xref: /openbmc/linux/arch/x86/include/asm/fpu/types.h (revision d3597236)
1 /*
2  * FPU data structures:
3  */
4 #ifndef _ASM_X86_FPU_H
5 #define _ASM_X86_FPU_H
6 
7 /*
8  * The legacy x87 FPU state format, as saved by FSAVE and
9  * restored by the FRSTOR instructions:
10  */
11 struct fregs_state {
12 	u32			cwd;	/* FPU Control Word		*/
13 	u32			swd;	/* FPU Status Word		*/
14 	u32			twd;	/* FPU Tag Word			*/
15 	u32			fip;	/* FPU IP Offset		*/
16 	u32			fcs;	/* FPU IP Selector		*/
17 	u32			foo;	/* FPU Operand Pointer Offset	*/
18 	u32			fos;	/* FPU Operand Pointer Selector	*/
19 
20 	/* 8*10 bytes for each FP-reg = 80 bytes:			*/
21 	u32			st_space[20];
22 
23 	/* Software status information [not touched by FSAVE]:		*/
24 	u32			status;
25 };
26 
27 /*
28  * The legacy fx SSE/MMX FPU state format, as saved by FXSAVE and
29  * restored by the FXRSTOR instructions. It's similar to the FSAVE
30  * format, but differs in some areas, plus has extensions at
31  * the end for the XMM registers.
32  */
33 struct fxregs_state {
34 	u16			cwd; /* Control Word			*/
35 	u16			swd; /* Status Word			*/
36 	u16			twd; /* Tag Word			*/
37 	u16			fop; /* Last Instruction Opcode		*/
38 	union {
39 		struct {
40 			u64	rip; /* Instruction Pointer		*/
41 			u64	rdp; /* Data Pointer			*/
42 		};
43 		struct {
44 			u32	fip; /* FPU IP Offset			*/
45 			u32	fcs; /* FPU IP Selector			*/
46 			u32	foo; /* FPU Operand Offset		*/
47 			u32	fos; /* FPU Operand Selector		*/
48 		};
49 	};
50 	u32			mxcsr;		/* MXCSR Register State */
51 	u32			mxcsr_mask;	/* MXCSR Mask		*/
52 
53 	/* 8*16 bytes for each FP-reg = 128 bytes:			*/
54 	u32			st_space[32];
55 
56 	/* 16*16 bytes for each XMM-reg = 256 bytes:			*/
57 	u32			xmm_space[64];
58 
59 	u32			padding[12];
60 
61 	union {
62 		u32		padding1[12];
63 		u32		sw_reserved[12];
64 	};
65 
66 } __attribute__((aligned(16)));
67 
68 /* Default value for fxregs_state.mxcsr: */
69 #define MXCSR_DEFAULT		0x1f80
70 
71 /*
72  * Software based FPU emulation state. This is arbitrary really,
73  * it matches the x87 format to make it easier to understand:
74  */
75 struct swregs_state {
76 	u32			cwd;
77 	u32			swd;
78 	u32			twd;
79 	u32			fip;
80 	u32			fcs;
81 	u32			foo;
82 	u32			fos;
83 	/* 8*10 bytes for each FP-reg = 80 bytes: */
84 	u32			st_space[20];
85 	u8			ftop;
86 	u8			changed;
87 	u8			lookahead;
88 	u8			no_update;
89 	u8			rm;
90 	u8			alimit;
91 	struct math_emu_info	*info;
92 	u32			entry_eip;
93 };
94 
95 /*
96  * List of XSAVE features Linux knows about:
97  */
98 enum xfeature_bit {
99 	XSTATE_BIT_FP,
100 	XSTATE_BIT_SSE,
101 	XSTATE_BIT_YMM,
102 	XSTATE_BIT_BNDREGS,
103 	XSTATE_BIT_BNDCSR,
104 	XSTATE_BIT_OPMASK,
105 	XSTATE_BIT_ZMM_Hi256,
106 	XSTATE_BIT_Hi16_ZMM,
107 
108 	XFEATURES_NR_MAX,
109 };
110 
111 #define XSTATE_FP		(1 << XSTATE_BIT_FP)
112 #define XSTATE_SSE		(1 << XSTATE_BIT_SSE)
113 #define XSTATE_YMM		(1 << XSTATE_BIT_YMM)
114 #define XSTATE_BNDREGS		(1 << XSTATE_BIT_BNDREGS)
115 #define XSTATE_BNDCSR		(1 << XSTATE_BIT_BNDCSR)
116 #define XSTATE_OPMASK		(1 << XSTATE_BIT_OPMASK)
117 #define XSTATE_ZMM_Hi256	(1 << XSTATE_BIT_ZMM_Hi256)
118 #define XSTATE_Hi16_ZMM		(1 << XSTATE_BIT_Hi16_ZMM)
119 
120 #define XSTATE_FPSSE		(XSTATE_FP | XSTATE_SSE)
121 #define XSTATE_AVX512		(XSTATE_OPMASK | XSTATE_ZMM_Hi256 | XSTATE_Hi16_ZMM)
122 
123 /*
124  * There are 16x 256-bit AVX registers named YMM0-YMM15.
125  * The low 128 bits are aliased to the 16 SSE registers (XMM0-XMM15)
126  * and are stored in 'struct fxregs_state::xmm_space[]'.
127  *
128  * The high 128 bits are stored here:
129  *    16x 128 bits == 256 bytes.
130  */
131 struct ymmh_struct {
132 	u8				ymmh_space[256];
133 };
134 
135 /* We don't support LWP yet: */
136 struct lwp_struct {
137 	u8				reserved[128];
138 };
139 
140 /* Intel MPX support: */
141 struct bndreg {
142 	u64				lower_bound;
143 	u64				upper_bound;
144 } __packed;
145 
146 struct bndcsr {
147 	u64				bndcfgu;
148 	u64				bndstatus;
149 } __packed;
150 
151 struct mpx_struct {
152 	struct bndreg			bndreg[4];
153 	struct bndcsr			bndcsr;
154 };
155 
156 struct xstate_header {
157 	u64				xfeatures;
158 	u64				xcomp_bv;
159 	u64				reserved[6];
160 } __attribute__((packed));
161 
162 /* New processor state extensions should be added here: */
163 #define XSTATE_RESERVE			(sizeof(struct ymmh_struct) + \
164 					 sizeof(struct lwp_struct)  + \
165 					 sizeof(struct mpx_struct)  )
166 /*
167  * This is our most modern FPU state format, as saved by the XSAVE
168  * and restored by the XRSTOR instructions.
169  *
170  * It consists of a legacy fxregs portion, an xstate header and
171  * subsequent fixed size areas as defined by the xstate header.
172  * Not all CPUs support all the extensions.
173  */
174 struct xregs_state {
175 	struct fxregs_state		i387;
176 	struct xstate_header		header;
177 	u8				__reserved[XSTATE_RESERVE];
178 } __attribute__ ((packed, aligned (64)));
179 
180 /*
181  * This is a union of all the possible FPU state formats
182  * put together, so that we can pick the right one runtime.
183  *
184  * The size of the structure is determined by the largest
185  * member - which is the xsave area:
186  */
187 union fpregs_state {
188 	struct fregs_state		fsave;
189 	struct fxregs_state		fxsave;
190 	struct swregs_state		soft;
191 	struct xregs_state		xsave;
192 };
193 
194 /*
195  * Highest level per task FPU state data structure that
196  * contains the FPU register state plus various FPU
197  * state fields:
198  */
199 struct fpu {
200 	/*
201 	 * @state:
202 	 *
203 	 * In-memory copy of all FPU registers that we save/restore
204 	 * over context switches. If the task is using the FPU then
205 	 * the registers in the FPU are more recent than this state
206 	 * copy. If the task context-switches away then they get
207 	 * saved here and represent the FPU state.
208 	 *
209 	 * After context switches there may be a (short) time period
210 	 * during which the in-FPU hardware registers are unchanged
211 	 * and still perfectly match this state, if the tasks
212 	 * scheduled afterwards are not using the FPU.
213 	 *
214 	 * This is the 'lazy restore' window of optimization, which
215 	 * we track though 'fpu_fpregs_owner_ctx' and 'fpu->last_cpu'.
216 	 *
217 	 * We detect whether a subsequent task uses the FPU via setting
218 	 * CR0::TS to 1, which causes any FPU use to raise a #NM fault.
219 	 *
220 	 * During this window, if the task gets scheduled again, we
221 	 * might be able to skip having to do a restore from this
222 	 * memory buffer to the hardware registers - at the cost of
223 	 * incurring the overhead of #NM fault traps.
224 	 *
225 	 * Note that on modern CPUs that support the XSAVEOPT (or other
226 	 * optimized XSAVE instructions), we don't use #NM traps anymore,
227 	 * as the hardware can track whether FPU registers need saving
228 	 * or not. On such CPUs we activate the non-lazy ('eagerfpu')
229 	 * logic, which unconditionally saves/restores all FPU state
230 	 * across context switches. (if FPU state exists.)
231 	 */
232 	union fpregs_state		state;
233 
234 	/*
235 	 * @last_cpu:
236 	 *
237 	 * Records the last CPU on which this context was loaded into
238 	 * FPU registers. (In the lazy-restore case we might be
239 	 * able to reuse FPU registers across multiple context switches
240 	 * this way, if no intermediate task used the FPU.)
241 	 *
242 	 * A value of -1 is used to indicate that the FPU state in context
243 	 * memory is newer than the FPU state in registers, and that the
244 	 * FPU state should be reloaded next time the task is run.
245 	 */
246 	unsigned int			last_cpu;
247 
248 	/*
249 	 * @fpstate_active:
250 	 *
251 	 * This flag indicates whether this context is active: if the task
252 	 * is not running then we can restore from this context, if the task
253 	 * is running then we should save into this context.
254 	 */
255 	unsigned char			fpstate_active;
256 
257 	/*
258 	 * @fpregs_active:
259 	 *
260 	 * This flag determines whether a given context is actively
261 	 * loaded into the FPU's registers and that those registers
262 	 * represent the task's current FPU state.
263 	 *
264 	 * Note the interaction with fpstate_active:
265 	 *
266 	 *   # task does not use the FPU:
267 	 *   fpstate_active == 0
268 	 *
269 	 *   # task uses the FPU and regs are active:
270 	 *   fpstate_active == 1 && fpregs_active == 1
271 	 *
272 	 *   # the regs are inactive but still match fpstate:
273 	 *   fpstate_active == 1 && fpregs_active == 0 && fpregs_owner == fpu
274 	 *
275 	 * The third state is what we use for the lazy restore optimization
276 	 * on lazy-switching CPUs.
277 	 */
278 	unsigned char			fpregs_active;
279 
280 	/*
281 	 * @counter:
282 	 *
283 	 * This counter contains the number of consecutive context switches
284 	 * during which the FPU stays used. If this is over a threshold, the
285 	 * lazy FPU restore logic becomes eager, to save the trap overhead.
286 	 * This is an unsigned char so that after 256 iterations the counter
287 	 * wraps and the context switch behavior turns lazy again; this is to
288 	 * deal with bursty apps that only use the FPU for a short time:
289 	 */
290 	unsigned char			counter;
291 };
292 
293 #endif /* _ASM_X86_FPU_H */
294