xref: /openbmc/linux/arch/x86/include/asm/efi.h (revision 82806c25)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _ASM_X86_EFI_H
3 #define _ASM_X86_EFI_H
4 
5 #include <asm/fpu/api.h>
6 #include <asm/processor-flags.h>
7 #include <asm/tlb.h>
8 #include <asm/nospec-branch.h>
9 #include <asm/mmu_context.h>
10 #include <asm/ibt.h>
11 #include <linux/build_bug.h>
12 #include <linux/kernel.h>
13 #include <linux/pgtable.h>
14 
15 extern unsigned long efi_fw_vendor, efi_config_table;
16 extern unsigned long efi_mixed_mode_stack_pa;
17 
18 /*
19  * We map the EFI regions needed for runtime services non-contiguously,
20  * with preserved alignment on virtual addresses starting from -4G down
21  * for a total max space of 64G. This way, we provide for stable runtime
22  * services addresses across kernels so that a kexec'd kernel can still
23  * use them.
24  *
25  * This is the main reason why we're doing stable VA mappings for RT
26  * services.
27  */
28 
29 #define EFI32_LOADER_SIGNATURE	"EL32"
30 #define EFI64_LOADER_SIGNATURE	"EL64"
31 
32 #define ARCH_EFI_IRQ_FLAGS_MASK	X86_EFLAGS_IF
33 
34 /*
35  * The EFI services are called through variadic functions in many cases. These
36  * functions are implemented in assembler and support only a fixed number of
37  * arguments. The macros below allows us to check at build time that we don't
38  * try to call them with too many arguments.
39  *
40  * __efi_nargs() will return the number of arguments if it is 7 or less, and
41  * cause a BUILD_BUG otherwise. The limitations of the C preprocessor make it
42  * impossible to calculate the exact number of arguments beyond some
43  * pre-defined limit. The maximum number of arguments currently supported by
44  * any of the thunks is 7, so this is good enough for now and can be extended
45  * in the obvious way if we ever need more.
46  */
47 
48 #define __efi_nargs(...) __efi_nargs_(__VA_ARGS__)
49 #define __efi_nargs_(...) __efi_nargs__(0, ##__VA_ARGS__,	\
50 	__efi_arg_sentinel(9), __efi_arg_sentinel(8),		\
51 	__efi_arg_sentinel(7), __efi_arg_sentinel(6),		\
52 	__efi_arg_sentinel(5), __efi_arg_sentinel(4),		\
53 	__efi_arg_sentinel(3), __efi_arg_sentinel(2),		\
54 	__efi_arg_sentinel(1), __efi_arg_sentinel(0))
55 #define __efi_nargs__(_0, _1, _2, _3, _4, _5, _6, _7, _8, _9, n, ...)	\
56 	__take_second_arg(n,					\
57 		({ BUILD_BUG_ON_MSG(1, "__efi_nargs limit exceeded"); 10; }))
58 #define __efi_arg_sentinel(n) , n
59 
60 /*
61  * __efi_nargs_check(f, n, ...) will cause a BUILD_BUG if the ellipsis
62  * represents more than n arguments.
63  */
64 
65 #define __efi_nargs_check(f, n, ...)					\
66 	__efi_nargs_check_(f, __efi_nargs(__VA_ARGS__), n)
67 #define __efi_nargs_check_(f, p, n) __efi_nargs_check__(f, p, n)
68 #define __efi_nargs_check__(f, p, n) ({					\
69 	BUILD_BUG_ON_MSG(						\
70 		(p) > (n),						\
71 		#f " called with too many arguments (" #p ">" #n ")");	\
72 })
73 
74 static inline void efi_fpu_begin(void)
75 {
76 	/*
77 	 * The UEFI calling convention (UEFI spec 2.3.2 and 2.3.4) requires
78 	 * that FCW and MXCSR (64-bit) must be initialized prior to calling
79 	 * UEFI code.  (Oddly the spec does not require that the FPU stack
80 	 * be empty.)
81 	 */
82 	kernel_fpu_begin_mask(KFPU_387 | KFPU_MXCSR);
83 }
84 
85 static inline void efi_fpu_end(void)
86 {
87 	kernel_fpu_end();
88 }
89 
90 #ifdef CONFIG_X86_32
91 #define arch_efi_call_virt_setup()					\
92 ({									\
93 	efi_fpu_begin();						\
94 	firmware_restrict_branch_speculation_start();			\
95 })
96 
97 #define arch_efi_call_virt_teardown()					\
98 ({									\
99 	firmware_restrict_branch_speculation_end();			\
100 	efi_fpu_end();							\
101 })
102 
103 #else /* !CONFIG_X86_32 */
104 
105 #define EFI_LOADER_SIGNATURE	"EL64"
106 
107 extern asmlinkage u64 __efi_call(void *fp, ...);
108 
109 #define efi_call(...) ({						\
110 	__efi_nargs_check(efi_call, 7, __VA_ARGS__);			\
111 	__efi_call(__VA_ARGS__);					\
112 })
113 
114 #define arch_efi_call_virt_setup()					\
115 ({									\
116 	efi_sync_low_kernel_mappings();					\
117 	efi_fpu_begin();						\
118 	firmware_restrict_branch_speculation_start();			\
119 	efi_enter_mm();							\
120 })
121 
122 #undef arch_efi_call_virt
123 #define arch_efi_call_virt(p, f, args...) ({				\
124 	u64 ret, ibt = ibt_save();					\
125 	ret = efi_call((void *)p->f, args);				\
126 	ibt_restore(ibt);						\
127 	ret;								\
128 })
129 
130 #define arch_efi_call_virt_teardown()					\
131 ({									\
132 	efi_leave_mm();							\
133 	firmware_restrict_branch_speculation_end();			\
134 	efi_fpu_end();							\
135 })
136 
137 #ifdef CONFIG_KASAN
138 /*
139  * CONFIG_KASAN may redefine memset to __memset.  __memset function is present
140  * only in kernel binary.  Since the EFI stub linked into a separate binary it
141  * doesn't have __memset().  So we should use standard memset from
142  * arch/x86/boot/compressed/string.c.  The same applies to memcpy and memmove.
143  */
144 #undef memcpy
145 #undef memset
146 #undef memmove
147 #endif
148 
149 #endif /* CONFIG_X86_32 */
150 
151 extern int __init efi_memblock_x86_reserve_range(void);
152 extern void __init efi_print_memmap(void);
153 extern void __init efi_map_region(efi_memory_desc_t *md);
154 extern void __init efi_map_region_fixed(efi_memory_desc_t *md);
155 extern void efi_sync_low_kernel_mappings(void);
156 extern int __init efi_alloc_page_tables(void);
157 extern int __init efi_setup_page_tables(unsigned long pa_memmap, unsigned num_pages);
158 extern void __init efi_runtime_update_mappings(void);
159 extern void __init efi_dump_pagetable(void);
160 extern void __init efi_apply_memmap_quirks(void);
161 extern int __init efi_reuse_config(u64 tables, int nr_tables);
162 extern void efi_delete_dummy_variable(void);
163 extern void efi_crash_gracefully_on_page_fault(unsigned long phys_addr);
164 extern void efi_free_boot_services(void);
165 
166 void efi_enter_mm(void);
167 void efi_leave_mm(void);
168 
169 /* kexec external ABI */
170 struct efi_setup_data {
171 	u64 fw_vendor;
172 	u64 __unused;
173 	u64 tables;
174 	u64 smbios;
175 	u64 reserved[8];
176 };
177 
178 extern u64 efi_setup;
179 
180 #ifdef CONFIG_EFI
181 extern efi_status_t __efi64_thunk(u32, ...);
182 
183 #define efi64_thunk(...) ({						\
184 	u64 __pad[3]; /* must have space for 3 args on the stack */	\
185 	__efi_nargs_check(efi64_thunk, 9, __VA_ARGS__);			\
186 	__efi64_thunk(__VA_ARGS__, __pad);				\
187 })
188 
189 static inline bool efi_is_mixed(void)
190 {
191 	if (!IS_ENABLED(CONFIG_EFI_MIXED))
192 		return false;
193 	return IS_ENABLED(CONFIG_X86_64) && !efi_enabled(EFI_64BIT);
194 }
195 
196 static inline bool efi_runtime_supported(void)
197 {
198 	if (IS_ENABLED(CONFIG_X86_64) == efi_enabled(EFI_64BIT))
199 		return true;
200 
201 	return IS_ENABLED(CONFIG_EFI_MIXED);
202 }
203 
204 extern void parse_efi_setup(u64 phys_addr, u32 data_len);
205 
206 extern void efi_thunk_runtime_setup(void);
207 efi_status_t efi_set_virtual_address_map(unsigned long memory_map_size,
208 					 unsigned long descriptor_size,
209 					 u32 descriptor_version,
210 					 efi_memory_desc_t *virtual_map,
211 					 unsigned long systab_phys);
212 
213 /* arch specific definitions used by the stub code */
214 
215 #ifdef CONFIG_EFI_MIXED
216 
217 #define ARCH_HAS_EFISTUB_WRAPPERS
218 
219 static inline bool efi_is_64bit(void)
220 {
221 	extern const bool efi_is64;
222 
223 	return efi_is64;
224 }
225 
226 static inline bool efi_is_native(void)
227 {
228 	return efi_is_64bit();
229 }
230 
231 #define efi_mixed_mode_cast(attr)					\
232 	__builtin_choose_expr(						\
233 		__builtin_types_compatible_p(u32, __typeof__(attr)),	\
234 			(unsigned long)(attr), (attr))
235 
236 #define efi_table_attr(inst, attr)					\
237 	(efi_is_native()						\
238 		? inst->attr						\
239 		: (__typeof__(inst->attr))				\
240 			efi_mixed_mode_cast(inst->mixed_mode.attr))
241 
242 /*
243  * The following macros allow translating arguments if necessary from native to
244  * mixed mode. The use case for this is to initialize the upper 32 bits of
245  * output parameters, and where the 32-bit method requires a 64-bit argument,
246  * which must be split up into two arguments to be thunked properly.
247  *
248  * As examples, the AllocatePool boot service returns the address of the
249  * allocation, but it will not set the high 32 bits of the address. To ensure
250  * that the full 64-bit address is initialized, we zero-init the address before
251  * calling the thunk.
252  *
253  * The FreePages boot service takes a 64-bit physical address even in 32-bit
254  * mode. For the thunk to work correctly, a native 64-bit call of
255  * 	free_pages(addr, size)
256  * must be translated to
257  * 	efi64_thunk(free_pages, addr & U32_MAX, addr >> 32, size)
258  * so that the two 32-bit halves of addr get pushed onto the stack separately.
259  */
260 
261 static inline void *efi64_zero_upper(void *p)
262 {
263 	((u32 *)p)[1] = 0;
264 	return p;
265 }
266 
267 static inline u32 efi64_convert_status(efi_status_t status)
268 {
269 	return (u32)(status | (u64)status >> 32);
270 }
271 
272 #define __efi64_split(val)		(val) & U32_MAX, (u64)(val) >> 32
273 
274 #define __efi64_argmap_free_pages(addr, size)				\
275 	((addr), 0, (size))
276 
277 #define __efi64_argmap_get_memory_map(mm_size, mm, key, size, ver)	\
278 	((mm_size), (mm), efi64_zero_upper(key), efi64_zero_upper(size), (ver))
279 
280 #define __efi64_argmap_allocate_pool(type, size, buffer)		\
281 	((type), (size), efi64_zero_upper(buffer))
282 
283 #define __efi64_argmap_create_event(type, tpl, f, c, event)		\
284 	((type), (tpl), (f), (c), efi64_zero_upper(event))
285 
286 #define __efi64_argmap_set_timer(event, type, time)			\
287 	((event), (type), lower_32_bits(time), upper_32_bits(time))
288 
289 #define __efi64_argmap_wait_for_event(num, event, index)		\
290 	((num), (event), efi64_zero_upper(index))
291 
292 #define __efi64_argmap_handle_protocol(handle, protocol, interface)	\
293 	((handle), (protocol), efi64_zero_upper(interface))
294 
295 #define __efi64_argmap_locate_protocol(protocol, reg, interface)	\
296 	((protocol), (reg), efi64_zero_upper(interface))
297 
298 #define __efi64_argmap_locate_device_path(protocol, path, handle)	\
299 	((protocol), (path), efi64_zero_upper(handle))
300 
301 #define __efi64_argmap_exit(handle, status, size, data)			\
302 	((handle), efi64_convert_status(status), (size), (data))
303 
304 /* PCI I/O */
305 #define __efi64_argmap_get_location(protocol, seg, bus, dev, func)	\
306 	((protocol), efi64_zero_upper(seg), efi64_zero_upper(bus),	\
307 	 efi64_zero_upper(dev), efi64_zero_upper(func))
308 
309 /* LoadFile */
310 #define __efi64_argmap_load_file(protocol, path, policy, bufsize, buf)	\
311 	((protocol), (path), (policy), efi64_zero_upper(bufsize), (buf))
312 
313 /* Graphics Output Protocol */
314 #define __efi64_argmap_query_mode(gop, mode, size, info)		\
315 	((gop), (mode), efi64_zero_upper(size), efi64_zero_upper(info))
316 
317 /* TCG2 protocol */
318 #define __efi64_argmap_hash_log_extend_event(prot, fl, addr, size, ev)	\
319 	((prot), (fl), 0ULL, (u64)(addr), 0ULL, (u64)(size), 0ULL, ev)
320 
321 /* DXE services */
322 #define __efi64_argmap_get_memory_space_descriptor(phys, desc) \
323 	(__efi64_split(phys), (desc))
324 
325 #define __efi64_argmap_set_memory_space_attributes(phys, size, flags) \
326 	(__efi64_split(phys), __efi64_split(size), __efi64_split(flags))
327 
328 /*
329  * The macros below handle the plumbing for the argument mapping. To add a
330  * mapping for a specific EFI method, simply define a macro
331  * __efi64_argmap_<method name>, following the examples above.
332  */
333 
334 #define __efi64_thunk_map(inst, func, ...)				\
335 	efi64_thunk(inst->mixed_mode.func,				\
336 		__efi64_argmap(__efi64_argmap_ ## func(__VA_ARGS__),	\
337 			       (__VA_ARGS__)))
338 
339 #define __efi64_argmap(mapped, args)					\
340 	__PASTE(__efi64_argmap__, __efi_nargs(__efi_eat mapped))(mapped, args)
341 #define __efi64_argmap__0(mapped, args) __efi_eval mapped
342 #define __efi64_argmap__1(mapped, args) __efi_eval args
343 
344 #define __efi_eat(...)
345 #define __efi_eval(...) __VA_ARGS__
346 
347 /* The three macros below handle dispatching via the thunk if needed */
348 
349 #define efi_call_proto(inst, func, ...)					\
350 	(efi_is_native()						\
351 		? inst->func(inst, ##__VA_ARGS__)			\
352 		: __efi64_thunk_map(inst, func, inst, ##__VA_ARGS__))
353 
354 #define efi_bs_call(func, ...)						\
355 	(efi_is_native()						\
356 		? efi_system_table->boottime->func(__VA_ARGS__)		\
357 		: __efi64_thunk_map(efi_table_attr(efi_system_table,	\
358 						   boottime),		\
359 				    func, __VA_ARGS__))
360 
361 #define efi_rt_call(func, ...)						\
362 	(efi_is_native()						\
363 		? efi_system_table->runtime->func(__VA_ARGS__)		\
364 		: __efi64_thunk_map(efi_table_attr(efi_system_table,	\
365 						   runtime),		\
366 				    func, __VA_ARGS__))
367 
368 #define efi_dxe_call(func, ...)						\
369 	(efi_is_native()						\
370 		? efi_dxe_table->func(__VA_ARGS__)			\
371 		: __efi64_thunk_map(efi_dxe_table, func, __VA_ARGS__))
372 
373 #else /* CONFIG_EFI_MIXED */
374 
375 static inline bool efi_is_64bit(void)
376 {
377 	return IS_ENABLED(CONFIG_X86_64);
378 }
379 
380 #endif /* CONFIG_EFI_MIXED */
381 
382 extern bool efi_reboot_required(void);
383 extern bool efi_is_table_address(unsigned long phys_addr);
384 
385 extern void efi_reserve_boot_services(void);
386 #else
387 static inline void parse_efi_setup(u64 phys_addr, u32 data_len) {}
388 static inline bool efi_reboot_required(void)
389 {
390 	return false;
391 }
392 static inline  bool efi_is_table_address(unsigned long phys_addr)
393 {
394 	return false;
395 }
396 static inline void efi_reserve_boot_services(void)
397 {
398 }
399 #endif /* CONFIG_EFI */
400 
401 #ifdef CONFIG_EFI_FAKE_MEMMAP
402 extern void __init efi_fake_memmap_early(void);
403 #else
404 static inline void efi_fake_memmap_early(void)
405 {
406 }
407 #endif
408 
409 #define arch_ima_efi_boot_mode	\
410 	({ extern struct boot_params boot_params; boot_params.secure_boot; })
411 
412 #endif /* _ASM_X86_EFI_H */
413