xref: /openbmc/linux/arch/x86/include/asm/efi.h (revision 15e3ae36)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _ASM_X86_EFI_H
3 #define _ASM_X86_EFI_H
4 
5 #include <asm/fpu/api.h>
6 #include <asm/pgtable.h>
7 #include <asm/processor-flags.h>
8 #include <asm/tlb.h>
9 #include <asm/nospec-branch.h>
10 #include <asm/mmu_context.h>
11 #include <linux/build_bug.h>
12 
13 extern unsigned long efi_fw_vendor, efi_config_table;
14 
15 /*
16  * We map the EFI regions needed for runtime services non-contiguously,
17  * with preserved alignment on virtual addresses starting from -4G down
18  * for a total max space of 64G. This way, we provide for stable runtime
19  * services addresses across kernels so that a kexec'd kernel can still
20  * use them.
21  *
22  * This is the main reason why we're doing stable VA mappings for RT
23  * services.
24  *
25  * SGI UV1 machines are known to be incompatible with this scheme, so we
26  * provide an opt-out for these machines via a DMI quirk that sets the
27  * attribute below.
28  */
29 #define EFI_UV1_MEMMAP         EFI_ARCH_1
30 
31 static inline bool efi_have_uv1_memmap(void)
32 {
33 	return IS_ENABLED(CONFIG_X86_UV) && efi_enabled(EFI_UV1_MEMMAP);
34 }
35 
36 #define EFI32_LOADER_SIGNATURE	"EL32"
37 #define EFI64_LOADER_SIGNATURE	"EL64"
38 
39 #define ARCH_EFI_IRQ_FLAGS_MASK	X86_EFLAGS_IF
40 
41 /*
42  * The EFI services are called through variadic functions in many cases. These
43  * functions are implemented in assembler and support only a fixed number of
44  * arguments. The macros below allows us to check at build time that we don't
45  * try to call them with too many arguments.
46  *
47  * __efi_nargs() will return the number of arguments if it is 7 or less, and
48  * cause a BUILD_BUG otherwise. The limitations of the C preprocessor make it
49  * impossible to calculate the exact number of arguments beyond some
50  * pre-defined limit. The maximum number of arguments currently supported by
51  * any of the thunks is 7, so this is good enough for now and can be extended
52  * in the obvious way if we ever need more.
53  */
54 
55 #define __efi_nargs(...) __efi_nargs_(__VA_ARGS__)
56 #define __efi_nargs_(...) __efi_nargs__(0, ##__VA_ARGS__,	\
57 	__efi_arg_sentinel(7), __efi_arg_sentinel(6),		\
58 	__efi_arg_sentinel(5), __efi_arg_sentinel(4),		\
59 	__efi_arg_sentinel(3), __efi_arg_sentinel(2),		\
60 	__efi_arg_sentinel(1), __efi_arg_sentinel(0))
61 #define __efi_nargs__(_0, _1, _2, _3, _4, _5, _6, _7, n, ...)	\
62 	__take_second_arg(n,					\
63 		({ BUILD_BUG_ON_MSG(1, "__efi_nargs limit exceeded"); 8; }))
64 #define __efi_arg_sentinel(n) , n
65 
66 /*
67  * __efi_nargs_check(f, n, ...) will cause a BUILD_BUG if the ellipsis
68  * represents more than n arguments.
69  */
70 
71 #define __efi_nargs_check(f, n, ...)					\
72 	__efi_nargs_check_(f, __efi_nargs(__VA_ARGS__), n)
73 #define __efi_nargs_check_(f, p, n) __efi_nargs_check__(f, p, n)
74 #define __efi_nargs_check__(f, p, n) ({					\
75 	BUILD_BUG_ON_MSG(						\
76 		(p) > (n),						\
77 		#f " called with too many arguments (" #p ">" #n ")");	\
78 })
79 
80 #ifdef CONFIG_X86_32
81 #define arch_efi_call_virt_setup()					\
82 ({									\
83 	kernel_fpu_begin();						\
84 	firmware_restrict_branch_speculation_start();			\
85 })
86 
87 #define arch_efi_call_virt_teardown()					\
88 ({									\
89 	firmware_restrict_branch_speculation_end();			\
90 	kernel_fpu_end();						\
91 })
92 
93 
94 #define arch_efi_call_virt(p, f, args...)	p->f(args)
95 
96 #define efi_ioremap(addr, size, type, attr)	ioremap_cache(addr, size)
97 
98 #else /* !CONFIG_X86_32 */
99 
100 #define EFI_LOADER_SIGNATURE	"EL64"
101 
102 extern asmlinkage u64 __efi_call(void *fp, ...);
103 
104 #define efi_call(...) ({						\
105 	__efi_nargs_check(efi_call, 7, __VA_ARGS__);			\
106 	__efi_call(__VA_ARGS__);					\
107 })
108 
109 /*
110  * struct efi_scratch - Scratch space used while switching to/from efi_mm
111  * @phys_stack: stack used during EFI Mixed Mode
112  * @prev_mm:    store/restore stolen mm_struct while switching to/from efi_mm
113  */
114 struct efi_scratch {
115 	u64			phys_stack;
116 	struct mm_struct	*prev_mm;
117 } __packed;
118 
119 #define arch_efi_call_virt_setup()					\
120 ({									\
121 	efi_sync_low_kernel_mappings();					\
122 	kernel_fpu_begin();						\
123 	firmware_restrict_branch_speculation_start();			\
124 									\
125 	if (!efi_have_uv1_memmap())					\
126 		efi_switch_mm(&efi_mm);					\
127 })
128 
129 #define arch_efi_call_virt(p, f, args...)				\
130 	efi_call((void *)p->f, args)					\
131 
132 #define arch_efi_call_virt_teardown()					\
133 ({									\
134 	if (!efi_have_uv1_memmap())					\
135 		efi_switch_mm(efi_scratch.prev_mm);			\
136 									\
137 	firmware_restrict_branch_speculation_end();			\
138 	kernel_fpu_end();						\
139 })
140 
141 extern void __iomem *__init efi_ioremap(unsigned long addr, unsigned long size,
142 					u32 type, u64 attribute);
143 
144 #ifdef CONFIG_KASAN
145 /*
146  * CONFIG_KASAN may redefine memset to __memset.  __memset function is present
147  * only in kernel binary.  Since the EFI stub linked into a separate binary it
148  * doesn't have __memset().  So we should use standard memset from
149  * arch/x86/boot/compressed/string.c.  The same applies to memcpy and memmove.
150  */
151 #undef memcpy
152 #undef memset
153 #undef memmove
154 #endif
155 
156 #endif /* CONFIG_X86_32 */
157 
158 extern struct efi_scratch efi_scratch;
159 extern void __init efi_set_executable(efi_memory_desc_t *md, bool executable);
160 extern int __init efi_memblock_x86_reserve_range(void);
161 extern void __init efi_print_memmap(void);
162 extern void __init efi_memory_uc(u64 addr, unsigned long size);
163 extern void __init efi_map_region(efi_memory_desc_t *md);
164 extern void __init efi_map_region_fixed(efi_memory_desc_t *md);
165 extern void efi_sync_low_kernel_mappings(void);
166 extern int __init efi_alloc_page_tables(void);
167 extern int __init efi_setup_page_tables(unsigned long pa_memmap, unsigned num_pages);
168 extern void __init old_map_region(efi_memory_desc_t *md);
169 extern void __init runtime_code_page_mkexec(void);
170 extern void __init efi_runtime_update_mappings(void);
171 extern void __init efi_dump_pagetable(void);
172 extern void __init efi_apply_memmap_quirks(void);
173 extern int __init efi_reuse_config(u64 tables, int nr_tables);
174 extern void efi_delete_dummy_variable(void);
175 extern void efi_switch_mm(struct mm_struct *mm);
176 extern void efi_recover_from_page_fault(unsigned long phys_addr);
177 extern void efi_free_boot_services(void);
178 extern pgd_t * __init efi_uv1_memmap_phys_prolog(void);
179 extern void __init efi_uv1_memmap_phys_epilog(pgd_t *save_pgd);
180 
181 struct efi_setup_data {
182 	u64 fw_vendor;
183 	u64 tables;
184 	u64 smbios;
185 	u64 reserved[8];
186 };
187 
188 extern u64 efi_setup;
189 
190 #ifdef CONFIG_EFI
191 extern efi_status_t __efi64_thunk(u32, ...);
192 
193 #define efi64_thunk(...) ({						\
194 	__efi_nargs_check(efi64_thunk, 6, __VA_ARGS__);			\
195 	__efi64_thunk(__VA_ARGS__);					\
196 })
197 
198 static inline bool efi_is_mixed(void)
199 {
200 	if (!IS_ENABLED(CONFIG_EFI_MIXED))
201 		return false;
202 	return IS_ENABLED(CONFIG_X86_64) && !efi_enabled(EFI_64BIT);
203 }
204 
205 static inline bool efi_runtime_supported(void)
206 {
207 	if (IS_ENABLED(CONFIG_X86_64) == efi_enabled(EFI_64BIT))
208 		return true;
209 
210 	return IS_ENABLED(CONFIG_EFI_MIXED);
211 }
212 
213 extern void parse_efi_setup(u64 phys_addr, u32 data_len);
214 
215 extern void efifb_setup_from_dmi(struct screen_info *si, const char *opt);
216 
217 extern void efi_thunk_runtime_setup(void);
218 efi_status_t efi_set_virtual_address_map(unsigned long memory_map_size,
219 					 unsigned long descriptor_size,
220 					 u32 descriptor_version,
221 					 efi_memory_desc_t *virtual_map,
222 					 unsigned long systab_phys);
223 
224 /* arch specific definitions used by the stub code */
225 
226 __attribute_const__ bool efi_is_64bit(void);
227 
228 static inline bool efi_is_native(void)
229 {
230 	if (!IS_ENABLED(CONFIG_X86_64))
231 		return true;
232 	if (!IS_ENABLED(CONFIG_EFI_MIXED))
233 		return true;
234 	return efi_is_64bit();
235 }
236 
237 #define efi_mixed_mode_cast(attr)					\
238 	__builtin_choose_expr(						\
239 		__builtin_types_compatible_p(u32, __typeof__(attr)),	\
240 			(unsigned long)(attr), (attr))
241 
242 #define efi_table_attr(inst, attr)					\
243 	(efi_is_native()						\
244 		? inst->attr						\
245 		: (__typeof__(inst->attr))				\
246 			efi_mixed_mode_cast(inst->mixed_mode.attr))
247 
248 /*
249  * The following macros allow translating arguments if necessary from native to
250  * mixed mode. The use case for this is to initialize the upper 32 bits of
251  * output parameters, and where the 32-bit method requires a 64-bit argument,
252  * which must be split up into two arguments to be thunked properly.
253  *
254  * As examples, the AllocatePool boot service returns the address of the
255  * allocation, but it will not set the high 32 bits of the address. To ensure
256  * that the full 64-bit address is initialized, we zero-init the address before
257  * calling the thunk.
258  *
259  * The FreePages boot service takes a 64-bit physical address even in 32-bit
260  * mode. For the thunk to work correctly, a native 64-bit call of
261  * 	free_pages(addr, size)
262  * must be translated to
263  * 	efi64_thunk(free_pages, addr & U32_MAX, addr >> 32, size)
264  * so that the two 32-bit halves of addr get pushed onto the stack separately.
265  */
266 
267 static inline void *efi64_zero_upper(void *p)
268 {
269 	((u32 *)p)[1] = 0;
270 	return p;
271 }
272 
273 static inline u32 efi64_convert_status(efi_status_t status)
274 {
275 	return (u32)(status | (u64)status >> 32);
276 }
277 
278 #define __efi64_argmap_free_pages(addr, size)				\
279 	((addr), 0, (size))
280 
281 #define __efi64_argmap_get_memory_map(mm_size, mm, key, size, ver)	\
282 	((mm_size), (mm), efi64_zero_upper(key), efi64_zero_upper(size), (ver))
283 
284 #define __efi64_argmap_allocate_pool(type, size, buffer)		\
285 	((type), (size), efi64_zero_upper(buffer))
286 
287 #define __efi64_argmap_handle_protocol(handle, protocol, interface)	\
288 	((handle), (protocol), efi64_zero_upper(interface))
289 
290 #define __efi64_argmap_locate_protocol(protocol, reg, interface)	\
291 	((protocol), (reg), efi64_zero_upper(interface))
292 
293 #define __efi64_argmap_locate_device_path(protocol, path, handle)	\
294 	((protocol), (path), efi64_zero_upper(handle))
295 
296 #define __efi64_argmap_exit(handle, status, size, data)			\
297 	((handle), efi64_convert_status(status), (size), (data))
298 
299 /* PCI I/O */
300 #define __efi64_argmap_get_location(protocol, seg, bus, dev, func)	\
301 	((protocol), efi64_zero_upper(seg), efi64_zero_upper(bus),	\
302 	 efi64_zero_upper(dev), efi64_zero_upper(func))
303 
304 /* LoadFile */
305 #define __efi64_argmap_load_file(protocol, path, policy, bufsize, buf)	\
306 	((protocol), (path), (policy), efi64_zero_upper(bufsize), (buf))
307 
308 /*
309  * The macros below handle the plumbing for the argument mapping. To add a
310  * mapping for a specific EFI method, simply define a macro
311  * __efi64_argmap_<method name>, following the examples above.
312  */
313 
314 #define __efi64_thunk_map(inst, func, ...)				\
315 	efi64_thunk(inst->mixed_mode.func,				\
316 		__efi64_argmap(__efi64_argmap_ ## func(__VA_ARGS__),	\
317 			       (__VA_ARGS__)))
318 
319 #define __efi64_argmap(mapped, args)					\
320 	__PASTE(__efi64_argmap__, __efi_nargs(__efi_eat mapped))(mapped, args)
321 #define __efi64_argmap__0(mapped, args) __efi_eval mapped
322 #define __efi64_argmap__1(mapped, args) __efi_eval args
323 
324 #define __efi_eat(...)
325 #define __efi_eval(...) __VA_ARGS__
326 
327 /* The three macros below handle dispatching via the thunk if needed */
328 
329 #define efi_call_proto(inst, func, ...)					\
330 	(efi_is_native()						\
331 		? inst->func(inst, ##__VA_ARGS__)			\
332 		: __efi64_thunk_map(inst, func, inst, ##__VA_ARGS__))
333 
334 #define efi_bs_call(func, ...)						\
335 	(efi_is_native()						\
336 		? efi_system_table()->boottime->func(__VA_ARGS__)	\
337 		: __efi64_thunk_map(efi_table_attr(efi_system_table(),	\
338 				boottime), func, __VA_ARGS__))
339 
340 #define efi_rt_call(func, ...)						\
341 	(efi_is_native()						\
342 		? efi_system_table()->runtime->func(__VA_ARGS__)	\
343 		: __efi64_thunk_map(efi_table_attr(efi_system_table(),	\
344 				runtime), func, __VA_ARGS__))
345 
346 extern bool efi_reboot_required(void);
347 extern bool efi_is_table_address(unsigned long phys_addr);
348 
349 extern void efi_find_mirror(void);
350 extern void efi_reserve_boot_services(void);
351 #else
352 static inline void parse_efi_setup(u64 phys_addr, u32 data_len) {}
353 static inline bool efi_reboot_required(void)
354 {
355 	return false;
356 }
357 static inline  bool efi_is_table_address(unsigned long phys_addr)
358 {
359 	return false;
360 }
361 static inline void efi_find_mirror(void)
362 {
363 }
364 static inline void efi_reserve_boot_services(void)
365 {
366 }
367 #endif /* CONFIG_EFI */
368 
369 #ifdef CONFIG_EFI_FAKE_MEMMAP
370 extern void __init efi_fake_memmap_early(void);
371 #else
372 static inline void efi_fake_memmap_early(void)
373 {
374 }
375 #endif
376 
377 #endif /* _ASM_X86_EFI_H */
378