xref: /openbmc/linux/arch/x86/include/asm/fpu/api.h (revision aa0dc6a7)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3  * Copyright (C) 1994 Linus Torvalds
4  *
5  * Pentium III FXSR, SSE support
6  * General FPU state handling cleanups
7  *	Gareth Hughes <gareth@valinux.com>, May 2000
8  * x86-64 work by Andi Kleen 2002
9  */
10 
11 #ifndef _ASM_X86_FPU_API_H
12 #define _ASM_X86_FPU_API_H
13 #include <linux/bottom_half.h>
14 
15 /*
16  * Use kernel_fpu_begin/end() if you intend to use FPU in kernel context. It
17  * disables preemption so be careful if you intend to use it for long periods
18  * of time.
19  * If you intend to use the FPU in irq/softirq you need to check first with
20  * irq_fpu_usable() if it is possible.
21  */
22 
23 /* Kernel FPU states to initialize in kernel_fpu_begin_mask() */
24 #define KFPU_387	_BITUL(0)	/* 387 state will be initialized */
25 #define KFPU_MXCSR	_BITUL(1)	/* MXCSR will be initialized */
26 
27 extern void kernel_fpu_begin_mask(unsigned int kfpu_mask);
28 extern void kernel_fpu_end(void);
29 extern bool irq_fpu_usable(void);
30 extern void fpregs_mark_activate(void);
31 
32 /* Code that is unaware of kernel_fpu_begin_mask() can use this */
33 static inline void kernel_fpu_begin(void)
34 {
35 #ifdef CONFIG_X86_64
36 	/*
37 	 * Any 64-bit code that uses 387 instructions must explicitly request
38 	 * KFPU_387.
39 	 */
40 	kernel_fpu_begin_mask(KFPU_MXCSR);
41 #else
42 	/*
43 	 * 32-bit kernel code may use 387 operations as well as SSE2, etc,
44 	 * as long as it checks that the CPU has the required capability.
45 	 */
46 	kernel_fpu_begin_mask(KFPU_387 | KFPU_MXCSR);
47 #endif
48 }
49 
50 /*
51  * Use fpregs_lock() while editing CPU's FPU registers or fpu->state.
52  * A context switch will (and softirq might) save CPU's FPU registers to
53  * fpu->state and set TIF_NEED_FPU_LOAD leaving CPU's FPU registers in
54  * a random state.
55  *
56  * local_bh_disable() protects against both preemption and soft interrupts
57  * on !RT kernels.
58  *
59  * On RT kernels local_bh_disable() is not sufficient because it only
60  * serializes soft interrupt related sections via a local lock, but stays
61  * preemptible. Disabling preemption is the right choice here as bottom
62  * half processing is always in thread context on RT kernels so it
63  * implicitly prevents bottom half processing as well.
64  *
65  * Disabling preemption also serializes against kernel_fpu_begin().
66  */
67 static inline void fpregs_lock(void)
68 {
69 	if (!IS_ENABLED(CONFIG_PREEMPT_RT))
70 		local_bh_disable();
71 	else
72 		preempt_disable();
73 }
74 
75 static inline void fpregs_unlock(void)
76 {
77 	if (!IS_ENABLED(CONFIG_PREEMPT_RT))
78 		local_bh_enable();
79 	else
80 		preempt_enable();
81 }
82 
83 #ifdef CONFIG_X86_DEBUG_FPU
84 extern void fpregs_assert_state_consistent(void);
85 #else
86 static inline void fpregs_assert_state_consistent(void) { }
87 #endif
88 
89 /*
90  * Load the task FPU state before returning to userspace.
91  */
92 extern void switch_fpu_return(void);
93 
94 /*
95  * Query the presence of one or more xfeatures. Works on any legacy CPU as well.
96  *
97  * If 'feature_name' is set then put a human-readable description of
98  * the feature there as well - this can be used to print error (or success)
99  * messages.
100  */
101 extern int cpu_has_xfeatures(u64 xfeatures_mask, const char **feature_name);
102 
103 /*
104  * Tasks that are not using SVA have mm->pasid set to zero to note that they
105  * will not have the valid bit set in MSR_IA32_PASID while they are running.
106  */
107 #define PASID_DISABLED	0
108 
109 static inline void update_pasid(void) { }
110 
111 #endif /* _ASM_X86_FPU_API_H */
112