xref: /openbmc/linux/arch/x86/include/asm/efi.h (revision 8cfa7186)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _ASM_X86_EFI_H
3 #define _ASM_X86_EFI_H
4 
5 #include <asm/fpu/api.h>
6 #include <asm/processor-flags.h>
7 #include <asm/tlb.h>
8 #include <asm/nospec-branch.h>
9 #include <asm/mmu_context.h>
10 #include <asm/ibt.h>
11 #include <linux/build_bug.h>
12 #include <linux/kernel.h>
13 #include <linux/pgtable.h>
14 
15 extern unsigned long efi_fw_vendor, efi_config_table;
16 extern unsigned long efi_mixed_mode_stack_pa;
17 
18 /*
19  * We map the EFI regions needed for runtime services non-contiguously,
20  * with preserved alignment on virtual addresses starting from -4G down
21  * for a total max space of 64G. This way, we provide for stable runtime
22  * services addresses across kernels so that a kexec'd kernel can still
23  * use them.
24  *
25  * This is the main reason why we're doing stable VA mappings for RT
26  * services.
27  */
28 
29 #define EFI32_LOADER_SIGNATURE	"EL32"
30 #define EFI64_LOADER_SIGNATURE	"EL64"
31 
32 #define ARCH_EFI_IRQ_FLAGS_MASK	X86_EFLAGS_IF
33 
34 #define EFI_UNACCEPTED_UNIT_SIZE PMD_SIZE
35 
36 /*
37  * The EFI services are called through variadic functions in many cases. These
38  * functions are implemented in assembler and support only a fixed number of
39  * arguments. The macros below allows us to check at build time that we don't
40  * try to call them with too many arguments.
41  *
42  * __efi_nargs() will return the number of arguments if it is 7 or less, and
43  * cause a BUILD_BUG otherwise. The limitations of the C preprocessor make it
44  * impossible to calculate the exact number of arguments beyond some
45  * pre-defined limit. The maximum number of arguments currently supported by
46  * any of the thunks is 7, so this is good enough for now and can be extended
47  * in the obvious way if we ever need more.
48  */
49 
50 #define __efi_nargs(...) __efi_nargs_(__VA_ARGS__)
51 #define __efi_nargs_(...) __efi_nargs__(0, ##__VA_ARGS__,	\
52 	__efi_arg_sentinel(9), __efi_arg_sentinel(8),		\
53 	__efi_arg_sentinel(7), __efi_arg_sentinel(6),		\
54 	__efi_arg_sentinel(5), __efi_arg_sentinel(4),		\
55 	__efi_arg_sentinel(3), __efi_arg_sentinel(2),		\
56 	__efi_arg_sentinel(1), __efi_arg_sentinel(0))
57 #define __efi_nargs__(_0, _1, _2, _3, _4, _5, _6, _7, _8, _9, n, ...)	\
58 	__take_second_arg(n,					\
59 		({ BUILD_BUG_ON_MSG(1, "__efi_nargs limit exceeded"); 10; }))
60 #define __efi_arg_sentinel(n) , n
61 
62 /*
63  * __efi_nargs_check(f, n, ...) will cause a BUILD_BUG if the ellipsis
64  * represents more than n arguments.
65  */
66 
67 #define __efi_nargs_check(f, n, ...)					\
68 	__efi_nargs_check_(f, __efi_nargs(__VA_ARGS__), n)
69 #define __efi_nargs_check_(f, p, n) __efi_nargs_check__(f, p, n)
70 #define __efi_nargs_check__(f, p, n) ({					\
71 	BUILD_BUG_ON_MSG(						\
72 		(p) > (n),						\
73 		#f " called with too many arguments (" #p ">" #n ")");	\
74 })
75 
76 static inline void efi_fpu_begin(void)
77 {
78 	/*
79 	 * The UEFI calling convention (UEFI spec 2.3.2 and 2.3.4) requires
80 	 * that FCW and MXCSR (64-bit) must be initialized prior to calling
81 	 * UEFI code.  (Oddly the spec does not require that the FPU stack
82 	 * be empty.)
83 	 */
84 	kernel_fpu_begin_mask(KFPU_387 | KFPU_MXCSR);
85 }
86 
87 static inline void efi_fpu_end(void)
88 {
89 	kernel_fpu_end();
90 }
91 
92 #ifdef CONFIG_X86_32
93 #define arch_efi_call_virt_setup()					\
94 ({									\
95 	efi_fpu_begin();						\
96 	firmware_restrict_branch_speculation_start();			\
97 })
98 
99 #define arch_efi_call_virt_teardown()					\
100 ({									\
101 	firmware_restrict_branch_speculation_end();			\
102 	efi_fpu_end();							\
103 })
104 
105 #else /* !CONFIG_X86_32 */
106 
107 #define EFI_LOADER_SIGNATURE	"EL64"
108 
109 extern asmlinkage u64 __efi_call(void *fp, ...);
110 
111 extern bool efi_disable_ibt_for_runtime;
112 
113 #define efi_call(...) ({						\
114 	__efi_nargs_check(efi_call, 7, __VA_ARGS__);			\
115 	__efi_call(__VA_ARGS__);					\
116 })
117 
118 #define arch_efi_call_virt_setup()					\
119 ({									\
120 	efi_sync_low_kernel_mappings();					\
121 	efi_fpu_begin();						\
122 	firmware_restrict_branch_speculation_start();			\
123 	efi_enter_mm();							\
124 })
125 
126 #undef arch_efi_call_virt
127 #define arch_efi_call_virt(p, f, args...) ({				\
128 	u64 ret, ibt = ibt_save(efi_disable_ibt_for_runtime);		\
129 	ret = efi_call((void *)p->f, args);				\
130 	ibt_restore(ibt);						\
131 	ret;								\
132 })
133 
134 #define arch_efi_call_virt_teardown()					\
135 ({									\
136 	efi_leave_mm();							\
137 	firmware_restrict_branch_speculation_end();			\
138 	efi_fpu_end();							\
139 })
140 
141 #ifdef CONFIG_KASAN
142 /*
143  * CONFIG_KASAN may redefine memset to __memset.  __memset function is present
144  * only in kernel binary.  Since the EFI stub linked into a separate binary it
145  * doesn't have __memset().  So we should use standard memset from
146  * arch/x86/boot/compressed/string.c.  The same applies to memcpy and memmove.
147  */
148 #undef memcpy
149 #undef memset
150 #undef memmove
151 #endif
152 
153 #endif /* CONFIG_X86_32 */
154 
155 extern int __init efi_memblock_x86_reserve_range(void);
156 extern void __init efi_print_memmap(void);
157 extern void __init efi_map_region(efi_memory_desc_t *md);
158 extern void __init efi_map_region_fixed(efi_memory_desc_t *md);
159 extern void efi_sync_low_kernel_mappings(void);
160 extern int __init efi_alloc_page_tables(void);
161 extern int __init efi_setup_page_tables(unsigned long pa_memmap, unsigned num_pages);
162 extern void __init efi_runtime_update_mappings(void);
163 extern void __init efi_dump_pagetable(void);
164 extern void __init efi_apply_memmap_quirks(void);
165 extern int __init efi_reuse_config(u64 tables, int nr_tables);
166 extern void efi_delete_dummy_variable(void);
167 extern void efi_crash_gracefully_on_page_fault(unsigned long phys_addr);
168 extern void efi_free_boot_services(void);
169 
170 void efi_enter_mm(void);
171 void efi_leave_mm(void);
172 
173 /* kexec external ABI */
174 struct efi_setup_data {
175 	u64 fw_vendor;
176 	u64 __unused;
177 	u64 tables;
178 	u64 smbios;
179 	u64 reserved[8];
180 };
181 
182 extern u64 efi_setup;
183 
184 #ifdef CONFIG_EFI
185 extern u64 __efi64_thunk(u32, ...);
186 
187 #define efi64_thunk(...) ({						\
188 	u64 __pad[3]; /* must have space for 3 args on the stack */	\
189 	__efi_nargs_check(efi64_thunk, 9, __VA_ARGS__);			\
190 	__efi64_thunk(__VA_ARGS__, __pad);				\
191 })
192 
193 static inline bool efi_is_mixed(void)
194 {
195 	if (!IS_ENABLED(CONFIG_EFI_MIXED))
196 		return false;
197 	return IS_ENABLED(CONFIG_X86_64) && !efi_enabled(EFI_64BIT);
198 }
199 
200 static inline bool efi_runtime_supported(void)
201 {
202 	if (IS_ENABLED(CONFIG_X86_64) == efi_enabled(EFI_64BIT))
203 		return true;
204 
205 	return IS_ENABLED(CONFIG_EFI_MIXED);
206 }
207 
208 extern void parse_efi_setup(u64 phys_addr, u32 data_len);
209 
210 extern void efi_thunk_runtime_setup(void);
211 efi_status_t efi_set_virtual_address_map(unsigned long memory_map_size,
212 					 unsigned long descriptor_size,
213 					 u32 descriptor_version,
214 					 efi_memory_desc_t *virtual_map,
215 					 unsigned long systab_phys);
216 
217 /* arch specific definitions used by the stub code */
218 
219 #ifdef CONFIG_EFI_MIXED
220 
221 #define ARCH_HAS_EFISTUB_WRAPPERS
222 
223 static inline bool efi_is_64bit(void)
224 {
225 	extern const bool efi_is64;
226 
227 	return efi_is64;
228 }
229 
230 static inline bool efi_is_native(void)
231 {
232 	return efi_is_64bit();
233 }
234 
235 #define efi_table_attr(inst, attr)					\
236 	(efi_is_native() ? (inst)->attr					\
237 			 : efi_mixed_table_attr((inst), attr))
238 
239 #define efi_mixed_table_attr(inst, attr)				\
240 	(__typeof__(inst->attr))					\
241 		_Generic(inst->mixed_mode.attr,				\
242 		u32:		(unsigned long)(inst->mixed_mode.attr),	\
243 		default:	(inst->mixed_mode.attr))
244 
245 /*
246  * The following macros allow translating arguments if necessary from native to
247  * mixed mode. The use case for this is to initialize the upper 32 bits of
248  * output parameters, and where the 32-bit method requires a 64-bit argument,
249  * which must be split up into two arguments to be thunked properly.
250  *
251  * As examples, the AllocatePool boot service returns the address of the
252  * allocation, but it will not set the high 32 bits of the address. To ensure
253  * that the full 64-bit address is initialized, we zero-init the address before
254  * calling the thunk.
255  *
256  * The FreePages boot service takes a 64-bit physical address even in 32-bit
257  * mode. For the thunk to work correctly, a native 64-bit call of
258  * 	free_pages(addr, size)
259  * must be translated to
260  * 	efi64_thunk(free_pages, addr & U32_MAX, addr >> 32, size)
261  * so that the two 32-bit halves of addr get pushed onto the stack separately.
262  */
263 
264 static inline void *efi64_zero_upper(void *p)
265 {
266 	((u32 *)p)[1] = 0;
267 	return p;
268 }
269 
270 static inline u32 efi64_convert_status(efi_status_t status)
271 {
272 	return (u32)(status | (u64)status >> 32);
273 }
274 
275 #define __efi64_split(val)		(val) & U32_MAX, (u64)(val) >> 32
276 
277 #define __efi64_argmap_free_pages(addr, size)				\
278 	((addr), 0, (size))
279 
280 #define __efi64_argmap_get_memory_map(mm_size, mm, key, size, ver)	\
281 	((mm_size), (mm), efi64_zero_upper(key), efi64_zero_upper(size), (ver))
282 
283 #define __efi64_argmap_allocate_pool(type, size, buffer)		\
284 	((type), (size), efi64_zero_upper(buffer))
285 
286 #define __efi64_argmap_create_event(type, tpl, f, c, event)		\
287 	((type), (tpl), (f), (c), efi64_zero_upper(event))
288 
289 #define __efi64_argmap_set_timer(event, type, time)			\
290 	((event), (type), lower_32_bits(time), upper_32_bits(time))
291 
292 #define __efi64_argmap_wait_for_event(num, event, index)		\
293 	((num), (event), efi64_zero_upper(index))
294 
295 #define __efi64_argmap_handle_protocol(handle, protocol, interface)	\
296 	((handle), (protocol), efi64_zero_upper(interface))
297 
298 #define __efi64_argmap_locate_protocol(protocol, reg, interface)	\
299 	((protocol), (reg), efi64_zero_upper(interface))
300 
301 #define __efi64_argmap_locate_device_path(protocol, path, handle)	\
302 	((protocol), (path), efi64_zero_upper(handle))
303 
304 #define __efi64_argmap_exit(handle, status, size, data)			\
305 	((handle), efi64_convert_status(status), (size), (data))
306 
307 /* PCI I/O */
308 #define __efi64_argmap_get_location(protocol, seg, bus, dev, func)	\
309 	((protocol), efi64_zero_upper(seg), efi64_zero_upper(bus),	\
310 	 efi64_zero_upper(dev), efi64_zero_upper(func))
311 
312 /* LoadFile */
313 #define __efi64_argmap_load_file(protocol, path, policy, bufsize, buf)	\
314 	((protocol), (path), (policy), efi64_zero_upper(bufsize), (buf))
315 
316 /* Graphics Output Protocol */
317 #define __efi64_argmap_query_mode(gop, mode, size, info)		\
318 	((gop), (mode), efi64_zero_upper(size), efi64_zero_upper(info))
319 
320 /* TCG2 protocol */
321 #define __efi64_argmap_hash_log_extend_event(prot, fl, addr, size, ev)	\
322 	((prot), (fl), 0ULL, (u64)(addr), 0ULL, (u64)(size), 0ULL, ev)
323 
324 /* DXE services */
325 #define __efi64_argmap_get_memory_space_descriptor(phys, desc) \
326 	(__efi64_split(phys), (desc))
327 
328 #define __efi64_argmap_set_memory_space_attributes(phys, size, flags) \
329 	(__efi64_split(phys), __efi64_split(size), __efi64_split(flags))
330 
331 /* file protocol */
332 #define __efi64_argmap_open(prot, newh, fname, mode, attr) \
333 	((prot), efi64_zero_upper(newh), (fname), __efi64_split(mode), \
334 	 __efi64_split(attr))
335 
336 #define __efi64_argmap_set_position(pos) (__efi64_split(pos))
337 
338 /* file system protocol */
339 #define __efi64_argmap_open_volume(prot, file) \
340 	((prot), efi64_zero_upper(file))
341 
342 /* Memory Attribute Protocol */
343 #define __efi64_argmap_get_memory_attributes(protocol, phys, size, flags) \
344 	((protocol), __efi64_split(phys), __efi64_split(size), (flags))
345 
346 #define __efi64_argmap_set_memory_attributes(protocol, phys, size, flags) \
347 	((protocol), __efi64_split(phys), __efi64_split(size), __efi64_split(flags))
348 
349 #define __efi64_argmap_clear_memory_attributes(protocol, phys, size, flags) \
350 	((protocol), __efi64_split(phys), __efi64_split(size), __efi64_split(flags))
351 
352 /*
353  * The macros below handle the plumbing for the argument mapping. To add a
354  * mapping for a specific EFI method, simply define a macro
355  * __efi64_argmap_<method name>, following the examples above.
356  */
357 
358 #define __efi64_thunk_map(inst, func, ...)				\
359 	efi64_thunk(inst->mixed_mode.func,				\
360 		__efi64_argmap(__efi64_argmap_ ## func(__VA_ARGS__),	\
361 			       (__VA_ARGS__)))
362 
363 #define __efi64_argmap(mapped, args)					\
364 	__PASTE(__efi64_argmap__, __efi_nargs(__efi_eat mapped))(mapped, args)
365 #define __efi64_argmap__0(mapped, args) __efi_eval mapped
366 #define __efi64_argmap__1(mapped, args) __efi_eval args
367 
368 #define __efi_eat(...)
369 #define __efi_eval(...) __VA_ARGS__
370 
371 static inline efi_status_t __efi64_widen_efi_status(u64 status)
372 {
373 	/* use rotate to move the value of bit #31 into position #63 */
374 	return ror64(rol32(status, 1), 1);
375 }
376 
377 /* The macro below handles dispatching via the thunk if needed */
378 
379 #define efi_fn_call(inst, func, ...)					\
380 	(efi_is_native() ? (inst)->func(__VA_ARGS__)			\
381 			 : efi_mixed_call((inst), func, ##__VA_ARGS__))
382 
383 #define efi_mixed_call(inst, func, ...)					\
384 	_Generic(inst->func(__VA_ARGS__),				\
385 	efi_status_t:							\
386 		__efi64_widen_efi_status(				\
387 			__efi64_thunk_map(inst, func, ##__VA_ARGS__)),	\
388 	u64: ({ BUILD_BUG(); ULONG_MAX; }),				\
389 	default:							\
390 		(__typeof__(inst->func(__VA_ARGS__)))			\
391 			__efi64_thunk_map(inst, func, ##__VA_ARGS__))
392 
393 #else /* CONFIG_EFI_MIXED */
394 
395 static inline bool efi_is_64bit(void)
396 {
397 	return IS_ENABLED(CONFIG_X86_64);
398 }
399 
400 #endif /* CONFIG_EFI_MIXED */
401 
402 extern bool efi_reboot_required(void);
403 extern bool efi_is_table_address(unsigned long phys_addr);
404 
405 extern void efi_reserve_boot_services(void);
406 #else
407 static inline void parse_efi_setup(u64 phys_addr, u32 data_len) {}
408 static inline bool efi_reboot_required(void)
409 {
410 	return false;
411 }
412 static inline  bool efi_is_table_address(unsigned long phys_addr)
413 {
414 	return false;
415 }
416 static inline void efi_reserve_boot_services(void)
417 {
418 }
419 #endif /* CONFIG_EFI */
420 
421 #ifdef CONFIG_EFI_FAKE_MEMMAP
422 extern void __init efi_fake_memmap_early(void);
423 extern void __init efi_fake_memmap(void);
424 #else
425 static inline void efi_fake_memmap_early(void)
426 {
427 }
428 
429 static inline void efi_fake_memmap(void)
430 {
431 }
432 #endif
433 
434 extern int __init efi_memmap_alloc(unsigned int num_entries,
435 				   struct efi_memory_map_data *data);
436 extern void __efi_memmap_free(u64 phys, unsigned long size,
437 			      unsigned long flags);
438 #define __efi_memmap_free __efi_memmap_free
439 
440 extern int __init efi_memmap_install(struct efi_memory_map_data *data);
441 extern int __init efi_memmap_split_count(efi_memory_desc_t *md,
442 					 struct range *range);
443 extern void __init efi_memmap_insert(struct efi_memory_map *old_memmap,
444 				     void *buf, struct efi_mem_range *mem);
445 
446 #define arch_ima_efi_boot_mode	\
447 	({ extern struct boot_params boot_params; boot_params.secure_boot; })
448 
449 #ifdef CONFIG_EFI_RUNTIME_MAP
450 int efi_get_runtime_map_size(void);
451 int efi_get_runtime_map_desc_size(void);
452 int efi_runtime_map_copy(void *buf, size_t bufsz);
453 #else
454 static inline int efi_get_runtime_map_size(void)
455 {
456 	return 0;
457 }
458 
459 static inline int efi_get_runtime_map_desc_size(void)
460 {
461 	return 0;
462 }
463 
464 static inline int efi_runtime_map_copy(void *buf, size_t bufsz)
465 {
466 	return 0;
467 }
468 
469 #endif
470 
471 #endif /* _ASM_X86_EFI_H */
472