_dirty_mask; 918 919 unsigned long last_retry_eip; 920 unsigned long last_retry_addr; 921 922 struct { 923 bool halted; 924 gfn_t gfns[ASYNC_PF_PER_VCPU]; 925 struct gfn_to_hva_cache data; 926 u64 msr_en_val; /* MSR_KVM_ASYNC_PF_EN */ 927 u64 msr_int_val; /* MSR_KVM_ASYNC_PF_INT */ 928 u16 vec; 929 u32 id; 930 bool send_user_only; 931 u32 host_apf_flags; 932 bool delivery_as_pf_vmexit; 933 bool pageready_pending; 934 } apf; 935 936 /* OSVW MSRs (AMD only) */ 937 struct { 938 u64 length; 939 u64 status; 940 } osvw; 941 942 struct { 943 u64 msr_val; 944 struct gfn_to_hva_cache data; 945 } pv_eoi; 946 947 u64 msr_kvm_poll_control; 948 949 /* set at EPT violation at this point */ 950 unsigned long exit_qualification; 951 952 /* pv related host specific info */ 953 struct { 954 bool pv_unhalted; 955 } pv; 956 957 int pending_ioapic_eoi; 958 int pending_external_vector; 959 960 /* be preempted when it's in kernel-mode(cpl=0) */ 961 bool preempted_in_kernel; 962 963 /* Flush the L1 Data cache for L1TF mitigation on VMENTER */ 964 bool l1tf_flush_l1d; 965 966 /* Host CPU on which VM-entry was most recently attempted */ 967 int last_vmentry_cpu; 968 969 /* AMD MSRC001_0015 Hardware Configuration */ 970 u64 msr_hwcr; 971 972 /* pv related cpuid info */ 973 struct { 974 /* 975 * value of the eax register in the KVM_CPUID_FEATURES CPUID 976 * leaf. 977 */ 978 u32 features; 979 980 /* 981 * indicates whether pv emulation should be disabled if features 982 * are not present in the guest's cpuid 983 */ 984 bool enforce; 985 } pv_cpuid; 986 987 /* Protected Guests */ 988 bool guest_state_protected; 989 990 /* 991 * Set when PDPTS were loaded directly by the userspace without 992 * reading the guest memory 993 */ 994 bool pdptrs_from_userspace; 995 996 #if IS_ENABLED(CONFIG_HYPERV) 997 hpa_t hv_root_tdp; 998 #endif 999 }; 1000 1001 struct kvm_lpage_info { 1002 int disallow_lpage; 1003 }; 1004 1005 struct kvm_arch_memory_slot { 1006 struct kvm_rmap_head *rmap[KVM_NR_PAGE_SIZES]; 1007 struct kvm_lpage_info *lpage_info[KVM_NR_PAGE_SIZES - 1]; 1008 unsigned short *gfn_track[KVM_PAGE_TRACK_MAX]; 1009 }; 1010 1011 /* 1012 * Track the mode of the optimized logical map, as the rules for decoding the 1013 * destination vary per mode. Enabling the optimized logical map requires all 1014 * software-enabled local APIs to be in the same mode, each addressable APIC to 1015 * be mapped to only one MDA, and each MDA to map to at most one APIC. 1016 */ 1017 enum kvm_apic_logical_mode { 1018 /* All local APICs are software disabled. */ 1019 KVM_APIC_MODE_SW_DISABLED, 1020 /* All software enabled local APICs in xAPIC cluster addressing mode. */ 1021 KVM_APIC_MODE_XAPIC_CLUSTER, 1022 /* All software enabled local APICs in xAPIC flat addressing mode. */ 1023 KVM_APIC_MODE_XAPIC_FLAT, 1024 /* All software enabled local APICs in x2APIC mode. */ 1025 KVM_APIC_MODE_X2APIC, 1026 /* 1027 * Optimized map disabled, e.g. not all local APICs in the same logical 1028 * mode, same logical ID assigned to multiple APICs, etc. 1029 */ 1030 KVM_APIC_MODE_MAP_DISABLED, 1031 }; 1032 1033 struct kvm_apic_map { 1034 struct rcu_head rcu; 1035 enum kvm_apic_logical_mode logical_mode; 1036 u32 max_apic_id; 1037 union { 1038 struct kvm_lapic *xapic_flat_map[8]; 1039 struct kvm_lapic *xapic_cluster_map[16][4]; 1040 }; 1041 struct kvm_lapic *phys_map[]; 1042 }; 1043 1044 /* Hyper-V synthetic debugger (SynDbg)*/ 1045 struct kvm_hv_syndbg { 1046 struct { 1047 u64 control; 1048 u64 status; 1049 u64 send_page; 1050 u64 recv_page; 1051 u64 pending_page; 1052 } control; 1053 u64 options; 1054 }; 1055 1056 /* Current state of Hyper-V TSC page clocksource */ 1057 enum hv_tsc_page_status { 1058 /* TSC page was not set up or disabled */ 1059 HV_TSC_PAGE_UNSET = 0, 1060 /* TSC page MSR was written by the guest, update pending */ 1061 HV_TSC_PAGE_GUEST_CHANGED, 1062 /* TSC page update was triggered from the host side */ 1063 HV_TSC_PAGE_HOST_CHANGED, 1064 /* TSC page was properly set up and is currently active */ 1065 HV_TSC_PAGE_SET, 1066 /* TSC page was set up with an inaccessible GPA */ 1067 HV_TSC_PAGE_BROKEN, 1068 }; 1069 1070 /* Hyper-V emulation context */ 1071 struct kvm_hv { 1072 struct mutex hv_lock; 1073 u64 hv_guest_os_id; 1074 u64 hv_hypercall; 1075 u64 hv_tsc_page; 1076 enum hv_tsc_page_status hv_tsc_page_status; 1077 1078 /* Hyper-v based guest crash (NT kernel bugcheck) parameters */ 1079 u64 hv_crash_param[HV_X64_MSR_CRASH_PARAMS]; 1080 u64 hv_crash_ctl; 1081 1082 struct ms_hyperv_tsc_page tsc_ref; 1083 1084 struct idr conn_to_evt; 1085 1086 u64 hv_reenlightenment_control; 1087 u64 hv_tsc_emulation_control; 1088 u64 hv_tsc_emulation_status; 1089 u64 hv_invtsc_control; 1090 1091 /* How many vCPUs have VP index != vCPU index */ 1092 atomic_t num_mismatched_vp_indexes; 1093 1094 /* 1095 * How many SynICs use 'AutoEOI' feature 1096 * (protected by arch.apicv_update_lock) 1097 */ 1098 unsigned int synic_auto_eoi_used; 1099 1100 struct hv_partition_assist_pg *hv_pa_pg; 1101 struct kvm_hv_syndbg hv_syndbg; 1102 }; 1103 1104 struct msr_bitmap_range { 1105 u32 flags; 1106 u32 nmsrs; 1107 u32 base; 1108 unsigned long *bitmap; 1109 }; 1110 1111 /* Xen emulation context */ 1112 struct kvm_xen { 1113 struct mutex xen_lock; 1114 u32 xen_version; 1115 bool long_mode; 1116 bool runstate_update_flag; 1117 u8 upcall_vector; 1118 struct gfn_to_pfn_cache shinfo_cache; 1119 struct idr evtchn_ports; 1120 unsigned long poll_mask[BITS_TO_LONGS(KVM_MAX_VCPUS)]; 1121 }; 1122 1123 enum kvm_irqchip_mode { 1124 KVM_IRQCHIP_NONE, 1125 KVM_IRQCHIP_KERNEL, /* created with KVM_CREATE_IRQCHIP */ 1126 KVM_IRQCHIP_SPLIT, /* created with KVM_CAP_SPLIT_IRQCHIP */ 1127 }; 1128 1129 struct kvm_x86_msr_filter { 1130 u8 count; 1131 bool default_allow:1; 1132 struct msr_bitmap_range ranges[16]; 1133 }; 1134 1135 struct kvm_x86_pmu_event_filter { 1136 __u32 action; 1137 __u32 nevents; 1138 __u32 fixed_counter_bitmap; 1139 __u32 flags; 1140 __u32 nr_includes; 1141 __u32 nr_excludes; 1142 __u64 *includes; 1143 __u64 *excludes; 1144 __u64 events[]; 1145 }; 1146 1147 enum kvm_apicv_inhibit { 1148 1149 /********************************************************************/ 1150 /* INHIBITs that are relevant to both Intel's APICv and AMD's AVIC. */ 1151 /********************************************************************/ 1152 1153 /* 1154 * APIC acceleration is disabled by a module parameter 1155 * and/or not supported in hardware. 1156 */ 1157 APICV_INHIBIT_REASON_DISABLE, 1158 1159 /* 1160 * APIC acceleration is inhibited because AutoEOI feature is 1161 * being used by a HyperV guest. 1162 */ 1163 APICV_INHIBIT_REASON_HYPERV, 1164 1165 /* 1166 * APIC acceleration is inhibited because the userspace didn't yet 1167 * enable the kernel/split irqchip. 1168 */ 1169 APICV_INHIBIT_REASON_ABSENT, 1170 1171 /* APIC acceleration is inhibited because KVM_GUESTDBG_BLOCKIRQ 1172 * (out of band, debug measure of blocking all interrupts on this vCPU) 1173 * was enabled, to avoid AVIC/APICv bypassing it. 1174 */ 1175 APICV_INHIBIT_REASON_BLOCKIRQ, 1176 1177 /* 1178 * APICv is disabled because not all vCPUs have a 1:1 mapping between 1179 * APIC ID and vCPU, _and_ KVM is not applying its x2APIC hotplug hack. 1180 */ 1181 APICV_INHIBIT_REASON_PHYSICAL_ID_ALIASED, 1182 1183 /* 1184 * For simplicity, the APIC acceleration is inhibited 1185 * first time either APIC ID or APIC base are changed by the guest 1186 * from their reset values. 1187 */ 1188 APICV_INHIBIT_REASON_APIC_ID_MODIFIED, 1189 APICV_INHIBIT_REASON_APIC_BASE_MODIFIED, 1190 1191 /******************************************************/ 1192 /* INHIBITs that are relevant only to the AMD's AVIC. */ 1193 /******************************************************/ 1194 1195 /* 1196 * AVIC is inhibited on a vCPU because it runs a nested guest. 1197 * 1198 * This is needed because unlike APICv, the peers of this vCPU 1199 * cannot use the doorbell mechanism to signal interrupts via AVIC when 1200 * a vCPU runs nested. 1201 */ 1202 APICV_INHIBIT_REASON_NESTED, 1203 1204 /* 1205 * On SVM, the wait for the IRQ window is implemented with pending vIRQ, 1206 * which cannot be injected when the AVIC is enabled, thus AVIC 1207 * is inhibited while KVM waits for IRQ window. 1208 */ 1209 APICV_INHIBIT_REASON_IRQWIN, 1210 1211 /* 1212 * PIT (i8254) 're-inject' mode, relies on EOI intercept, 1213 * which AVIC doesn't support for edge triggered interrupts. 1214 */ 1215 APICV_INHIBIT_REASON_PIT_REINJ, 1216 1217 /* 1218 * AVIC is disabled because SEV doesn't support it. 1219 */ 1220 APICV_INHIBIT_REASON_SEV, 1221 1222 /* 1223 * AVIC is disabled because not all vCPUs with a valid LDR have a 1:1 1224 * mapping between logical ID and vCPU. 1225 */ 1226 APICV_INHIBIT_REASON_LOGICAL_ID_ALIASED, 1227 }; 1228 1229 struct kvm_arch { 1230 unsigned long n_used_mmu_pages; 1231 unsigned long n_requested_mmu_pages; 1232 unsigned long n_max_mmu_pages; 1233 unsigned int indirect_shadow_pages; 1234 u8 mmu_valid_gen; 1235 struct hlist_head mmu_page_hash[KVM_NUM_MMU_PAGES]; 1236 struct list_head active_mmu_pages; 1237 struct list_head zapped_obsolete_pages; 1238 /* 1239 * A list of kvm_mmu_page structs that, if zapped, could possibly be 1240 * replaced by an NX huge page. A shadow page is on this list if its 1241 * existence disallows an NX huge page (nx_huge_page_disallowed is set) 1242 * and there are no other conditions that prevent a huge page, e.g. 1243 * the backing host page is huge, dirtly logging is not enabled for its 1244 * memslot, etc... Note, zapping shadow pages on this list doesn't 1245 * guarantee an NX huge page will be created in its stead, e.g. if the 1246 * guest attempts to execute from the region then KVM obviously can't 1247 * create an NX huge page (without hanging the guest). 1248 */ 1249 struct list_head possible_nx_huge_pages; 1250 struct kvm_page_track_notifier_node mmu_sp_tracker; 1251 struct kvm_page_track_notifier_head track_notifier_head; 1252 /* 1253 * Protects marking pages unsync during page faults, as TDP MMU page 1254 * faults only take mmu_lock for read. For simplicity, the unsync 1255 * pages lock is always taken when marking pages unsync regardless of 1256 * whether mmu_lock is held for read or write. 1257 */ 1258 spinlock_t mmu_unsync_pages_lock; 1259 1260 struct list_head assigned_dev_head; 1261 struct iommu_domain *iommu_domain; 1262 bool iommu_noncoherent; 1263 #define __KVM_HAVE_ARCH_NONCOHERENT_DMA 1264 atomic_t noncoherent_dma_count; 1265 #define __KVM_HAVE_ARCH_ASSIGNED_DEVICE 1266 atomic_t assigned_device_count; 1267 struct kvm_pic *vpic; 1268 struct kvm_ioapic *vioapic; 1269 struct kvm_pit *vpit; 1270 atomic_t vapics_in_nmi_mode; 1271 struct mutex apic_map_lock; 1272 struct kvm_apic_map __rcu *apic_map; 1273 atomic_t apic_map_dirty; 1274 1275 bool apic_access_memslot_enabled; 1276 bool apic_access_memslot_inhibited; 1277 1278 /* Protects apicv_inhibit_reasons */ 1279 struct rw_semaphore apicv_update_lock; 1280 unsigned long apicv_inhibit_reasons; 1281 1282 gpa_t wall_clock; 1283 1284 bool mwait_in_guest; 1285 bool hlt_in_guest; 1286 bool pause_in_guest; 1287 bool cstate_in_guest; 1288 1289 unsigned long irq_sources_bitmap; 1290 s64 kvmclock_offset; 1291 1292 /* 1293 * This also protects nr_vcpus_matched_tsc which is read from a 1294 * preemption-disabled region, so it must be a raw spinlock. 1295 */ 1296 raw_spinlock_t tsc_write_lock; 1297 u64 last_tsc_nsec; 1298 u64 last_tsc_write; 1299 u32 last_tsc_khz; 1300 u64 last_tsc_offset; 1301 u64 cur_tsc_nsec; 1302 u64 cur_tsc_write; 1303 u64 cur_tsc_offset; 1304 u64 cur_tsc_generation; 1305 int nr_vcpus_matched_tsc; 1306 1307 u32 default_tsc_khz; 1308 1309 seqcount_raw_spinlock_t pvclock_sc; 1310 bool use_master_clock; 1311 u64 master_kernel_ns; 1312 u64 master_cycle_now; 1313 struct delayed_work kvmclock_update_work; 1314 struct delayed_work kvmclock_sync_work; 1315 1316 struct kvm_xen_hvm_config xen_hvm_config; 1317 1318 /* reads protected by irq_srcu, writes by irq_lock */ 1319 struct hlist_head mask_notifier_list; 1320 1321 struct kvm_hv hyperv; 1322 struct kvm_xen xen; 1323 1324 bool backwards_tsc_observed; 1325 bool boot_vcpu_runs_old_kvmclock; 1326 u32 bsp_vcpu_id; 1327 1328 u64 disabled_quirks; 1329 1330 enum kvm_irqchip_mode irqchip_mode; 1331 u8 nr_reserved_ioapic_pins; 1332 1333 bool disabled_lapic_found; 1334 1335 bool x2apic_format; 1336 bool x2apic_broadcast_quirk_disabled; 1337 1338 bool guest_can_read_msr_platform_info; 1339 bool exception_payload_enabled; 1340 1341 bool triple_fault_event; 1342 1343 bool bus_lock_detection_enabled; 1344 bool enable_pmu; 1345 1346 u32 notify_window; 1347 u32 notify_vmexit_flags; 1348 /* 1349 * If exit_on_emulation_error is set, and the in-kernel instruction 1350 * emulator fails to emulate an instruction, allow userspace 1351 * the opportunity to look at it. 1352 */ 1353 bool exit_on_emulation_error; 1354 1355 /* Deflect RDMSR and WRMSR to user space when they trigger a #GP */ 1356 u32 user_space_msr_mask; 1357 struct kvm_x86_msr_filter __rcu *msr_filter; 1358 1359 u32 hypercall_exit_enabled; 1360 1361 /* Guest can access the SGX PROVISIONKEY. */ 1362 bool sgx_provisioning_allowed; 1363 1364 struct kvm_x86_pmu_event_filter __rcu *pmu_event_filter; 1365 struct task_struct *nx_huge_page_recovery_thread; 1366 1367 #ifdef CONFIG_X86_64 1368 /* The number of TDP MMU pages across all roots. */ 1369 atomic64_t tdp_mmu_pages; 1370 1371 /* 1372 * List of struct kvm_mmu_pages being used as roots. 1373 * All struct kvm_mmu_pages in the list should have 1374 * tdp_mmu_page set. 1375 * 1376 * For reads, this list is protected by: 1377 * the MMU lock in read mode + RCU or 1378 * the MMU lock in write mode 1379 * 1380 * For writes, this list is protected by: 1381 * the MMU lock in read mode + the tdp_mmu_pages_lock or 1382 * the MMU lock in write mode 1383 * 1384 * Roots will remain in the list until their tdp_mmu_root_count 1385 * drops to zero, at which point the thread that decremented the 1386 * count to zero should removed the root from the list and clean 1387 * it up, freeing the root after an RCU grace period. 1388 */ 1389 struct list_head tdp_mmu_roots; 1390 1391 /* 1392 * Protects accesses to the following fields when the MMU lock 1393 * is held in read mode: 1394 * - tdp_mmu_roots (above) 1395 * - the link field of kvm_mmu_page structs used by the TDP MMU 1396 * - possible_nx_huge_pages; 1397 * - the possible_nx_huge_page_link field of kvm_mmu_page structs used 1398 * by the TDP MMU 1399 * It is acceptable, but not necessary, to acquire this lock when 1400 * the thread holds the MMU lock in write mode. 1401 */ 1402 spinlock_t tdp_mmu_pages_lock; 1403 struct workqueue_struct *tdp_mmu_zap_wq; 1404 #endif /* CONFIG_X86_64 */ 1405 1406 /* 1407 * If set, at least one shadow root has been allocated. This flag 1408 * is used as one input when determining whether certain memslot 1409 * related allocations are necessary. 1410 */ 1411 bool shadow_root_allocated; 1412 1413 #if IS_ENABLED(CONFIG_HYPERV) 1414 hpa_t hv_root_tdp; 1415 spinlock_t hv_root_tdp_lock; 1416 #endif 1417 /* 1418 * VM-scope maximum vCPU ID. Used to determine the size of structures 1419 * that increase along with the maximum vCPU ID, in which case, using 1420 * the global KVM_MAX_VCPU_IDS may lead to significant memory waste. 1421 */ 1422 u32 max_vcpu_ids; 1423 1424 bool disable_nx_huge_pages; 1425 1426 /* 1427 * Memory caches used to allocate shadow pages when performing eager 1428 * page splitting. No need for a shadowed_info_cache since eager page 1429 * splitting only allocates direct shadow pages. 1430 * 1431 * Protected by kvm->slots_lock. 1432 */ 1433 struct kvm_mmu_memory_cache split_shadow_page_cache; 1434 struct kvm_mmu_memory_cache split_page_header_cache; 1435 1436 /* 1437 * Memory cache used to allocate pte_list_desc structs while splitting 1438 * huge pages. In the worst case, to split one huge page, 512 1439 * pte_list_desc structs are needed to add each lower level leaf sptep 1440 * to the rmap plus 1 to extend the parent_ptes rmap of the lower level 1441 * page table. 1442 * 1443 * Protected by kvm->slots_lock. 1444 */ 1445 #define SPLIT_DESC_CACHE_MIN_NR_OBJECTS (SPTE_ENT_PER_PAGE + 1) 1446 struct kvm_mmu_memory_cache split_desc_cache; 1447 }; 1448 1449 struct kvm_vm_stat { 1450 struct kvm_vm_stat_generic generic; 1451 u64 mmu_shadow_zapped; 1452 u64 mmu_pte_write; 1453 u64 mmu_pde_zapped; 1454 u64 mmu_flooded; 1455 u64 mmu_recycled; 1456 u64 mmu_cache_miss; 1457 u64 mmu_unsync; 1458 union { 1459 struct { 1460 atomic64_t pages_4k; 1461 atomic64_t pages_2m; 1462 atomic64_t pages_1g; 1463 }; 1464 atomic64_t pages[KVM_NR_PAGE_SIZES]; 1465 }; 1466 u64 nx_lpage_splits; 1467 u64 max_mmu_page_hash_collisions; 1468 u64 max_mmu_rmap_size; 1469 }; 1470 1471 struct kvm_vcpu_stat { 1472 struct kvm_vcpu_stat_generic generic; 1473 u64 pf_taken; 1474 u64 pf_fixed; 1475 u64 pf_emulate; 1476 u64 pf_spurious; 1477 u64 pf_fast; 1478 u64 pf_mmio_spte_created; 1479 u64 pf_guest; 1480 u64 tlb_flush; 1481 u64 invlpg; 1482 1483 u64 exits; 1484 u64 io_exits; 1485 u64 mmio_exits; 1486 u64 signal_exits; 1487 u64 irq_window_exits; 1488 u64 nmi_window_exits; 1489 u64 l1d_flush; 1490 u64 halt_exits; 1491 u64 request_irq_exits; 1492 u64 irq_exits; 1493 u64 host_state_reload; 1494 u64 fpu_reload; 1495 u64 insn_emulation; 1496 u64 insn_emulation_fail; 1497 u64 hypercalls; 1498 u64 irq_injections; 1499 u64 nmi_injections; 1500 u64 req_event; 1501 u64 nested_run; 1502 u64 directed_yield_attempted; 1503 u64 directed_yield_successful; 1504 u64 preemption_reported; 1505 u64 preemption_other; 1506 u64 guest_mode; 1507 u64 notify_window_exits; 1508 }; 1509 1510 struct x86_instruction_info; 1511 1512 struct msr_data { 1513 bool host_initiated; 1514 u32 index; 1515 u64 data; 1516 }; 1517 1518 struct kvm_lapic_irq { 1519 u32 vector; 1520 u16 delivery_mode; 1521 u16 dest_mode; 1522 bool level; 1523 u16 trig_mode; 1524 u32 shorthand; 1525 u32 dest_id; 1526 bool msi_redir_hint; 1527 }; 1528 1529 static inline u16 kvm_lapic_irq_dest_mode(bool dest_mode_logical) 1530 { 1531 return dest_mode_logical ? APIC_DEST_LOGICAL : APIC_DEST_PHYSICAL; 1532 } 1533 1534 struct kvm_x86_ops { 1535 const char *name; 1536 1537 int (*check_processor_compatibility)(void); 1538 1539 int (*hardware_enable)(void); 1540 void (*hardware_disable)(void); 1541 void (*hardware_unsetup)(void); 1542 bool (*has_emulated_msr)(struct kvm *kvm, u32 index); 1543 void (*vcpu_after_set_cpuid)(struct kvm_vcpu *vcpu); 1544 1545 unsigned int vm_size; 1546 int (*vm_init)(struct kvm *kvm); 1547 void (*vm_destroy)(struct kvm *kvm); 1548 1549 /* Create, but do not attach this VCPU */ 1550 int (*vcpu_precreate)(struct kvm *kvm); 1551 int (*vcpu_create)(struct kvm_vcpu *vcpu); 1552 void (*vcpu_free)(struct kvm_vcpu *vcpu); 1553 void (*vcpu_reset)(struct kvm_vcpu *vcpu, bool init_event); 1554 1555 void (*prepare_switch_to_guest)(struct kvm_vcpu *vcpu); 1556 void (*vcpu_load)(struct kvm_vcpu *vcpu, int cpu); 1557 void (*vcpu_put)(struct kvm_vcpu *vcpu); 1558 1559 void (*update_exception_bitmap)(struct kvm_vcpu *vcpu); 1560 int (*get_msr)(struct kvm_vcpu *vcpu, struct msr_data *msr); 1561 int (*set_msr)(struct kvm_vcpu *vcpu, struct msr_data *msr); 1562 u64 (*get_segment_base)(struct kvm_vcpu *vcpu, int seg); 1563 void (*get_segment)(struct kvm_vcpu *vcpu, 1564 struct kvm_segment *var, int seg); 1565 int (*get_cpl)(struct kvm_vcpu *vcpu); 1566 void (*set_segment)(struct kvm_vcpu *vcpu, 1567 struct kvm_segment *var, int seg); 1568 void (*get_cs_db_l_bits)(struct kvm_vcpu *vcpu, int *db, int *l); 1569 bool (*is_valid_cr0)(struct kvm_vcpu *vcpu, unsigned long cr0); 1570 void (*set_cr0)(struct kvm_vcpu *vcpu, unsigned long cr0); 1571 void (*post_set_cr3)(struct kvm_vcpu *vcpu, unsigned long cr3); 1572 bool (*is_valid_cr4)(struct kvm_vcpu *vcpu, unsigned long cr4); 1573 void (*set_cr4)(struct kvm_vcpu *vcpu, unsigned long cr4); 1574 int (*set_efer)(struct kvm_vcpu *vcpu, u64 efer); 1575 void (*get_idt)(struct kvm_vcpu *vcpu, struct desc_ptr *dt); 1576 void (*set_idt)(struct kvm_vcpu *vcpu, struct desc_ptr *dt); 1577 void (*get_gdt)(struct kvm_vcpu *vcpu, struct desc_ptr *dt); 1578 void (*set_gdt)(struct kvm_vcpu *vcpu, struct desc_ptr *dt); 1579 void (*sync_dirty_debug_regs)(struct kvm_vcpu *vcpu); 1580 void (*set_dr7)(struct kvm_vcpu *vcpu, unsigned long value); 1581 void (*cache_reg)(struct kvm_vcpu *vcpu, enum kvm_reg reg); 1582 unsigned long (*get_rflags)(struct kvm_vcpu *vcpu); 1583 void (*set_rflags)(struct kvm_vcpu *vcpu, unsigned long rflags); 1584 bool (*get_if_flag)(struct kvm_vcpu *vcpu); 1585 1586 void (*flush_tlb_all)(struct kvm_vcpu *vcpu); 1587 void (*flush_tlb_current)(struct kvm_vcpu *vcpu); 1588 int (*flush_remote_tlbs)(struct kvm *kvm); 1589 int (*flush_remote_tlbs_range)(struct kvm *kvm, gfn_t gfn, 1590 gfn_t nr_pages); 1591 1592 /* 1593 * Flush any TLB entries associated with the given GVA. 1594 * Does not need to flush GPA->HPA mappings. 1595 * Can potentially get non-canonical addresses through INVLPGs, which 1596 * the implementation may choose to ignore if appropriate. 1597 */ 1598 void (*flush_tlb_gva)(struct kvm_vcpu *vcpu, gva_t addr); 1599 1600 /* 1601 * Flush any TLB entries created by the guest. Like tlb_flush_gva(), 1602 * does not need to flush GPA->HPA mappings. 1603 */ 1604 void (*flush_tlb_guest)(struct kvm_vcpu *vcpu); 1605 1606 int (*vcpu_pre_run)(struct kvm_vcpu *vcpu); 1607 enum exit_fastpath_completion (*vcpu_run)(struct kvm_vcpu *vcpu); 1608 int (*handle_exit)(struct kvm_vcpu *vcpu, 1609 enum exit_fastpath_completion exit_fastpath); 1610 int (*skip_emulated_instruction)(struct kvm_vcpu *vcpu); 1611 void (*update_emulated_instruction)(struct kvm_vcpu *vcpu); 1612 void (*set_interrupt_shadow)(struct kvm_vcpu *vcpu, int mask); 1613 u32 (*get_interrupt_shadow)(struct kvm_vcpu *vcpu); 1614 void (*patch_hypercall)(struct kvm_vcpu *vcpu, 1615 unsigned char *hypercall_addr); 1616 void (*inject_irq)(struct kvm_vcpu *vcpu, bool reinjected); 1617 void (*inject_nmi)(struct kvm_vcpu *vcpu); 1618 void (*inject_exception)(struct kvm_vcpu *vcpu); 1619 void (*cancel_injection)(struct kvm_vcpu *vcpu); 1620 int (*interrupt_allowed)(struct kvm_vcpu *vcpu, bool for_injection); 1621 int (*nmi_allowed)(struct kvm_vcpu *vcpu, bool for_injection); 1622 bool (*get_nmi_mask)(struct kvm_vcpu *vcpu); 1623 void (*set_nmi_mask)(struct kvm_vcpu *vcpu, bool masked); 1624 /* Whether or not a virtual NMI is pending in hardware. */ 1625 bool (*is_vnmi_pending)(struct kvm_vcpu *vcpu); 1626 /* 1627 * Attempt to pend a virtual NMI in harware. Returns %true on success 1628 * to allow using static_call_ret0 as the fallback. 1629 */ 1630 bool (*set_vnmi_pending)(struct kvm_vcpu *vcpu); 1631 void (*enable_nmi_window)(struct kvm_vcpu *vcpu); 1632 void (*enable_irq_window)(struct kvm_vcpu *vcpu); 1633 void (*update_cr8_intercept)(struct kvm_vcpu *vcpu, int tpr, int irr); 1634 bool (*check_apicv_inhibit_reasons)(enum kvm_apicv_inhibit reason); 1635 const unsigned long required_apicv_inhibits; 1636 bool allow_apicv_in_x2apic_without_x2apic_virtualization; 1637 void (*refresh_apicv_exec_ctrl)(struct kvm_vcpu *vcpu); 1638 void (*hwapic_irr_update)(struct kvm_vcpu *vcpu, int max_irr); 1639 void (*hwapic_isr_update)(int isr); 1640 bool (*guest_apic_has_interrupt)(struct kvm_vcpu *vcpu); 1641 void (*load_eoi_exitmap)(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap); 1642 void (*set_virtual_apic_mode)(struct kvm_vcpu *vcpu); 1643 void (*set_apic_access_page_addr)(struct kvm_vcpu *vcpu); 1644 void (*deliver_interrupt)(struct kvm_lapic *apic, int delivery_mode, 1645 int trig_mode, int vector); 1646 int (*sync_pir_to_irr)(struct kvm_vcpu *vcpu); 1647 int (*set_tss_addr)(struct kvm *kvm, unsigned int addr); 1648 int (*set_identity_map_addr)(struct kvm *kvm, u64 ident_addr); 1649 u8 (*get_mt_mask)(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio); 1650 1651 void (*load_mmu_pgd)(struct kvm_vcpu *vcpu, hpa_t root_hpa, 1652 int root_level); 1653 1654 bool (*has_wbinvd_exit)(void); 1655 1656 u64 (*get_l2_tsc_offset)(struct kvm_vcpu *vcpu); 1657 u64 (*get_l2_tsc_multiplier)(struct kvm_vcpu *vcpu); 1658 void (*write_tsc_offset)(struct kvm_vcpu *vcpu, u64 offset); 1659 void (*write_tsc_multiplier)(struct kvm_vcpu *vcpu, u64 multiplier); 1660 1661 /* 1662 * Retrieve somewhat arbitrary exit information. Intended to 1663 * be used only from within tracepoints or error paths. 1664 */ 1665 void (*get_exit_info)(struct kvm_vcpu *vcpu, u32 *reason, 1666 u64 *info1, u64 *info2, 1667 u32 *exit_int_info, u32 *exit_int_info_err_code); 1668 1669 int (*check_intercept)(struct kvm_vcpu *vcpu, 1670 struct x86_instruction_info *info, 1671 enum x86_intercept_stage stage, 1672 struct x86_exception *exception); 1673 void (*handle_exit_irqoff)(struct kvm_vcpu *vcpu); 1674 1675 void (*request_immediate_exit)(struct kvm_vcpu *vcpu); 1676 1677 void (*sched_in)(struct kvm_vcpu *kvm, int cpu); 1678 1679 /* 1680 * Size of the CPU's dirty log buffer, i.e. VMX's PML buffer. A zero 1681 * value indicates CPU dirty logging is unsupported or disabled. 1682 */ 1683 int cpu_dirty_log_size; 1684 void (*update_cpu_dirty_logging)(struct kvm_vcpu *vcpu); 1685 1686 const struct kvm_x86_nested_ops *nested_ops; 1687 1688 void (*vcpu_blocking)(struct kvm_vcpu *vcpu); 1689 void (*vcpu_unblocking)(struct kvm_vcpu *vcpu); 1690 1691 int (*pi_update_irte)(struct kvm *kvm, unsigned int host_irq, 1692 uint32_t guest_irq, bool set); 1693 void (*pi_start_assignment)(struct kvm *kvm); 1694 void (*apicv_post_state_restore)(struct kvm_vcpu *vcpu); 1695 bool (*dy_apicv_has_pending_interrupt)(struct kvm_vcpu *vcpu); 1696 1697 int (*set_hv_timer)(struct kvm_vcpu *vcpu, u64 guest_deadline_tsc, 1698 bool *expired); 1699 void (*cancel_hv_timer)(struct kvm_vcpu *vcpu); 1700 1701 void (*setup_mce)(struct kvm_vcpu *vcpu); 1702 1703 #ifdef CONFIG_KVM_SMM 1704 int (*smi_allowed)(struct kvm_vcpu *vcpu, bool for_injection); 1705 int (*enter_smm)(struct kvm_vcpu *vcpu, union kvm_smram *smram); 1706 int (*leave_smm)(struct kvm_vcpu *vcpu, const union kvm_smram *smram); 1707 void (*enable_smi_window)(struct kvm_vcpu *vcpu); 1708 #endif 1709 1710 int (*mem_enc_ioctl)(struct kvm *kvm, void __user *argp); 1711 int (*mem_enc_register_region)(struct kvm *kvm, struct kvm_enc_region *argp); 1712 int (*mem_enc_unregister_region)(struct kvm *kvm, struct kvm_enc_region *argp); 1713 int (*vm_copy_enc_context_from)(struct kvm *kvm, unsigned int source_fd); 1714 int (*vm_move_enc_context_from)(struct kvm *kvm, unsigned int source_fd); 1715 void (*guest_memory_reclaimed)(struct kvm *kvm); 1716 1717 int (*get_msr_feature)(struct kvm_msr_entry *entry); 1718 1719 bool (*can_emulate_instruction)(struct kvm_vcpu *vcpu, int emul_type, 1720 void *insn, int insn_len); 1721 1722 bool (*apic_init_signal_blocked)(struct kvm_vcpu *vcpu); 1723 int (*enable_l2_tlb_flush)(struct kvm_vcpu *vcpu); 1724 1725 void (*migrate_timers)(struct kvm_vcpu *vcpu); 1726 void (*msr_filter_changed)(struct kvm_vcpu *vcpu); 1727 int (*complete_emulated_msr)(struct kvm_vcpu *vcpu, int err); 1728 1729 void (*vcpu_deliver_sipi_vector)(struct kvm_vcpu *vcpu, u8 vector); 1730 1731 /* 1732 * Returns vCPU specific APICv inhibit reasons 1733 */ 1734 unsigned long (*vcpu_get_apicv_inhibit_reasons)(struct kvm_vcpu *vcpu); 1735 }; 1736 1737 struct kvm_x86_nested_ops { 1738 void (*leave_nested)(struct kvm_vcpu *vcpu); 1739 bool (*is_exception_vmexit)(struct kvm_vcpu *vcpu, u8 vector, 1740 u32 error_code); 1741 int (*check_events)(struct kvm_vcpu *vcpu); 1742 bool (*has_events)(struct kvm_vcpu *vcpu); 1743 void (*triple_fault)(struct kvm_vcpu *vcpu); 1744 int (*get_state)(struct kvm_vcpu *vcpu, 1745 struct kvm_nested_state __user *user_kvm_nested_state, 1746 unsigned user_data_size); 1747 int (*set_state)(struct kvm_vcpu *vcpu, 1748 struct kvm_nested_state __user *user_kvm_nested_state, 1749 struct kvm_nested_state *kvm_state); 1750 bool (*get_nested_state_pages)(struct kvm_vcpu *vcpu); 1751 int (*write_log_dirty)(struct kvm_vcpu *vcpu, gpa_t l2_gpa); 1752 1753 int (*enable_evmcs)(struct kvm_vcpu *vcpu, 1754 uint16_t *vmcs_version); 1755 uint16_t (*get_evmcs_version)(struct kvm_vcpu *vcpu); 1756 void (*hv_inject_synthetic_vmexit_post_tlb_flush)(struct kvm_vcpu *vcpu); 1757 }; 1758 1759 struct kvm_x86_init_ops { 1760 int (*hardware_setup)(void); 1761 unsigned int (*handle_intel_pt_intr)(void); 1762 1763 struct kvm_x86_ops *runtime_ops; 1764 struct kvm_pmu_ops *pmu_ops; 1765 }; 1766 1767 struct kvm_arch_async_pf { 1768 u32 token; 1769 gfn_t gfn; 1770 unsigned long cr3; 1771 bool direct_map; 1772 }; 1773 1774 extern u32 __read_mostly kvm_nr_uret_msrs; 1775 extern u64 __read_mostly host_efer; 1776 extern bool __read_mostly allow_smaller_maxphyaddr; 1777 extern bool __read_mostly enable_apicv; 1778 extern struct kvm_x86_ops kvm_x86_ops; 1779 1780 #define KVM_X86_OP(func) \ 1781 DECLARE_STATIC_CALL(kvm_x86_##func, *(((struct kvm_x86_ops *)0)->func)); 1782 #define KVM_X86_OP_OPTIONAL KVM_X86_OP 1783 #define KVM_X86_OP_OPTIONAL_RET0 KVM_X86_OP 1784 #include <asm/kvm-x86-ops.h> 1785 1786 int kvm_x86_vendor_init(struct kvm_x86_init_ops *ops); 1787 void kvm_x86_vendor_exit(void); 1788 1789 #define __KVM_HAVE_ARCH_VM_ALLOC 1790 static inline struct kvm *kvm_arch_alloc_vm(void) 1791 { 1792 return __vmalloc(kvm_x86_ops.vm_size, GFP_KERNEL_ACCOUNT | __GFP_ZERO); 1793 } 1794 1795 #define __KVM_HAVE_ARCH_VM_FREE 1796 void kvm_arch_free_vm(struct kvm *kvm); 1797 1798 #define __KVM_HAVE_ARCH_FLUSH_REMOTE_TLB 1799 static inline int kvm_arch_flush_remote_tlb(struct kvm *kvm) 1800 { 1801 if (kvm_x86_ops.flush_remote_tlbs && 1802 !static_call(kvm_x86_flush_remote_tlbs)(kvm)) 1803 return 0; 1804 else 1805 return -ENOTSUPP; 1806 } 1807 1808 #define kvm_arch_pmi_in_guest(vcpu) \ 1809 ((vcpu) && (vcpu)->arch.handling_intr_from_guest) 1810 1811 void __init kvm_mmu_x86_module_init(void); 1812 int kvm_mmu_vendor_module_init(void); 1813 void kvm_mmu_vendor_module_exit(void); 1814 1815 void kvm_mmu_destroy(struct kvm_vcpu *vcpu); 1816 int kvm_mmu_create(struct kvm_vcpu *vcpu); 1817 int kvm_mmu_init_vm(struct kvm *kvm); 1818 void kvm_mmu_uninit_vm(struct kvm *kvm); 1819 1820 void kvm_mmu_after_set_cpuid(struct kvm_vcpu *vcpu); 1821 void kvm_mmu_reset_context(struct kvm_vcpu *vcpu); 1822 void kvm_mmu_slot_remove_write_access(struct kvm *kvm, 1823 const struct kvm_memory_slot *memslot, 1824 int start_level); 1825 void kvm_mmu_slot_try_split_huge_pages(struct kvm *kvm, 1826 const struct kvm_memory_slot *memslot, 1827 int target_level); 1828 void kvm_mmu_try_split_huge_pages(struct kvm *kvm, 1829 const struct kvm_memory_slot *memslot, 1830 u64 start, u64 end, 1831 int target_level); 1832 void kvm_mmu_zap_collapsible_sptes(struct kvm *kvm, 1833 const struct kvm_memory_slot *memslot); 1834 void kvm_mmu_slot_leaf_clear_dirty(struct kvm *kvm, 1835 const struct kvm_memory_slot *memslot); 1836 void kvm_mmu_zap_all(struct kvm *kvm); 1837 void kvm_mmu_invalidate_mmio_sptes(struct kvm *kvm, u64 gen); 1838 void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned long kvm_nr_mmu_pages); 1839 1840 int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3); 1841 1842 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa, 1843 const void *val, int bytes); 1844 1845 struct kvm_irq_mask_notifier { 1846 void (*func)(struct kvm_irq_mask_notifier *kimn, bool masked); 1847 int irq; 1848 struct hlist_node link; 1849 }; 1850 1851 void kvm_register_irq_mask_notifier(struct kvm *kvm, int irq, 1852 struct kvm_irq_mask_notifier *kimn); 1853 void kvm_unregister_irq_mask_notifier(struct kvm *kvm, int irq, 1854 struct kvm_irq_mask_notifier *kimn); 1855 void kvm_fire_mask_notifiers(struct kvm *kvm, unsigned irqchip, unsigned pin, 1856 bool mask); 1857 1858 extern bool tdp_enabled; 1859 1860 u64 vcpu_tsc_khz(struct kvm_vcpu *vcpu); 1861 1862 /* 1863 * EMULTYPE_NO_DECODE - Set when re-emulating an instruction (after completing 1864 * userspace I/O) to indicate that the emulation context 1865 * should be reused as is, i.e. skip initialization of 1866 * emulation context, instruction fetch and decode. 1867 * 1868 * EMULTYPE_TRAP_UD - Set when emulating an intercepted #UD from hardware. 1869 * Indicates that only select instructions (tagged with 1870 * EmulateOnUD) should be emulated (to minimize the emulator 1871 * attack surface). See also EMULTYPE_TRAP_UD_FORCED. 1872 * 1873 * EMULTYPE_SKIP - Set when emulating solely to skip an instruction, i.e. to 1874 * decode the instruction length. For use *only* by 1875 * kvm_x86_ops.skip_emulated_instruction() implementations if 1876 * EMULTYPE_COMPLETE_USER_EXIT is not set. 1877 * 1878 * EMULTYPE_ALLOW_RETRY_PF - Set when the emulator should resume the guest to 1879 * retry native execution under certain conditions, 1880 * Can only be set in conjunction with EMULTYPE_PF. 1881 * 1882 * EMULTYPE_TRAP_UD_FORCED - Set when emulating an intercepted #UD that was 1883 * triggered by KVM's magic "force emulation" prefix, 1884 * which is opt in via module param (off by default). 1885 * Bypasses EmulateOnUD restriction despite emulating 1886 * due to an intercepted #UD (see EMULTYPE_TRAP_UD). 1887 * Used to test the full emulator from userspace. 1888 * 1889 * EMULTYPE_VMWARE_GP - Set when emulating an intercepted #GP for VMware 1890 * backdoor emulation, which is opt in via module param. 1891 * VMware backdoor emulation handles select instructions 1892 * and reinjects the #GP for all other cases. 1893 * 1894 * EMULTYPE_PF - Set when emulating MMIO by way of an intercepted #PF, in which 1895 * case the CR2/GPA value pass on the stack is valid. 1896 * 1897 * EMULTYPE_COMPLETE_USER_EXIT - Set when the emulator should update interruptibility 1898 * state and inject single-step #DBs after skipping 1899 * an instruction (after completing userspace I/O). 1900 * 1901 * EMULTYPE_WRITE_PF_TO_SP - Set when emulating an intercepted page fault that 1902 * is attempting to write a gfn that contains one or 1903 * more of the PTEs used to translate the write itself, 1904 * and the owning page table is being shadowed by KVM. 1905 * If emulation of the faulting instruction fails and 1906 * this flag is set, KVM will exit to userspace instead 1907 * of retrying emulation as KVM cannot make forward 1908 * progress. 1909 * 1910 * If emulation fails for a write to guest page tables, 1911 * KVM unprotects (zaps) the shadow page for the target 1912 * gfn and resumes the guest to retry the non-emulatable 1913 * instruction (on hardware). Unprotecting the gfn 1914 * doesn't allow forward progress for a self-changing 1915 * access because doing so also zaps the translation for 1916 * the gfn, i.e. retrying the instruction will hit a 1917 * !PRESENT fault, which results in a new shadow page 1918 * and sends KVM back to square one. 1919 */ 1920 #define EMULTYPE_NO_DECODE (1 << 0) 1921 #define EMULTYPE_TRAP_UD (1 << 1) 1922 #define EMULTYPE_SKIP (1 << 2) 1923 #define EMULTYPE_ALLOW_RETRY_PF (1 << 3) 1924 #define EMULTYPE_TRAP_UD_FORCED (1 << 4) 1925 #define EMULTYPE_VMWARE_GP (1 << 5) 1926 #define EMULTYPE_PF (1 << 6) 1927 #define EMULTYPE_COMPLETE_USER_EXIT (1 << 7) 1928 #define EMULTYPE_WRITE_PF_TO_SP (1 << 8) 1929 1930 int kvm_emulate_instruction(struct kvm_vcpu *vcpu, int emulation_type); 1931 int kvm_emulate_instruction_from_buffer(struct kvm_vcpu *vcpu, 1932 void *insn, int insn_len); 1933 void __kvm_prepare_emulation_failure_exit(struct kvm_vcpu *vcpu, 1934 u64 *data, u8 ndata); 1935 void kvm_prepare_emulation_failure_exit(struct kvm_vcpu *vcpu); 1936 1937 void kvm_enable_efer_bits(u64); 1938 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer); 1939 int __kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data, bool host_initiated); 1940 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data); 1941 int kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data); 1942 int kvm_emulate_rdmsr(struct kvm_vcpu *vcpu); 1943 int kvm_emulate_wrmsr(struct kvm_vcpu *vcpu); 1944 int kvm_emulate_as_nop(struct kvm_vcpu *vcpu); 1945 int kvm_emulate_invd(struct kvm_vcpu *vcpu); 1946 int kvm_emulate_mwait(struct kvm_vcpu *vcpu); 1947 int kvm_handle_invalid_op(struct kvm_vcpu *vcpu); 1948 int kvm_emulate_monitor(struct kvm_vcpu *vcpu); 1949 1950 int kvm_fast_pio(struct kvm_vcpu *vcpu, int size, unsigned short port, int in); 1951 int kvm_emulate_cpuid(struct kvm_vcpu *vcpu); 1952 int kvm_emulate_halt(struct kvm_vcpu *vcpu); 1953 int kvm_emulate_halt_noskip(struct kvm_vcpu *vcpu); 1954 int kvm_emulate_ap_reset_hold(struct kvm_vcpu *vcpu); 1955 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu); 1956 1957 void kvm_get_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg); 1958 void kvm_set_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg); 1959 int kvm_load_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector, int seg); 1960 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector); 1961 1962 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index, 1963 int reason, bool has_error_code, u32 error_code); 1964 1965 void kvm_post_set_cr0(struct kvm_vcpu *vcpu, unsigned long old_cr0, unsigned long cr0); 1966 void kvm_post_set_cr4(struct kvm_vcpu *vcpu, unsigned long old_cr4, unsigned long cr4); 1967 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0); 1968 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3); 1969 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4); 1970 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8); 1971 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val); 1972 void kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val); 1973 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu); 1974 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw); 1975 int kvm_emulate_xsetbv(struct kvm_vcpu *vcpu); 1976 1977 int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr); 1978 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr); 1979 1980 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu); 1981 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags); 1982 int kvm_emulate_rdpmc(struct kvm_vcpu *vcpu); 1983 1984 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr); 1985 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code); 1986 void kvm_queue_exception_p(struct kvm_vcpu *vcpu, unsigned nr, unsigned long payload); 1987 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr); 1988 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code); 1989 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault); 1990 void kvm_inject_emulated_page_fault(struct kvm_vcpu *vcpu, 1991 struct x86_exception *fault); 1992 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl); 1993 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr); 1994 1995 static inline int __kvm_irq_line_state(unsigned long *irq_state, 1996 int irq_source_id, int level) 1997 { 1998 /* Logical OR for level trig interrupt */ 1999 if (level) 2000 __set_bit(irq_source_id, irq_state); 2001 else 2002 __clear_bit(irq_source_id, irq_state); 2003 2004 return !!(*irq_state); 2005 } 2006 2007 int kvm_pic_set_irq(struct kvm_pic *pic, int irq, int irq_source_id, int level); 2008 void kvm_pic_clear_all(struct kvm_pic *pic, int irq_source_id); 2009 2010 void kvm_inject_nmi(struct kvm_vcpu *vcpu); 2011 int kvm_get_nr_pending_nmis(struct kvm_vcpu *vcpu); 2012 2013 void kvm_update_dr7(struct kvm_vcpu *vcpu); 2014 2015 int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn); 2016 void kvm_mmu_free_roots(struct kvm *kvm, struct kvm_mmu *mmu, 2017 ulong roots_to_free); 2018 void kvm_mmu_free_guest_mode_roots(struct kvm *kvm, struct kvm_mmu *mmu); 2019 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva, 2020 struct x86_exception *exception); 2021 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva, 2022 struct x86_exception *exception); 2023 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva, 2024 struct x86_exception *exception); 2025 2026 bool kvm_apicv_activated(struct kvm *kvm); 2027 bool kvm_vcpu_apicv_activated(struct kvm_vcpu *vcpu); 2028 void __kvm_vcpu_update_apicv(struct kvm_vcpu *vcpu); 2029 void __kvm_set_or_clear_apicv_inhibit(struct kvm *kvm, 2030 enum kvm_apicv_inhibit reason, bool set); 2031 void kvm_set_or_clear_apicv_inhibit(struct kvm *kvm, 2032 enum kvm_apicv_inhibit reason, bool set); 2033 2034 static inline void kvm_set_apicv_inhibit(struct kvm *kvm, 2035 enum kvm_apicv_inhibit reason) 2036 { 2037 kvm_set_or_clear_apicv_inhibit(kvm, reason, true); 2038 } 2039 2040 static inline void kvm_clear_apicv_inhibit(struct kvm *kvm, 2041 enum kvm_apicv_inhibit reason) 2042 { 2043 kvm_set_or_clear_apicv_inhibit(kvm, reason, false); 2044 } 2045 2046 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu); 2047 2048 int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, u64 error_code, 2049 void *insn, int insn_len); 2050 void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva); 2051 void kvm_mmu_invalidate_addr(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, 2052 u64 addr, unsigned long roots); 2053 void kvm_mmu_invpcid_gva(struct kvm_vcpu *vcpu, gva_t gva, unsigned long pcid); 2054 void kvm_mmu_new_pgd(struct kvm_vcpu *vcpu, gpa_t new_pgd); 2055 2056 void kvm_configure_mmu(bool enable_tdp, int tdp_forced_root_level, 2057 int tdp_max_root_level, int tdp_huge_page_level); 2058 2059 static inline u16 kvm_read_ldt(void) 2060 { 2061 u16 ldt; 2062 asm("sldt %0" : "=g"(ldt)); 2063 return ldt; 2064 } 2065 2066 static inline void kvm_load_ldt(u16 sel) 2067 { 2068 asm("lldt %0" : : "rm"(sel)); 2069 } 2070 2071 #ifdef CONFIG_X86_64 2072 static inline unsigned long read_msr(unsigned long msr) 2073 { 2074 u64 value; 2075 2076 rdmsrl(msr, value); 2077 return value; 2078 } 2079 #endif 2080 2081 static inline void kvm_inject_gp(struct kvm_vcpu *vcpu, u32 error_code) 2082 { 2083 kvm_queue_exception_e(vcpu, GP_VECTOR, error_code); 2084 } 2085 2086 #define TSS_IOPB_BASE_OFFSET 0x66 2087 #define TSS_BASE_SIZE 0x68 2088 #define TSS_IOPB_SIZE (65536 / 8) 2089 #define TSS_REDIRECTION_SIZE (256 / 8) 2090 #define RMODE_TSS_SIZE \ 2091 (TSS_BASE_SIZE + TSS_REDIRECTION_SIZE + TSS_IOPB_SIZE + 1) 2092 2093 enum { 2094 TASK_SWITCH_CALL = 0, 2095 TASK_SWITCH_IRET = 1, 2096 TASK_SWITCH_JMP = 2, 2097 TASK_SWITCH_GATE = 3, 2098 }; 2099 2100 #define HF_GUEST_MASK (1 << 0) /* VCPU is in guest-mode */ 2101 2102 #ifdef CONFIG_KVM_SMM 2103 #define HF_SMM_MASK (1 << 1) 2104 #define HF_SMM_INSIDE_NMI_MASK (1 << 2) 2105 2106 # define __KVM_VCPU_MULTIPLE_ADDRESS_SPACE 2107 # define KVM_ADDRESS_SPACE_NUM 2 2108 # define kvm_arch_vcpu_memslots_id(vcpu) ((vcpu)->arch.hflags & HF_SMM_MASK ? 1 : 0) 2109 # define kvm_memslots_for_spte_role(kvm, role) __kvm_memslots(kvm, (role).smm) 2110 #else 2111 # define kvm_memslots_for_spte_role(kvm, role) __kvm_memslots(kvm, 0) 2112 #endif 2113 2114 #define KVM_ARCH_WANT_MMU_NOTIFIER 2115 2116 int kvm_cpu_has_injectable_intr(struct kvm_vcpu *v); 2117 int kvm_cpu_has_interrupt(struct kvm_vcpu *vcpu); 2118 int kvm_cpu_has_extint(struct kvm_vcpu *v); 2119 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu); 2120 int kvm_cpu_get_interrupt(struct kvm_vcpu *v); 2121 void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event); 2122 2123 int kvm_pv_send_ipi(struct kvm *kvm, unsigned long ipi_bitmap_low, 2124 unsigned long ipi_bitmap_high, u32 min, 2125 unsigned long icr, int op_64_bit); 2126 2127 int kvm_add_user_return_msr(u32 msr); 2128 int kvm_find_user_return_msr(u32 msr); 2129 int kvm_set_user_return_msr(unsigned index, u64 val, u64 mask); 2130 2131 static inline bool kvm_is_supported_user_return_msr(u32 msr) 2132 { 2133 return kvm_find_user_return_msr(msr) >= 0; 2134 } 2135 2136 u64 kvm_scale_tsc(u64 tsc, u64 ratio); 2137 u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc); 2138 u64 kvm_calc_nested_tsc_offset(u64 l1_offset, u64 l2_offset, u64 l2_multiplier); 2139 u64 kvm_calc_nested_tsc_multiplier(u64 l1_multiplier, u64 l2_multiplier); 2140 2141 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu); 2142 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip); 2143 2144 void kvm_make_scan_ioapic_request(struct kvm *kvm); 2145 void kvm_make_scan_ioapic_request_mask(struct kvm *kvm, 2146 unsigned long *vcpu_bitmap); 2147 2148 bool kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu, 2149 struct kvm_async_pf *work); 2150 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu, 2151 struct kvm_async_pf *work); 2152 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, 2153 struct kvm_async_pf *work); 2154 void kvm_arch_async_page_present_queued(struct kvm_vcpu *vcpu); 2155 bool kvm_arch_can_dequeue_async_page_present(struct kvm_vcpu *vcpu); 2156 extern bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn); 2157 2158 int kvm_skip_emulated_instruction(struct kvm_vcpu *vcpu); 2159 int kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err); 2160 void __kvm_request_immediate_exit(struct kvm_vcpu *vcpu); 2161 2162 void __user *__x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, 2163 u32 size); 2164 bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu); 2165 bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu); 2166 2167 bool kvm_intr_is_single_vcpu(struct kvm *kvm, struct kvm_lapic_irq *irq, 2168 struct kvm_vcpu **dest_vcpu); 2169 2170 void kvm_set_msi_irq(struct kvm *kvm, struct kvm_kernel_irq_routing_entry *e, 2171 struct kvm_lapic_irq *irq); 2172 2173 static inline bool kvm_irq_is_postable(struct kvm_lapic_irq *irq) 2174 { 2175 /* We can only post Fixed and LowPrio IRQs */ 2176 return (irq->delivery_mode == APIC_DM_FIXED || 2177 irq->delivery_mode == APIC_DM_LOWEST); 2178 } 2179 2180 static inline void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu) 2181 { 2182 static_call_cond(kvm_x86_vcpu_blocking)(vcpu); 2183 } 2184 2185 static inline void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu) 2186 { 2187 static_call_cond(kvm_x86_vcpu_unblocking)(vcpu); 2188 } 2189 2190 static inline int kvm_cpu_get_apicid(int mps_cpu) 2191 { 2192 #ifdef CONFIG_X86_LOCAL_APIC 2193 return default_cpu_present_to_apicid(mps_cpu); 2194 #else 2195 WARN_ON_ONCE(1); 2196 return BAD_APICID; 2197 #endif 2198 } 2199 2200 int memslot_rmap_alloc(struct kvm_memory_slot *slot, unsigned long npages); 2201 2202 #define KVM_CLOCK_VALID_FLAGS \ 2203 (KVM_CLOCK_TSC_STABLE | KVM_CLOCK_REALTIME | KVM_CLOCK_HOST_TSC) 2204 2205 #define KVM_X86_VALID_QUIRKS \ 2206 (KVM_X86_QUIRK_LINT0_REENABLED | \ 2207 KVM_X86_QUIRK_CD_NW_CLEARED | \ 2208 KVM_X86_QUIRK_LAPIC_MMIO_HOLE | \ 2209 KVM_X86_QUIRK_OUT_7E_INC_RIP | \ 2210 KVM_X86_QUIRK_MISC_ENABLE_NO_MWAIT | \ 2211 KVM_X86_QUIRK_FIX_HYPERCALL_INSN | \ 2212 KVM_X86_QUIRK_MWAIT_NEVER_UD_FAULTS) 2213 2214 /* 2215 * KVM previously used a u32 field in kvm_run to indicate the hypercall was 2216 * initiated from long mode. KVM now sets bit 0 to indicate long mode, but the 2217 * remaining 31 lower bits must be 0 to preserve ABI. 2218 */ 2219 #define KVM_EXIT_HYPERCALL_MBZ GENMASK_ULL(31, 1) 2220 2221 #endif /* _ASM_X86_KVM_HOST_H */ 2222