1 /* SPDX-License-Identifier: GPL-2.0 */ 2 #ifndef _ASM_X86_ELF_H 3 #define _ASM_X86_ELF_H 4 5 /* 6 * ELF register definitions.. 7 */ 8 #include <linux/thread_info.h> 9 10 #include <asm/ptrace.h> 11 #include <asm/user.h> 12 #include <asm/auxvec.h> 13 #include <asm/fsgsbase.h> 14 15 typedef unsigned long elf_greg_t; 16 17 #define ELF_NGREG (sizeof(struct user_regs_struct) / sizeof(elf_greg_t)) 18 typedef elf_greg_t elf_gregset_t[ELF_NGREG]; 19 20 typedef struct user_i387_struct elf_fpregset_t; 21 22 #ifdef __i386__ 23 24 #define R_386_NONE 0 25 #define R_386_32 1 26 #define R_386_PC32 2 27 #define R_386_GOT32 3 28 #define R_386_PLT32 4 29 #define R_386_COPY 5 30 #define R_386_GLOB_DAT 6 31 #define R_386_JMP_SLOT 7 32 #define R_386_RELATIVE 8 33 #define R_386_GOTOFF 9 34 #define R_386_GOTPC 10 35 #define R_386_NUM 11 36 37 /* 38 * These are used to set parameters in the core dumps. 39 */ 40 #define ELF_CLASS ELFCLASS32 41 #define ELF_DATA ELFDATA2LSB 42 #define ELF_ARCH EM_386 43 44 #else 45 46 /* x86-64 relocation types */ 47 #define R_X86_64_NONE 0 /* No reloc */ 48 #define R_X86_64_64 1 /* Direct 64 bit */ 49 #define R_X86_64_PC32 2 /* PC relative 32 bit signed */ 50 #define R_X86_64_GOT32 3 /* 32 bit GOT entry */ 51 #define R_X86_64_PLT32 4 /* 32 bit PLT address */ 52 #define R_X86_64_COPY 5 /* Copy symbol at runtime */ 53 #define R_X86_64_GLOB_DAT 6 /* Create GOT entry */ 54 #define R_X86_64_JUMP_SLOT 7 /* Create PLT entry */ 55 #define R_X86_64_RELATIVE 8 /* Adjust by program base */ 56 #define R_X86_64_GOTPCREL 9 /* 32 bit signed pc relative 57 offset to GOT */ 58 #define R_X86_64_32 10 /* Direct 32 bit zero extended */ 59 #define R_X86_64_32S 11 /* Direct 32 bit sign extended */ 60 #define R_X86_64_16 12 /* Direct 16 bit zero extended */ 61 #define R_X86_64_PC16 13 /* 16 bit sign extended pc relative */ 62 #define R_X86_64_8 14 /* Direct 8 bit sign extended */ 63 #define R_X86_64_PC8 15 /* 8 bit sign extended pc relative */ 64 #define R_X86_64_PC64 24 /* Place relative 64-bit signed */ 65 66 /* 67 * These are used to set parameters in the core dumps. 68 */ 69 #define ELF_CLASS ELFCLASS64 70 #define ELF_DATA ELFDATA2LSB 71 #define ELF_ARCH EM_X86_64 72 73 #endif 74 75 #include <asm/vdso.h> 76 77 #ifdef CONFIG_X86_64 78 extern unsigned int vdso64_enabled; 79 #endif 80 #if defined(CONFIG_X86_32) || defined(CONFIG_IA32_EMULATION) 81 extern unsigned int vdso32_enabled; 82 #endif 83 84 /* 85 * This is used to ensure we don't load something for the wrong architecture. 86 */ 87 #define elf_check_arch_ia32(x) \ 88 (((x)->e_machine == EM_386) || ((x)->e_machine == EM_486)) 89 90 #include <asm/processor.h> 91 92 #ifdef CONFIG_X86_32 93 #include <asm/desc.h> 94 95 #define elf_check_arch(x) elf_check_arch_ia32(x) 96 97 /* SVR4/i386 ABI (pages 3-31, 3-32) says that when the program starts %edx 98 contains a pointer to a function which might be registered using `atexit'. 99 This provides a mean for the dynamic linker to call DT_FINI functions for 100 shared libraries that have been loaded before the code runs. 101 102 A value of 0 tells we have no such handler. 103 104 We might as well make sure everything else is cleared too (except for %esp), 105 just to make things more deterministic. 106 */ 107 #define ELF_PLAT_INIT(_r, load_addr) \ 108 do { \ 109 _r->bx = 0; _r->cx = 0; _r->dx = 0; \ 110 _r->si = 0; _r->di = 0; _r->bp = 0; \ 111 _r->ax = 0; \ 112 } while (0) 113 114 /* 115 * regs is struct pt_regs, pr_reg is elf_gregset_t (which is 116 * now struct_user_regs, they are different) 117 */ 118 119 #define ELF_CORE_COPY_REGS_COMMON(pr_reg, regs) \ 120 do { \ 121 pr_reg[0] = regs->bx; \ 122 pr_reg[1] = regs->cx; \ 123 pr_reg[2] = regs->dx; \ 124 pr_reg[3] = regs->si; \ 125 pr_reg[4] = regs->di; \ 126 pr_reg[5] = regs->bp; \ 127 pr_reg[6] = regs->ax; \ 128 pr_reg[7] = regs->ds; \ 129 pr_reg[8] = regs->es; \ 130 pr_reg[9] = regs->fs; \ 131 pr_reg[11] = regs->orig_ax; \ 132 pr_reg[12] = regs->ip; \ 133 pr_reg[13] = regs->cs; \ 134 pr_reg[14] = regs->flags; \ 135 pr_reg[15] = regs->sp; \ 136 pr_reg[16] = regs->ss; \ 137 } while (0); 138 139 #define ELF_CORE_COPY_REGS(pr_reg, regs) \ 140 do { \ 141 ELF_CORE_COPY_REGS_COMMON(pr_reg, regs);\ 142 pr_reg[10] = get_user_gs(regs); \ 143 } while (0); 144 145 #define ELF_CORE_COPY_KERNEL_REGS(pr_reg, regs) \ 146 do { \ 147 ELF_CORE_COPY_REGS_COMMON(pr_reg, regs);\ 148 savesegment(gs, pr_reg[10]); \ 149 } while (0); 150 151 #define ELF_PLATFORM (utsname()->machine) 152 #define set_personality_64bit() do { } while (0) 153 154 #else /* CONFIG_X86_32 */ 155 156 /* 157 * This is used to ensure we don't load something for the wrong architecture. 158 */ 159 #define elf_check_arch(x) \ 160 ((x)->e_machine == EM_X86_64) 161 162 #define compat_elf_check_arch(x) \ 163 (elf_check_arch_ia32(x) || \ 164 (IS_ENABLED(CONFIG_X86_X32_ABI) && (x)->e_machine == EM_X86_64)) 165 166 #if __USER32_DS != __USER_DS 167 # error "The following code assumes __USER32_DS == __USER_DS" 168 #endif 169 170 static inline void elf_common_init(struct thread_struct *t, 171 struct pt_regs *regs, const u16 ds) 172 { 173 /* ax gets execve's return value. */ 174 /*regs->ax = */ regs->bx = regs->cx = regs->dx = 0; 175 regs->si = regs->di = regs->bp = 0; 176 regs->r8 = regs->r9 = regs->r10 = regs->r11 = 0; 177 regs->r12 = regs->r13 = regs->r14 = regs->r15 = 0; 178 t->fsbase = t->gsbase = 0; 179 t->fsindex = t->gsindex = 0; 180 t->ds = t->es = ds; 181 } 182 183 #define ELF_PLAT_INIT(_r, load_addr) \ 184 elf_common_init(¤t->thread, _r, 0) 185 186 #define COMPAT_ELF_PLAT_INIT(regs, load_addr) \ 187 elf_common_init(¤t->thread, regs, __USER_DS) 188 189 void compat_start_thread(struct pt_regs *regs, u32 new_ip, u32 new_sp); 190 #define compat_start_thread compat_start_thread 191 192 void set_personality_ia32(bool); 193 #define COMPAT_SET_PERSONALITY(ex) \ 194 set_personality_ia32((ex).e_machine == EM_X86_64) 195 196 #define COMPAT_ELF_PLATFORM ("i686") 197 198 /* 199 * regs is struct pt_regs, pr_reg is elf_gregset_t (which is 200 * now struct_user_regs, they are different). Assumes current is the process 201 * getting dumped. 202 */ 203 204 #define ELF_CORE_COPY_REGS(pr_reg, regs) \ 205 do { \ 206 unsigned v; \ 207 (pr_reg)[0] = (regs)->r15; \ 208 (pr_reg)[1] = (regs)->r14; \ 209 (pr_reg)[2] = (regs)->r13; \ 210 (pr_reg)[3] = (regs)->r12; \ 211 (pr_reg)[4] = (regs)->bp; \ 212 (pr_reg)[5] = (regs)->bx; \ 213 (pr_reg)[6] = (regs)->r11; \ 214 (pr_reg)[7] = (regs)->r10; \ 215 (pr_reg)[8] = (regs)->r9; \ 216 (pr_reg)[9] = (regs)->r8; \ 217 (pr_reg)[10] = (regs)->ax; \ 218 (pr_reg)[11] = (regs)->cx; \ 219 (pr_reg)[12] = (regs)->dx; \ 220 (pr_reg)[13] = (regs)->si; \ 221 (pr_reg)[14] = (regs)->di; \ 222 (pr_reg)[15] = (regs)->orig_ax; \ 223 (pr_reg)[16] = (regs)->ip; \ 224 (pr_reg)[17] = (regs)->cs; \ 225 (pr_reg)[18] = (regs)->flags; \ 226 (pr_reg)[19] = (regs)->sp; \ 227 (pr_reg)[20] = (regs)->ss; \ 228 (pr_reg)[21] = x86_fsbase_read_cpu(); \ 229 (pr_reg)[22] = x86_gsbase_read_cpu_inactive(); \ 230 asm("movl %%ds,%0" : "=r" (v)); (pr_reg)[23] = v; \ 231 asm("movl %%es,%0" : "=r" (v)); (pr_reg)[24] = v; \ 232 asm("movl %%fs,%0" : "=r" (v)); (pr_reg)[25] = v; \ 233 asm("movl %%gs,%0" : "=r" (v)); (pr_reg)[26] = v; \ 234 } while (0); 235 236 /* I'm not sure if we can use '-' here */ 237 #define ELF_PLATFORM ("x86_64") 238 extern void set_personality_64bit(void); 239 extern unsigned int sysctl_vsyscall32; 240 extern int force_personality32; 241 242 #endif /* !CONFIG_X86_32 */ 243 244 #define CORE_DUMP_USE_REGSET 245 #define ELF_EXEC_PAGESIZE 4096 246 247 /* 248 * This is the base location for PIE (ET_DYN with INTERP) loads. On 249 * 64-bit, this is above 4GB to leave the entire 32-bit address 250 * space open for things that want to use the area for 32-bit pointers. 251 */ 252 #define ELF_ET_DYN_BASE (mmap_is_ia32() ? 0x000400000UL : \ 253 (DEFAULT_MAP_WINDOW / 3 * 2)) 254 255 /* This yields a mask that user programs can use to figure out what 256 instruction set this CPU supports. This could be done in user space, 257 but it's not easy, and we've already done it here. */ 258 259 #define ELF_HWCAP (boot_cpu_data.x86_capability[CPUID_1_EDX]) 260 261 extern u32 elf_hwcap2; 262 263 /* 264 * HWCAP2 supplies mask with kernel enabled CPU features, so that 265 * the application can discover that it can safely use them. 266 * The bits are defined in uapi/asm/hwcap2.h. 267 */ 268 #define ELF_HWCAP2 (elf_hwcap2) 269 270 /* This yields a string that ld.so will use to load implementation 271 specific libraries for optimization. This is more specific in 272 intent than poking at uname or /proc/cpuinfo. 273 274 For the moment, we have only optimizations for the Intel generations, 275 but that could change... */ 276 277 #define SET_PERSONALITY(ex) set_personality_64bit() 278 279 /* 280 * An executable for which elf_read_implies_exec() returns TRUE will 281 * have the READ_IMPLIES_EXEC personality flag set automatically. 282 * 283 * The decision process for determining the results are: 284 * 285 * CPU: | lacks NX* | has NX, ia32 | has NX, x86_64 | 286 * ELF: | | | | 287 * ---------------------|------------|------------------|----------------| 288 * missing PT_GNU_STACK | exec-all | exec-all | exec-none | 289 * PT_GNU_STACK == RWX | exec-stack | exec-stack | exec-stack | 290 * PT_GNU_STACK == RW | exec-none | exec-none | exec-none | 291 * 292 * exec-all : all PROT_READ user mappings are executable, except when 293 * backed by files on a noexec-filesystem. 294 * exec-none : only PROT_EXEC user mappings are executable. 295 * exec-stack: only the stack and PROT_EXEC user mappings are executable. 296 * 297 * *this column has no architectural effect: NX markings are ignored by 298 * hardware, but may have behavioral effects when "wants X" collides with 299 * "cannot be X" constraints in memory permission flags, as in 300 * https://lkml.kernel.org/r/20190418055759.GA3155@mellanox.com 301 * 302 */ 303 #define elf_read_implies_exec(ex, executable_stack) \ 304 (mmap_is_ia32() && executable_stack == EXSTACK_DEFAULT) 305 306 struct task_struct; 307 308 #define ARCH_DLINFO_IA32 \ 309 do { \ 310 if (VDSO_CURRENT_BASE) { \ 311 NEW_AUX_ENT(AT_SYSINFO, VDSO_ENTRY); \ 312 NEW_AUX_ENT(AT_SYSINFO_EHDR, VDSO_CURRENT_BASE); \ 313 } \ 314 } while (0) 315 316 /* 317 * True on X86_32 or when emulating IA32 on X86_64 318 */ 319 static inline int mmap_is_ia32(void) 320 { 321 return IS_ENABLED(CONFIG_X86_32) || 322 (IS_ENABLED(CONFIG_COMPAT) && 323 test_thread_flag(TIF_ADDR32)); 324 } 325 326 extern unsigned long task_size_32bit(void); 327 extern unsigned long task_size_64bit(int full_addr_space); 328 extern unsigned long get_mmap_base(int is_legacy); 329 extern bool mmap_address_hint_valid(unsigned long addr, unsigned long len); 330 331 #ifdef CONFIG_X86_32 332 333 #define __STACK_RND_MASK(is32bit) (0x7ff) 334 #define STACK_RND_MASK (0x7ff) 335 336 #define ARCH_DLINFO ARCH_DLINFO_IA32 337 338 /* update AT_VECTOR_SIZE_ARCH if the number of NEW_AUX_ENT entries changes */ 339 340 #else /* CONFIG_X86_32 */ 341 342 /* 1GB for 64bit, 8MB for 32bit */ 343 #define __STACK_RND_MASK(is32bit) ((is32bit) ? 0x7ff : 0x3fffff) 344 #define STACK_RND_MASK __STACK_RND_MASK(mmap_is_ia32()) 345 346 #define ARCH_DLINFO \ 347 do { \ 348 if (vdso64_enabled) \ 349 NEW_AUX_ENT(AT_SYSINFO_EHDR, \ 350 (unsigned long __force)current->mm->context.vdso); \ 351 } while (0) 352 353 /* As a historical oddity, the x32 and x86_64 vDSOs are controlled together. */ 354 #define ARCH_DLINFO_X32 \ 355 do { \ 356 if (vdso64_enabled) \ 357 NEW_AUX_ENT(AT_SYSINFO_EHDR, \ 358 (unsigned long __force)current->mm->context.vdso); \ 359 } while (0) 360 361 #define AT_SYSINFO 32 362 363 #define COMPAT_ARCH_DLINFO \ 364 if (test_thread_flag(TIF_X32)) \ 365 ARCH_DLINFO_X32; \ 366 else \ 367 ARCH_DLINFO_IA32 368 369 #define COMPAT_ELF_ET_DYN_BASE (TASK_UNMAPPED_BASE + 0x1000000) 370 371 #endif /* !CONFIG_X86_32 */ 372 373 #define VDSO_CURRENT_BASE ((unsigned long)current->mm->context.vdso) 374 375 #define VDSO_ENTRY \ 376 ((unsigned long)current->mm->context.vdso + \ 377 vdso_image_32.sym___kernel_vsyscall) 378 379 struct linux_binprm; 380 381 #define ARCH_HAS_SETUP_ADDITIONAL_PAGES 1 382 extern int arch_setup_additional_pages(struct linux_binprm *bprm, 383 int uses_interp); 384 extern int compat_arch_setup_additional_pages(struct linux_binprm *bprm, 385 int uses_interp); 386 #define compat_arch_setup_additional_pages compat_arch_setup_additional_pages 387 388 /* Do not change the values. See get_align_mask() */ 389 enum align_flags { 390 ALIGN_VA_32 = BIT(0), 391 ALIGN_VA_64 = BIT(1), 392 }; 393 394 struct va_alignment { 395 int flags; 396 unsigned long mask; 397 unsigned long bits; 398 } ____cacheline_aligned; 399 400 extern struct va_alignment va_align; 401 extern unsigned long align_vdso_addr(unsigned long); 402 #endif /* _ASM_X86_ELF_H */ 403