1 /* SPDX-License-Identifier: GPL-2.0 */ 2 #ifndef _ASM_X86_ELF_H 3 #define _ASM_X86_ELF_H 4 5 /* 6 * ELF register definitions.. 7 */ 8 #include <linux/thread_info.h> 9 10 #include <asm/ptrace.h> 11 #include <asm/user.h> 12 #include <asm/auxvec.h> 13 14 typedef unsigned long elf_greg_t; 15 16 #define ELF_NGREG (sizeof(struct user_regs_struct) / sizeof(elf_greg_t)) 17 typedef elf_greg_t elf_gregset_t[ELF_NGREG]; 18 19 typedef struct user_i387_struct elf_fpregset_t; 20 21 #ifdef __i386__ 22 23 typedef struct user_fxsr_struct elf_fpxregset_t; 24 25 #define R_386_NONE 0 26 #define R_386_32 1 27 #define R_386_PC32 2 28 #define R_386_GOT32 3 29 #define R_386_PLT32 4 30 #define R_386_COPY 5 31 #define R_386_GLOB_DAT 6 32 #define R_386_JMP_SLOT 7 33 #define R_386_RELATIVE 8 34 #define R_386_GOTOFF 9 35 #define R_386_GOTPC 10 36 #define R_386_NUM 11 37 38 /* 39 * These are used to set parameters in the core dumps. 40 */ 41 #define ELF_CLASS ELFCLASS32 42 #define ELF_DATA ELFDATA2LSB 43 #define ELF_ARCH EM_386 44 45 #else 46 47 /* x86-64 relocation types */ 48 #define R_X86_64_NONE 0 /* No reloc */ 49 #define R_X86_64_64 1 /* Direct 64 bit */ 50 #define R_X86_64_PC32 2 /* PC relative 32 bit signed */ 51 #define R_X86_64_GOT32 3 /* 32 bit GOT entry */ 52 #define R_X86_64_PLT32 4 /* 32 bit PLT address */ 53 #define R_X86_64_COPY 5 /* Copy symbol at runtime */ 54 #define R_X86_64_GLOB_DAT 6 /* Create GOT entry */ 55 #define R_X86_64_JUMP_SLOT 7 /* Create PLT entry */ 56 #define R_X86_64_RELATIVE 8 /* Adjust by program base */ 57 #define R_X86_64_GOTPCREL 9 /* 32 bit signed pc relative 58 offset to GOT */ 59 #define R_X86_64_32 10 /* Direct 32 bit zero extended */ 60 #define R_X86_64_32S 11 /* Direct 32 bit sign extended */ 61 #define R_X86_64_16 12 /* Direct 16 bit zero extended */ 62 #define R_X86_64_PC16 13 /* 16 bit sign extended pc relative */ 63 #define R_X86_64_8 14 /* Direct 8 bit sign extended */ 64 #define R_X86_64_PC8 15 /* 8 bit sign extended pc relative */ 65 66 #define R_X86_64_NUM 16 67 68 /* 69 * These are used to set parameters in the core dumps. 70 */ 71 #define ELF_CLASS ELFCLASS64 72 #define ELF_DATA ELFDATA2LSB 73 #define ELF_ARCH EM_X86_64 74 75 #endif 76 77 #include <asm/vdso.h> 78 79 #ifdef CONFIG_X86_64 80 extern unsigned int vdso64_enabled; 81 #endif 82 #if defined(CONFIG_X86_32) || defined(CONFIG_IA32_EMULATION) 83 extern unsigned int vdso32_enabled; 84 #endif 85 86 /* 87 * This is used to ensure we don't load something for the wrong architecture. 88 */ 89 #define elf_check_arch_ia32(x) \ 90 (((x)->e_machine == EM_386) || ((x)->e_machine == EM_486)) 91 92 #include <asm/processor.h> 93 94 #ifdef CONFIG_X86_32 95 #include <asm/desc.h> 96 97 #define elf_check_arch(x) elf_check_arch_ia32(x) 98 99 /* SVR4/i386 ABI (pages 3-31, 3-32) says that when the program starts %edx 100 contains a pointer to a function which might be registered using `atexit'. 101 This provides a mean for the dynamic linker to call DT_FINI functions for 102 shared libraries that have been loaded before the code runs. 103 104 A value of 0 tells we have no such handler. 105 106 We might as well make sure everything else is cleared too (except for %esp), 107 just to make things more deterministic. 108 */ 109 #define ELF_PLAT_INIT(_r, load_addr) \ 110 do { \ 111 _r->bx = 0; _r->cx = 0; _r->dx = 0; \ 112 _r->si = 0; _r->di = 0; _r->bp = 0; \ 113 _r->ax = 0; \ 114 } while (0) 115 116 /* 117 * regs is struct pt_regs, pr_reg is elf_gregset_t (which is 118 * now struct_user_regs, they are different) 119 */ 120 121 #define ELF_CORE_COPY_REGS_COMMON(pr_reg, regs) \ 122 do { \ 123 pr_reg[0] = regs->bx; \ 124 pr_reg[1] = regs->cx; \ 125 pr_reg[2] = regs->dx; \ 126 pr_reg[3] = regs->si; \ 127 pr_reg[4] = regs->di; \ 128 pr_reg[5] = regs->bp; \ 129 pr_reg[6] = regs->ax; \ 130 pr_reg[7] = regs->ds; \ 131 pr_reg[8] = regs->es; \ 132 pr_reg[9] = regs->fs; \ 133 pr_reg[11] = regs->orig_ax; \ 134 pr_reg[12] = regs->ip; \ 135 pr_reg[13] = regs->cs; \ 136 pr_reg[14] = regs->flags; \ 137 pr_reg[15] = regs->sp; \ 138 pr_reg[16] = regs->ss; \ 139 } while (0); 140 141 #define ELF_CORE_COPY_REGS(pr_reg, regs) \ 142 do { \ 143 ELF_CORE_COPY_REGS_COMMON(pr_reg, regs);\ 144 pr_reg[10] = get_user_gs(regs); \ 145 } while (0); 146 147 #define ELF_CORE_COPY_KERNEL_REGS(pr_reg, regs) \ 148 do { \ 149 ELF_CORE_COPY_REGS_COMMON(pr_reg, regs);\ 150 savesegment(gs, pr_reg[10]); \ 151 } while (0); 152 153 #define ELF_PLATFORM (utsname()->machine) 154 #define set_personality_64bit() do { } while (0) 155 156 #else /* CONFIG_X86_32 */ 157 158 /* 159 * This is used to ensure we don't load something for the wrong architecture. 160 */ 161 #define elf_check_arch(x) \ 162 ((x)->e_machine == EM_X86_64) 163 164 #define compat_elf_check_arch(x) \ 165 (elf_check_arch_ia32(x) || \ 166 (IS_ENABLED(CONFIG_X86_X32_ABI) && (x)->e_machine == EM_X86_64)) 167 168 #if __USER32_DS != __USER_DS 169 # error "The following code assumes __USER32_DS == __USER_DS" 170 #endif 171 172 static inline void elf_common_init(struct thread_struct *t, 173 struct pt_regs *regs, const u16 ds) 174 { 175 /* ax gets execve's return value. */ 176 /*regs->ax = */ regs->bx = regs->cx = regs->dx = 0; 177 regs->si = regs->di = regs->bp = 0; 178 regs->r8 = regs->r9 = regs->r10 = regs->r11 = 0; 179 regs->r12 = regs->r13 = regs->r14 = regs->r15 = 0; 180 t->fsbase = t->gsbase = 0; 181 t->fsindex = t->gsindex = 0; 182 t->ds = t->es = ds; 183 } 184 185 #define ELF_PLAT_INIT(_r, load_addr) \ 186 elf_common_init(¤t->thread, _r, 0) 187 188 #define COMPAT_ELF_PLAT_INIT(regs, load_addr) \ 189 elf_common_init(¤t->thread, regs, __USER_DS) 190 191 void compat_start_thread(struct pt_regs *regs, u32 new_ip, u32 new_sp); 192 #define compat_start_thread compat_start_thread 193 194 void set_personality_ia32(bool); 195 #define COMPAT_SET_PERSONALITY(ex) \ 196 set_personality_ia32((ex).e_machine == EM_X86_64) 197 198 #define COMPAT_ELF_PLATFORM ("i686") 199 200 /* 201 * regs is struct pt_regs, pr_reg is elf_gregset_t (which is 202 * now struct_user_regs, they are different). Assumes current is the process 203 * getting dumped. 204 */ 205 206 #define ELF_CORE_COPY_REGS(pr_reg, regs) \ 207 do { \ 208 unsigned long base; \ 209 unsigned v; \ 210 (pr_reg)[0] = (regs)->r15; \ 211 (pr_reg)[1] = (regs)->r14; \ 212 (pr_reg)[2] = (regs)->r13; \ 213 (pr_reg)[3] = (regs)->r12; \ 214 (pr_reg)[4] = (regs)->bp; \ 215 (pr_reg)[5] = (regs)->bx; \ 216 (pr_reg)[6] = (regs)->r11; \ 217 (pr_reg)[7] = (regs)->r10; \ 218 (pr_reg)[8] = (regs)->r9; \ 219 (pr_reg)[9] = (regs)->r8; \ 220 (pr_reg)[10] = (regs)->ax; \ 221 (pr_reg)[11] = (regs)->cx; \ 222 (pr_reg)[12] = (regs)->dx; \ 223 (pr_reg)[13] = (regs)->si; \ 224 (pr_reg)[14] = (regs)->di; \ 225 (pr_reg)[15] = (regs)->orig_ax; \ 226 (pr_reg)[16] = (regs)->ip; \ 227 (pr_reg)[17] = (regs)->cs; \ 228 (pr_reg)[18] = (regs)->flags; \ 229 (pr_reg)[19] = (regs)->sp; \ 230 (pr_reg)[20] = (regs)->ss; \ 231 rdmsrl(MSR_FS_BASE, base); (pr_reg)[21] = base; \ 232 rdmsrl(MSR_KERNEL_GS_BASE, base); (pr_reg)[22] = base; \ 233 asm("movl %%ds,%0" : "=r" (v)); (pr_reg)[23] = v; \ 234 asm("movl %%es,%0" : "=r" (v)); (pr_reg)[24] = v; \ 235 asm("movl %%fs,%0" : "=r" (v)); (pr_reg)[25] = v; \ 236 asm("movl %%gs,%0" : "=r" (v)); (pr_reg)[26] = v; \ 237 } while (0); 238 239 /* I'm not sure if we can use '-' here */ 240 #define ELF_PLATFORM ("x86_64") 241 extern void set_personality_64bit(void); 242 extern unsigned int sysctl_vsyscall32; 243 extern int force_personality32; 244 245 #endif /* !CONFIG_X86_32 */ 246 247 #define CORE_DUMP_USE_REGSET 248 #define ELF_EXEC_PAGESIZE 4096 249 250 /* 251 * This is the base location for PIE (ET_DYN with INTERP) loads. On 252 * 64-bit, this is above 4GB to leave the entire 32-bit address 253 * space open for things that want to use the area for 32-bit pointers. 254 */ 255 #define ELF_ET_DYN_BASE (mmap_is_ia32() ? 0x000400000UL : \ 256 (DEFAULT_MAP_WINDOW / 3 * 2)) 257 258 /* This yields a mask that user programs can use to figure out what 259 instruction set this CPU supports. This could be done in user space, 260 but it's not easy, and we've already done it here. */ 261 262 #define ELF_HWCAP (boot_cpu_data.x86_capability[CPUID_1_EDX]) 263 264 extern u32 elf_hwcap2; 265 266 /* 267 * HWCAP2 supplies mask with kernel enabled CPU features, so that 268 * the application can discover that it can safely use them. 269 * The bits are defined in uapi/asm/hwcap2.h. 270 */ 271 #define ELF_HWCAP2 (elf_hwcap2) 272 273 /* This yields a string that ld.so will use to load implementation 274 specific libraries for optimization. This is more specific in 275 intent than poking at uname or /proc/cpuinfo. 276 277 For the moment, we have only optimizations for the Intel generations, 278 but that could change... */ 279 280 #define SET_PERSONALITY(ex) set_personality_64bit() 281 282 /* 283 * An executable for which elf_read_implies_exec() returns TRUE will 284 * have the READ_IMPLIES_EXEC personality flag set automatically. 285 */ 286 #define elf_read_implies_exec(ex, executable_stack) \ 287 (executable_stack != EXSTACK_DISABLE_X) 288 289 struct task_struct; 290 291 #define ARCH_DLINFO_IA32 \ 292 do { \ 293 if (VDSO_CURRENT_BASE) { \ 294 NEW_AUX_ENT(AT_SYSINFO, VDSO_ENTRY); \ 295 NEW_AUX_ENT(AT_SYSINFO_EHDR, VDSO_CURRENT_BASE); \ 296 } \ 297 } while (0) 298 299 /* 300 * True on X86_32 or when emulating IA32 on X86_64 301 */ 302 static inline int mmap_is_ia32(void) 303 { 304 return IS_ENABLED(CONFIG_X86_32) || 305 (IS_ENABLED(CONFIG_COMPAT) && 306 test_thread_flag(TIF_ADDR32)); 307 } 308 309 extern unsigned long task_size_32bit(void); 310 extern unsigned long task_size_64bit(int full_addr_space); 311 extern unsigned long get_mmap_base(int is_legacy); 312 extern bool mmap_address_hint_valid(unsigned long addr, unsigned long len); 313 314 #ifdef CONFIG_X86_32 315 316 #define __STACK_RND_MASK(is32bit) (0x7ff) 317 #define STACK_RND_MASK (0x7ff) 318 319 #define ARCH_DLINFO ARCH_DLINFO_IA32 320 321 /* update AT_VECTOR_SIZE_ARCH if the number of NEW_AUX_ENT entries changes */ 322 323 #else /* CONFIG_X86_32 */ 324 325 /* 1GB for 64bit, 8MB for 32bit */ 326 #define __STACK_RND_MASK(is32bit) ((is32bit) ? 0x7ff : 0x3fffff) 327 #define STACK_RND_MASK __STACK_RND_MASK(mmap_is_ia32()) 328 329 #define ARCH_DLINFO \ 330 do { \ 331 if (vdso64_enabled) \ 332 NEW_AUX_ENT(AT_SYSINFO_EHDR, \ 333 (unsigned long __force)current->mm->context.vdso); \ 334 } while (0) 335 336 /* As a historical oddity, the x32 and x86_64 vDSOs are controlled together. */ 337 #define ARCH_DLINFO_X32 \ 338 do { \ 339 if (vdso64_enabled) \ 340 NEW_AUX_ENT(AT_SYSINFO_EHDR, \ 341 (unsigned long __force)current->mm->context.vdso); \ 342 } while (0) 343 344 #define AT_SYSINFO 32 345 346 #define COMPAT_ARCH_DLINFO \ 347 if (test_thread_flag(TIF_X32)) \ 348 ARCH_DLINFO_X32; \ 349 else \ 350 ARCH_DLINFO_IA32 351 352 #define COMPAT_ELF_ET_DYN_BASE (TASK_UNMAPPED_BASE + 0x1000000) 353 354 #endif /* !CONFIG_X86_32 */ 355 356 #define VDSO_CURRENT_BASE ((unsigned long)current->mm->context.vdso) 357 358 #define VDSO_ENTRY \ 359 ((unsigned long)current->mm->context.vdso + \ 360 vdso_image_32.sym___kernel_vsyscall) 361 362 struct linux_binprm; 363 364 #define ARCH_HAS_SETUP_ADDITIONAL_PAGES 1 365 extern int arch_setup_additional_pages(struct linux_binprm *bprm, 366 int uses_interp); 367 extern int compat_arch_setup_additional_pages(struct linux_binprm *bprm, 368 int uses_interp); 369 #define compat_arch_setup_additional_pages compat_arch_setup_additional_pages 370 371 /* Do not change the values. See get_align_mask() */ 372 enum align_flags { 373 ALIGN_VA_32 = BIT(0), 374 ALIGN_VA_64 = BIT(1), 375 }; 376 377 struct va_alignment { 378 int flags; 379 unsigned long mask; 380 unsigned long bits; 381 } ____cacheline_aligned; 382 383 extern struct va_alignment va_align; 384 extern unsigned long align_vdso_addr(unsigned long); 385 #endif /* _ASM_X86_ELF_H */ 386