xref: /openbmc/linux/arch/x86/include/asm/efi.h (revision a1c7c49c2091926962f8c1c866d386febffec5d8)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _ASM_X86_EFI_H
3 #define _ASM_X86_EFI_H
4 
5 #include <asm/fpu/api.h>
6 #include <asm/processor-flags.h>
7 #include <asm/tlb.h>
8 #include <asm/nospec-branch.h>
9 #include <asm/mmu_context.h>
10 #include <linux/build_bug.h>
11 #include <linux/kernel.h>
12 #include <linux/pgtable.h>
13 
14 extern unsigned long efi_fw_vendor, efi_config_table;
15 extern unsigned long efi_mixed_mode_stack_pa;
16 
17 /*
18  * We map the EFI regions needed for runtime services non-contiguously,
19  * with preserved alignment on virtual addresses starting from -4G down
20  * for a total max space of 64G. This way, we provide for stable runtime
21  * services addresses across kernels so that a kexec'd kernel can still
22  * use them.
23  *
24  * This is the main reason why we're doing stable VA mappings for RT
25  * services.
26  */
27 
28 #define EFI32_LOADER_SIGNATURE	"EL32"
29 #define EFI64_LOADER_SIGNATURE	"EL64"
30 
31 #define ARCH_EFI_IRQ_FLAGS_MASK	X86_EFLAGS_IF
32 
33 /*
34  * The EFI services are called through variadic functions in many cases. These
35  * functions are implemented in assembler and support only a fixed number of
36  * arguments. The macros below allows us to check at build time that we don't
37  * try to call them with too many arguments.
38  *
39  * __efi_nargs() will return the number of arguments if it is 7 or less, and
40  * cause a BUILD_BUG otherwise. The limitations of the C preprocessor make it
41  * impossible to calculate the exact number of arguments beyond some
42  * pre-defined limit. The maximum number of arguments currently supported by
43  * any of the thunks is 7, so this is good enough for now and can be extended
44  * in the obvious way if we ever need more.
45  */
46 
47 #define __efi_nargs(...) __efi_nargs_(__VA_ARGS__)
48 #define __efi_nargs_(...) __efi_nargs__(0, ##__VA_ARGS__,	\
49 	__efi_arg_sentinel(7), __efi_arg_sentinel(6),		\
50 	__efi_arg_sentinel(5), __efi_arg_sentinel(4),		\
51 	__efi_arg_sentinel(3), __efi_arg_sentinel(2),		\
52 	__efi_arg_sentinel(1), __efi_arg_sentinel(0))
53 #define __efi_nargs__(_0, _1, _2, _3, _4, _5, _6, _7, n, ...)	\
54 	__take_second_arg(n,					\
55 		({ BUILD_BUG_ON_MSG(1, "__efi_nargs limit exceeded"); 8; }))
56 #define __efi_arg_sentinel(n) , n
57 
58 /*
59  * __efi_nargs_check(f, n, ...) will cause a BUILD_BUG if the ellipsis
60  * represents more than n arguments.
61  */
62 
63 #define __efi_nargs_check(f, n, ...)					\
64 	__efi_nargs_check_(f, __efi_nargs(__VA_ARGS__), n)
65 #define __efi_nargs_check_(f, p, n) __efi_nargs_check__(f, p, n)
66 #define __efi_nargs_check__(f, p, n) ({					\
67 	BUILD_BUG_ON_MSG(						\
68 		(p) > (n),						\
69 		#f " called with too many arguments (" #p ">" #n ")");	\
70 })
71 
72 static inline void efi_fpu_begin(void)
73 {
74 	/*
75 	 * The UEFI calling convention (UEFI spec 2.3.2 and 2.3.4) requires
76 	 * that FCW and MXCSR (64-bit) must be initialized prior to calling
77 	 * UEFI code.  (Oddly the spec does not require that the FPU stack
78 	 * be empty.)
79 	 */
80 	kernel_fpu_begin_mask(KFPU_387 | KFPU_MXCSR);
81 }
82 
83 static inline void efi_fpu_end(void)
84 {
85 	kernel_fpu_end();
86 }
87 
88 #ifdef CONFIG_X86_32
89 #define arch_efi_call_virt_setup()					\
90 ({									\
91 	efi_fpu_begin();						\
92 	firmware_restrict_branch_speculation_start();			\
93 })
94 
95 #define arch_efi_call_virt_teardown()					\
96 ({									\
97 	firmware_restrict_branch_speculation_end();			\
98 	efi_fpu_end();							\
99 })
100 
101 #define arch_efi_call_virt(p, f, args...)	p->f(args)
102 
103 #else /* !CONFIG_X86_32 */
104 
105 #define EFI_LOADER_SIGNATURE	"EL64"
106 
107 extern asmlinkage u64 __efi_call(void *fp, ...);
108 
109 #define efi_call(...) ({						\
110 	__efi_nargs_check(efi_call, 7, __VA_ARGS__);			\
111 	__efi_call(__VA_ARGS__);					\
112 })
113 
114 #define arch_efi_call_virt_setup()					\
115 ({									\
116 	efi_sync_low_kernel_mappings();					\
117 	efi_fpu_begin();						\
118 	firmware_restrict_branch_speculation_start();			\
119 	efi_enter_mm();							\
120 })
121 
122 #define arch_efi_call_virt(p, f, args...)				\
123 	efi_call((void *)p->f, args)					\
124 
125 #define arch_efi_call_virt_teardown()					\
126 ({									\
127 	efi_leave_mm();							\
128 	firmware_restrict_branch_speculation_end();			\
129 	efi_fpu_end();							\
130 })
131 
132 #ifdef CONFIG_KASAN
133 /*
134  * CONFIG_KASAN may redefine memset to __memset.  __memset function is present
135  * only in kernel binary.  Since the EFI stub linked into a separate binary it
136  * doesn't have __memset().  So we should use standard memset from
137  * arch/x86/boot/compressed/string.c.  The same applies to memcpy and memmove.
138  */
139 #undef memcpy
140 #undef memset
141 #undef memmove
142 #endif
143 
144 #endif /* CONFIG_X86_32 */
145 
146 extern int __init efi_memblock_x86_reserve_range(void);
147 extern void __init efi_print_memmap(void);
148 extern void __init efi_map_region(efi_memory_desc_t *md);
149 extern void __init efi_map_region_fixed(efi_memory_desc_t *md);
150 extern void efi_sync_low_kernel_mappings(void);
151 extern int __init efi_alloc_page_tables(void);
152 extern int __init efi_setup_page_tables(unsigned long pa_memmap, unsigned num_pages);
153 extern void __init efi_runtime_update_mappings(void);
154 extern void __init efi_dump_pagetable(void);
155 extern void __init efi_apply_memmap_quirks(void);
156 extern int __init efi_reuse_config(u64 tables, int nr_tables);
157 extern void efi_delete_dummy_variable(void);
158 extern void efi_crash_gracefully_on_page_fault(unsigned long phys_addr);
159 extern void efi_free_boot_services(void);
160 
161 void efi_enter_mm(void);
162 void efi_leave_mm(void);
163 
164 /* kexec external ABI */
165 struct efi_setup_data {
166 	u64 fw_vendor;
167 	u64 __unused;
168 	u64 tables;
169 	u64 smbios;
170 	u64 reserved[8];
171 };
172 
173 extern u64 efi_setup;
174 
175 #ifdef CONFIG_EFI
176 extern efi_status_t __efi64_thunk(u32, ...);
177 
178 #define efi64_thunk(...) ({						\
179 	__efi_nargs_check(efi64_thunk, 6, __VA_ARGS__);			\
180 	__efi64_thunk(__VA_ARGS__);					\
181 })
182 
183 static inline bool efi_is_mixed(void)
184 {
185 	if (!IS_ENABLED(CONFIG_EFI_MIXED))
186 		return false;
187 	return IS_ENABLED(CONFIG_X86_64) && !efi_enabled(EFI_64BIT);
188 }
189 
190 static inline bool efi_runtime_supported(void)
191 {
192 	if (IS_ENABLED(CONFIG_X86_64) == efi_enabled(EFI_64BIT))
193 		return true;
194 
195 	return IS_ENABLED(CONFIG_EFI_MIXED);
196 }
197 
198 extern void parse_efi_setup(u64 phys_addr, u32 data_len);
199 
200 extern void efi_thunk_runtime_setup(void);
201 efi_status_t efi_set_virtual_address_map(unsigned long memory_map_size,
202 					 unsigned long descriptor_size,
203 					 u32 descriptor_version,
204 					 efi_memory_desc_t *virtual_map,
205 					 unsigned long systab_phys);
206 
207 /* arch specific definitions used by the stub code */
208 
209 #ifdef CONFIG_EFI_MIXED
210 
211 #define ARCH_HAS_EFISTUB_WRAPPERS
212 
213 static inline bool efi_is_64bit(void)
214 {
215 	extern const bool efi_is64;
216 
217 	return efi_is64;
218 }
219 
220 static inline bool efi_is_native(void)
221 {
222 	return efi_is_64bit();
223 }
224 
225 #define efi_mixed_mode_cast(attr)					\
226 	__builtin_choose_expr(						\
227 		__builtin_types_compatible_p(u32, __typeof__(attr)),	\
228 			(unsigned long)(attr), (attr))
229 
230 #define efi_table_attr(inst, attr)					\
231 	(efi_is_native()						\
232 		? inst->attr						\
233 		: (__typeof__(inst->attr))				\
234 			efi_mixed_mode_cast(inst->mixed_mode.attr))
235 
236 /*
237  * The following macros allow translating arguments if necessary from native to
238  * mixed mode. The use case for this is to initialize the upper 32 bits of
239  * output parameters, and where the 32-bit method requires a 64-bit argument,
240  * which must be split up into two arguments to be thunked properly.
241  *
242  * As examples, the AllocatePool boot service returns the address of the
243  * allocation, but it will not set the high 32 bits of the address. To ensure
244  * that the full 64-bit address is initialized, we zero-init the address before
245  * calling the thunk.
246  *
247  * The FreePages boot service takes a 64-bit physical address even in 32-bit
248  * mode. For the thunk to work correctly, a native 64-bit call of
249  * 	free_pages(addr, size)
250  * must be translated to
251  * 	efi64_thunk(free_pages, addr & U32_MAX, addr >> 32, size)
252  * so that the two 32-bit halves of addr get pushed onto the stack separately.
253  */
254 
255 static inline void *efi64_zero_upper(void *p)
256 {
257 	((u32 *)p)[1] = 0;
258 	return p;
259 }
260 
261 static inline u32 efi64_convert_status(efi_status_t status)
262 {
263 	return (u32)(status | (u64)status >> 32);
264 }
265 
266 #define __efi64_argmap_free_pages(addr, size)				\
267 	((addr), 0, (size))
268 
269 #define __efi64_argmap_get_memory_map(mm_size, mm, key, size, ver)	\
270 	((mm_size), (mm), efi64_zero_upper(key), efi64_zero_upper(size), (ver))
271 
272 #define __efi64_argmap_allocate_pool(type, size, buffer)		\
273 	((type), (size), efi64_zero_upper(buffer))
274 
275 #define __efi64_argmap_create_event(type, tpl, f, c, event)		\
276 	((type), (tpl), (f), (c), efi64_zero_upper(event))
277 
278 #define __efi64_argmap_set_timer(event, type, time)			\
279 	((event), (type), lower_32_bits(time), upper_32_bits(time))
280 
281 #define __efi64_argmap_wait_for_event(num, event, index)		\
282 	((num), (event), efi64_zero_upper(index))
283 
284 #define __efi64_argmap_handle_protocol(handle, protocol, interface)	\
285 	((handle), (protocol), efi64_zero_upper(interface))
286 
287 #define __efi64_argmap_locate_protocol(protocol, reg, interface)	\
288 	((protocol), (reg), efi64_zero_upper(interface))
289 
290 #define __efi64_argmap_locate_device_path(protocol, path, handle)	\
291 	((protocol), (path), efi64_zero_upper(handle))
292 
293 #define __efi64_argmap_exit(handle, status, size, data)			\
294 	((handle), efi64_convert_status(status), (size), (data))
295 
296 /* PCI I/O */
297 #define __efi64_argmap_get_location(protocol, seg, bus, dev, func)	\
298 	((protocol), efi64_zero_upper(seg), efi64_zero_upper(bus),	\
299 	 efi64_zero_upper(dev), efi64_zero_upper(func))
300 
301 /* LoadFile */
302 #define __efi64_argmap_load_file(protocol, path, policy, bufsize, buf)	\
303 	((protocol), (path), (policy), efi64_zero_upper(bufsize), (buf))
304 
305 /* Graphics Output Protocol */
306 #define __efi64_argmap_query_mode(gop, mode, size, info)		\
307 	((gop), (mode), efi64_zero_upper(size), efi64_zero_upper(info))
308 
309 /*
310  * The macros below handle the plumbing for the argument mapping. To add a
311  * mapping for a specific EFI method, simply define a macro
312  * __efi64_argmap_<method name>, following the examples above.
313  */
314 
315 #define __efi64_thunk_map(inst, func, ...)				\
316 	efi64_thunk(inst->mixed_mode.func,				\
317 		__efi64_argmap(__efi64_argmap_ ## func(__VA_ARGS__),	\
318 			       (__VA_ARGS__)))
319 
320 #define __efi64_argmap(mapped, args)					\
321 	__PASTE(__efi64_argmap__, __efi_nargs(__efi_eat mapped))(mapped, args)
322 #define __efi64_argmap__0(mapped, args) __efi_eval mapped
323 #define __efi64_argmap__1(mapped, args) __efi_eval args
324 
325 #define __efi_eat(...)
326 #define __efi_eval(...) __VA_ARGS__
327 
328 /* The three macros below handle dispatching via the thunk if needed */
329 
330 #define efi_call_proto(inst, func, ...)					\
331 	(efi_is_native()						\
332 		? inst->func(inst, ##__VA_ARGS__)			\
333 		: __efi64_thunk_map(inst, func, inst, ##__VA_ARGS__))
334 
335 #define efi_bs_call(func, ...)						\
336 	(efi_is_native()						\
337 		? efi_system_table->boottime->func(__VA_ARGS__)		\
338 		: __efi64_thunk_map(efi_table_attr(efi_system_table,	\
339 						   boottime),		\
340 				    func, __VA_ARGS__))
341 
342 #define efi_rt_call(func, ...)						\
343 	(efi_is_native()						\
344 		? efi_system_table->runtime->func(__VA_ARGS__)		\
345 		: __efi64_thunk_map(efi_table_attr(efi_system_table,	\
346 						   runtime),		\
347 				    func, __VA_ARGS__))
348 
349 #else /* CONFIG_EFI_MIXED */
350 
351 static inline bool efi_is_64bit(void)
352 {
353 	return IS_ENABLED(CONFIG_X86_64);
354 }
355 
356 #endif /* CONFIG_EFI_MIXED */
357 
358 extern bool efi_reboot_required(void);
359 extern bool efi_is_table_address(unsigned long phys_addr);
360 
361 extern void efi_find_mirror(void);
362 extern void efi_reserve_boot_services(void);
363 #else
364 static inline void parse_efi_setup(u64 phys_addr, u32 data_len) {}
365 static inline bool efi_reboot_required(void)
366 {
367 	return false;
368 }
369 static inline  bool efi_is_table_address(unsigned long phys_addr)
370 {
371 	return false;
372 }
373 static inline void efi_find_mirror(void)
374 {
375 }
376 static inline void efi_reserve_boot_services(void)
377 {
378 }
379 #endif /* CONFIG_EFI */
380 
381 #ifdef CONFIG_EFI_FAKE_MEMMAP
382 extern void __init efi_fake_memmap_early(void);
383 #else
384 static inline void efi_fake_memmap_early(void)
385 {
386 }
387 #endif
388 
389 #define arch_ima_efi_boot_mode	\
390 	({ extern struct boot_params boot_params; boot_params.secure_boot; })
391 
392 #endif /* _ASM_X86_EFI_H */
393