1 /* 2 * Architecture specific parts of the Floppy driver 3 * 4 * This file is subject to the terms and conditions of the GNU General Public 5 * License. See the file "COPYING" in the main directory of this archive 6 * for more details. 7 * 8 * Copyright (C) 1995 9 */ 10 #ifndef _ASM_X86_FLOPPY_H 11 #define _ASM_X86_FLOPPY_H 12 13 #include <linux/vmalloc.h> 14 15 /* 16 * The DMA channel used by the floppy controller cannot access data at 17 * addresses >= 16MB 18 * 19 * Went back to the 1MB limit, as some people had problems with the floppy 20 * driver otherwise. It doesn't matter much for performance anyway, as most 21 * floppy accesses go through the track buffer. 22 */ 23 #define _CROSS_64KB(a, s, vdma) \ 24 (!(vdma) && \ 25 ((unsigned long)(a)/K_64 != ((unsigned long)(a) + (s) - 1) / K_64)) 26 27 #define CROSS_64KB(a, s) _CROSS_64KB(a, s, use_virtual_dma & 1) 28 29 30 #define SW fd_routine[use_virtual_dma & 1] 31 #define CSW fd_routine[can_use_virtual_dma & 1] 32 33 34 #define fd_inb(port) inb_p(port) 35 #define fd_outb(value, port) outb_p(value, port) 36 37 #define fd_request_dma() CSW._request_dma(FLOPPY_DMA, "floppy") 38 #define fd_free_dma() CSW._free_dma(FLOPPY_DMA) 39 #define fd_enable_irq() enable_irq(FLOPPY_IRQ) 40 #define fd_disable_irq() disable_irq(FLOPPY_IRQ) 41 #define fd_free_irq() free_irq(FLOPPY_IRQ, NULL) 42 #define fd_get_dma_residue() SW._get_dma_residue(FLOPPY_DMA) 43 #define fd_dma_mem_alloc(size) SW._dma_mem_alloc(size) 44 #define fd_dma_setup(addr, size, mode, io) SW._dma_setup(addr, size, mode, io) 45 46 #define FLOPPY_CAN_FALLBACK_ON_NODMA 47 48 static int virtual_dma_count; 49 static int virtual_dma_residue; 50 static char *virtual_dma_addr; 51 static int virtual_dma_mode; 52 static int doing_pdma; 53 54 static irqreturn_t floppy_hardint(int irq, void *dev_id) 55 { 56 unsigned char st; 57 58 #undef TRACE_FLPY_INT 59 60 #ifdef TRACE_FLPY_INT 61 static int calls; 62 static int bytes; 63 static int dma_wait; 64 #endif 65 if (!doing_pdma) 66 return floppy_interrupt(irq, dev_id); 67 68 #ifdef TRACE_FLPY_INT 69 if (!calls) 70 bytes = virtual_dma_count; 71 #endif 72 73 { 74 int lcount; 75 char *lptr; 76 77 st = 1; 78 for (lcount = virtual_dma_count, lptr = virtual_dma_addr; 79 lcount; lcount--, lptr++) { 80 st = inb(virtual_dma_port + 4) & 0xa0; 81 if (st != 0xa0) 82 break; 83 if (virtual_dma_mode) 84 outb_p(*lptr, virtual_dma_port + 5); 85 else 86 *lptr = inb_p(virtual_dma_port + 5); 87 } 88 virtual_dma_count = lcount; 89 virtual_dma_addr = lptr; 90 st = inb(virtual_dma_port + 4); 91 } 92 93 #ifdef TRACE_FLPY_INT 94 calls++; 95 #endif 96 if (st == 0x20) 97 return IRQ_HANDLED; 98 if (!(st & 0x20)) { 99 virtual_dma_residue += virtual_dma_count; 100 virtual_dma_count = 0; 101 #ifdef TRACE_FLPY_INT 102 printk(KERN_DEBUG "count=%x, residue=%x calls=%d bytes=%d dma_wait=%d\n", 103 virtual_dma_count, virtual_dma_residue, calls, bytes, 104 dma_wait); 105 calls = 0; 106 dma_wait = 0; 107 #endif 108 doing_pdma = 0; 109 floppy_interrupt(irq, dev_id); 110 return IRQ_HANDLED; 111 } 112 #ifdef TRACE_FLPY_INT 113 if (!virtual_dma_count) 114 dma_wait++; 115 #endif 116 return IRQ_HANDLED; 117 } 118 119 static void fd_disable_dma(void) 120 { 121 if (!(can_use_virtual_dma & 1)) 122 disable_dma(FLOPPY_DMA); 123 doing_pdma = 0; 124 virtual_dma_residue += virtual_dma_count; 125 virtual_dma_count = 0; 126 } 127 128 static int vdma_request_dma(unsigned int dmanr, const char *device_id) 129 { 130 return 0; 131 } 132 133 static void vdma_nop(unsigned int dummy) 134 { 135 } 136 137 138 static int vdma_get_dma_residue(unsigned int dummy) 139 { 140 return virtual_dma_count + virtual_dma_residue; 141 } 142 143 144 static int fd_request_irq(void) 145 { 146 if (can_use_virtual_dma) 147 return request_irq(FLOPPY_IRQ, floppy_hardint, 148 0, "floppy", NULL); 149 else 150 return request_irq(FLOPPY_IRQ, floppy_interrupt, 151 0, "floppy", NULL); 152 } 153 154 static unsigned long dma_mem_alloc(unsigned long size) 155 { 156 return __get_dma_pages(GFP_KERNEL|__GFP_NORETRY, get_order(size)); 157 } 158 159 160 static unsigned long vdma_mem_alloc(unsigned long size) 161 { 162 return (unsigned long)vmalloc(size); 163 164 } 165 166 #define nodma_mem_alloc(size) vdma_mem_alloc(size) 167 168 static void _fd_dma_mem_free(unsigned long addr, unsigned long size) 169 { 170 if ((unsigned long)addr >= (unsigned long)high_memory) 171 vfree((void *)addr); 172 else 173 free_pages(addr, get_order(size)); 174 } 175 176 #define fd_dma_mem_free(addr, size) _fd_dma_mem_free(addr, size) 177 178 static void _fd_chose_dma_mode(char *addr, unsigned long size) 179 { 180 if (can_use_virtual_dma == 2) { 181 if ((unsigned long)addr >= (unsigned long)high_memory || 182 isa_virt_to_bus(addr) >= 0x1000000 || 183 _CROSS_64KB(addr, size, 0)) 184 use_virtual_dma = 1; 185 else 186 use_virtual_dma = 0; 187 } else { 188 use_virtual_dma = can_use_virtual_dma & 1; 189 } 190 } 191 192 #define fd_chose_dma_mode(addr, size) _fd_chose_dma_mode(addr, size) 193 194 195 static int vdma_dma_setup(char *addr, unsigned long size, int mode, int io) 196 { 197 doing_pdma = 1; 198 virtual_dma_port = io; 199 virtual_dma_mode = (mode == DMA_MODE_WRITE); 200 virtual_dma_addr = addr; 201 virtual_dma_count = size; 202 virtual_dma_residue = 0; 203 return 0; 204 } 205 206 static int hard_dma_setup(char *addr, unsigned long size, int mode, int io) 207 { 208 #ifdef FLOPPY_SANITY_CHECK 209 if (CROSS_64KB(addr, size)) { 210 printk("DMA crossing 64-K boundary %p-%p\n", addr, addr+size); 211 return -1; 212 } 213 #endif 214 /* actual, physical DMA */ 215 doing_pdma = 0; 216 clear_dma_ff(FLOPPY_DMA); 217 set_dma_mode(FLOPPY_DMA, mode); 218 set_dma_addr(FLOPPY_DMA, isa_virt_to_bus(addr)); 219 set_dma_count(FLOPPY_DMA, size); 220 enable_dma(FLOPPY_DMA); 221 return 0; 222 } 223 224 static struct fd_routine_l { 225 int (*_request_dma)(unsigned int dmanr, const char *device_id); 226 void (*_free_dma)(unsigned int dmanr); 227 int (*_get_dma_residue)(unsigned int dummy); 228 unsigned long (*_dma_mem_alloc)(unsigned long size); 229 int (*_dma_setup)(char *addr, unsigned long size, int mode, int io); 230 } fd_routine[] = { 231 { 232 ._request_dma = request_dma, 233 ._free_dma = free_dma, 234 ._get_dma_residue = get_dma_residue, 235 ._dma_mem_alloc = dma_mem_alloc, 236 ._dma_setup = hard_dma_setup 237 }, 238 { 239 ._request_dma = vdma_request_dma, 240 ._free_dma = vdma_nop, 241 ._get_dma_residue = vdma_get_dma_residue, 242 ._dma_mem_alloc = vdma_mem_alloc, 243 ._dma_setup = vdma_dma_setup 244 } 245 }; 246 247 248 static int FDC1 = 0x3f0; 249 static int FDC2 = -1; 250 251 /* 252 * Floppy types are stored in the rtc's CMOS RAM and so rtc_lock 253 * is needed to prevent corrupted CMOS RAM in case "insmod floppy" 254 * coincides with another rtc CMOS user. Paul G. 255 */ 256 #define FLOPPY0_TYPE \ 257 ({ \ 258 unsigned long flags; \ 259 unsigned char val; \ 260 spin_lock_irqsave(&rtc_lock, flags); \ 261 val = (CMOS_READ(0x10) >> 4) & 15; \ 262 spin_unlock_irqrestore(&rtc_lock, flags); \ 263 val; \ 264 }) 265 266 #define FLOPPY1_TYPE \ 267 ({ \ 268 unsigned long flags; \ 269 unsigned char val; \ 270 spin_lock_irqsave(&rtc_lock, flags); \ 271 val = CMOS_READ(0x10) & 15; \ 272 spin_unlock_irqrestore(&rtc_lock, flags); \ 273 val; \ 274 }) 275 276 #define N_FDC 2 277 #define N_DRIVE 8 278 279 #define EXTRA_FLOPPY_PARAMS 280 281 #endif /* _ASM_X86_FLOPPY_H */ 282