xref: /openbmc/linux/arch/x86/include/asm/bitops.h (revision e639c869)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _ASM_X86_BITOPS_H
3 #define _ASM_X86_BITOPS_H
4 
5 /*
6  * Copyright 1992, Linus Torvalds.
7  *
8  * Note: inlines with more than a single statement should be marked
9  * __always_inline to avoid problems with older gcc's inlining heuristics.
10  */
11 
12 #ifndef _LINUX_BITOPS_H
13 #error only <linux/bitops.h> can be included directly
14 #endif
15 
16 #include <linux/compiler.h>
17 #include <asm/alternative.h>
18 #include <asm/rmwcc.h>
19 #include <asm/barrier.h>
20 
21 #if BITS_PER_LONG == 32
22 # define _BITOPS_LONG_SHIFT 5
23 #elif BITS_PER_LONG == 64
24 # define _BITOPS_LONG_SHIFT 6
25 #else
26 # error "Unexpected BITS_PER_LONG"
27 #endif
28 
29 #define BIT_64(n)			(U64_C(1) << (n))
30 
31 /*
32  * These have to be done with inline assembly: that way the bit-setting
33  * is guaranteed to be atomic. All bit operations return 0 if the bit
34  * was cleared before the operation and != 0 if it was not.
35  *
36  * bit 0 is the LSB of addr; bit 32 is the LSB of (addr+1).
37  */
38 
39 #if __GNUC__ < 4 || (__GNUC__ == 4 && __GNUC_MINOR__ < 1)
40 /* Technically wrong, but this avoids compilation errors on some gcc
41    versions. */
42 #define BITOP_ADDR(x) "=m" (*(volatile long *) (x))
43 #else
44 #define BITOP_ADDR(x) "+m" (*(volatile long *) (x))
45 #endif
46 
47 #define ADDR				BITOP_ADDR(addr)
48 
49 /*
50  * We do the locked ops that don't return the old value as
51  * a mask operation on a byte.
52  */
53 #define IS_IMMEDIATE(nr)		(__builtin_constant_p(nr))
54 #define CONST_MASK_ADDR(nr, addr)	BITOP_ADDR((void *)(addr) + ((nr)>>3))
55 #define CONST_MASK(nr)			(1 << ((nr) & 7))
56 
57 /**
58  * set_bit - Atomically set a bit in memory
59  * @nr: the bit to set
60  * @addr: the address to start counting from
61  *
62  * This function is atomic and may not be reordered.  See __set_bit()
63  * if you do not require the atomic guarantees.
64  *
65  * Note: there are no guarantees that this function will not be reordered
66  * on non x86 architectures, so if you are writing portable code,
67  * make sure not to rely on its reordering guarantees.
68  *
69  * Note that @nr may be almost arbitrarily large; this function is not
70  * restricted to acting on a single-word quantity.
71  */
72 static __always_inline void
73 set_bit(long nr, volatile unsigned long *addr)
74 {
75 	if (IS_IMMEDIATE(nr)) {
76 		asm volatile(LOCK_PREFIX "orb %1,%0"
77 			: CONST_MASK_ADDR(nr, addr)
78 			: "iq" ((u8)CONST_MASK(nr))
79 			: "memory");
80 	} else {
81 		asm volatile(LOCK_PREFIX "bts %1,%0"
82 			: BITOP_ADDR(addr) : "Ir" (nr) : "memory");
83 	}
84 }
85 
86 /**
87  * __set_bit - Set a bit in memory
88  * @nr: the bit to set
89  * @addr: the address to start counting from
90  *
91  * Unlike set_bit(), this function is non-atomic and may be reordered.
92  * If it's called on the same region of memory simultaneously, the effect
93  * may be that only one operation succeeds.
94  */
95 static __always_inline void __set_bit(long nr, volatile unsigned long *addr)
96 {
97 	asm volatile("bts %1,%0" : ADDR : "Ir" (nr) : "memory");
98 }
99 
100 /**
101  * clear_bit - Clears a bit in memory
102  * @nr: Bit to clear
103  * @addr: Address to start counting from
104  *
105  * clear_bit() is atomic and may not be reordered.  However, it does
106  * not contain a memory barrier, so if it is used for locking purposes,
107  * you should call smp_mb__before_atomic() and/or smp_mb__after_atomic()
108  * in order to ensure changes are visible on other processors.
109  */
110 static __always_inline void
111 clear_bit(long nr, volatile unsigned long *addr)
112 {
113 	if (IS_IMMEDIATE(nr)) {
114 		asm volatile(LOCK_PREFIX "andb %1,%0"
115 			: CONST_MASK_ADDR(nr, addr)
116 			: "iq" ((u8)~CONST_MASK(nr)));
117 	} else {
118 		asm volatile(LOCK_PREFIX "btr %1,%0"
119 			: BITOP_ADDR(addr)
120 			: "Ir" (nr));
121 	}
122 }
123 
124 /*
125  * clear_bit_unlock - Clears a bit in memory
126  * @nr: Bit to clear
127  * @addr: Address to start counting from
128  *
129  * clear_bit() is atomic and implies release semantics before the memory
130  * operation. It can be used for an unlock.
131  */
132 static __always_inline void clear_bit_unlock(long nr, volatile unsigned long *addr)
133 {
134 	barrier();
135 	clear_bit(nr, addr);
136 }
137 
138 static __always_inline void __clear_bit(long nr, volatile unsigned long *addr)
139 {
140 	asm volatile("btr %1,%0" : ADDR : "Ir" (nr));
141 }
142 
143 static __always_inline bool clear_bit_unlock_is_negative_byte(long nr, volatile unsigned long *addr)
144 {
145 	bool negative;
146 	asm volatile(LOCK_PREFIX "andb %2,%1"
147 		CC_SET(s)
148 		: CC_OUT(s) (negative), ADDR
149 		: "ir" ((char) ~(1 << nr)) : "memory");
150 	return negative;
151 }
152 
153 // Let everybody know we have it
154 #define clear_bit_unlock_is_negative_byte clear_bit_unlock_is_negative_byte
155 
156 /*
157  * __clear_bit_unlock - Clears a bit in memory
158  * @nr: Bit to clear
159  * @addr: Address to start counting from
160  *
161  * __clear_bit() is non-atomic and implies release semantics before the memory
162  * operation. It can be used for an unlock if no other CPUs can concurrently
163  * modify other bits in the word.
164  *
165  * No memory barrier is required here, because x86 cannot reorder stores past
166  * older loads. Same principle as spin_unlock.
167  */
168 static __always_inline void __clear_bit_unlock(long nr, volatile unsigned long *addr)
169 {
170 	barrier();
171 	__clear_bit(nr, addr);
172 }
173 
174 /**
175  * __change_bit - Toggle a bit in memory
176  * @nr: the bit to change
177  * @addr: the address to start counting from
178  *
179  * Unlike change_bit(), this function is non-atomic and may be reordered.
180  * If it's called on the same region of memory simultaneously, the effect
181  * may be that only one operation succeeds.
182  */
183 static __always_inline void __change_bit(long nr, volatile unsigned long *addr)
184 {
185 	asm volatile("btc %1,%0" : ADDR : "Ir" (nr));
186 }
187 
188 /**
189  * change_bit - Toggle a bit in memory
190  * @nr: Bit to change
191  * @addr: Address to start counting from
192  *
193  * change_bit() is atomic and may not be reordered.
194  * Note that @nr may be almost arbitrarily large; this function is not
195  * restricted to acting on a single-word quantity.
196  */
197 static __always_inline void change_bit(long nr, volatile unsigned long *addr)
198 {
199 	if (IS_IMMEDIATE(nr)) {
200 		asm volatile(LOCK_PREFIX "xorb %1,%0"
201 			: CONST_MASK_ADDR(nr, addr)
202 			: "iq" ((u8)CONST_MASK(nr)));
203 	} else {
204 		asm volatile(LOCK_PREFIX "btc %1,%0"
205 			: BITOP_ADDR(addr)
206 			: "Ir" (nr));
207 	}
208 }
209 
210 /**
211  * test_and_set_bit - Set a bit and return its old value
212  * @nr: Bit to set
213  * @addr: Address to count from
214  *
215  * This operation is atomic and cannot be reordered.
216  * It also implies a memory barrier.
217  */
218 static __always_inline bool test_and_set_bit(long nr, volatile unsigned long *addr)
219 {
220 	GEN_BINARY_RMWcc(LOCK_PREFIX "bts", *addr, "Ir", nr, "%0", c);
221 }
222 
223 /**
224  * test_and_set_bit_lock - Set a bit and return its old value for lock
225  * @nr: Bit to set
226  * @addr: Address to count from
227  *
228  * This is the same as test_and_set_bit on x86.
229  */
230 static __always_inline bool
231 test_and_set_bit_lock(long nr, volatile unsigned long *addr)
232 {
233 	return test_and_set_bit(nr, addr);
234 }
235 
236 /**
237  * __test_and_set_bit - Set a bit and return its old value
238  * @nr: Bit to set
239  * @addr: Address to count from
240  *
241  * This operation is non-atomic and can be reordered.
242  * If two examples of this operation race, one can appear to succeed
243  * but actually fail.  You must protect multiple accesses with a lock.
244  */
245 static __always_inline bool __test_and_set_bit(long nr, volatile unsigned long *addr)
246 {
247 	bool oldbit;
248 
249 	asm("bts %2,%1"
250 	    CC_SET(c)
251 	    : CC_OUT(c) (oldbit), ADDR
252 	    : "Ir" (nr));
253 	return oldbit;
254 }
255 
256 /**
257  * test_and_clear_bit - Clear a bit and return its old value
258  * @nr: Bit to clear
259  * @addr: Address to count from
260  *
261  * This operation is atomic and cannot be reordered.
262  * It also implies a memory barrier.
263  */
264 static __always_inline bool test_and_clear_bit(long nr, volatile unsigned long *addr)
265 {
266 	GEN_BINARY_RMWcc(LOCK_PREFIX "btr", *addr, "Ir", nr, "%0", c);
267 }
268 
269 /**
270  * __test_and_clear_bit - Clear a bit and return its old value
271  * @nr: Bit to clear
272  * @addr: Address to count from
273  *
274  * This operation is non-atomic and can be reordered.
275  * If two examples of this operation race, one can appear to succeed
276  * but actually fail.  You must protect multiple accesses with a lock.
277  *
278  * Note: the operation is performed atomically with respect to
279  * the local CPU, but not other CPUs. Portable code should not
280  * rely on this behaviour.
281  * KVM relies on this behaviour on x86 for modifying memory that is also
282  * accessed from a hypervisor on the same CPU if running in a VM: don't change
283  * this without also updating arch/x86/kernel/kvm.c
284  */
285 static __always_inline bool __test_and_clear_bit(long nr, volatile unsigned long *addr)
286 {
287 	bool oldbit;
288 
289 	asm volatile("btr %2,%1"
290 		     CC_SET(c)
291 		     : CC_OUT(c) (oldbit), ADDR
292 		     : "Ir" (nr));
293 	return oldbit;
294 }
295 
296 /* WARNING: non atomic and it can be reordered! */
297 static __always_inline bool __test_and_change_bit(long nr, volatile unsigned long *addr)
298 {
299 	bool oldbit;
300 
301 	asm volatile("btc %2,%1"
302 		     CC_SET(c)
303 		     : CC_OUT(c) (oldbit), ADDR
304 		     : "Ir" (nr) : "memory");
305 
306 	return oldbit;
307 }
308 
309 /**
310  * test_and_change_bit - Change a bit and return its old value
311  * @nr: Bit to change
312  * @addr: Address to count from
313  *
314  * This operation is atomic and cannot be reordered.
315  * It also implies a memory barrier.
316  */
317 static __always_inline bool test_and_change_bit(long nr, volatile unsigned long *addr)
318 {
319 	GEN_BINARY_RMWcc(LOCK_PREFIX "btc", *addr, "Ir", nr, "%0", c);
320 }
321 
322 static __always_inline bool constant_test_bit(long nr, const volatile unsigned long *addr)
323 {
324 	return ((1UL << (nr & (BITS_PER_LONG-1))) &
325 		(addr[nr >> _BITOPS_LONG_SHIFT])) != 0;
326 }
327 
328 static __always_inline bool variable_test_bit(long nr, volatile const unsigned long *addr)
329 {
330 	bool oldbit;
331 
332 	asm volatile("bt %2,%1"
333 		     CC_SET(c)
334 		     : CC_OUT(c) (oldbit)
335 		     : "m" (*(unsigned long *)addr), "Ir" (nr));
336 
337 	return oldbit;
338 }
339 
340 #if 0 /* Fool kernel-doc since it doesn't do macros yet */
341 /**
342  * test_bit - Determine whether a bit is set
343  * @nr: bit number to test
344  * @addr: Address to start counting from
345  */
346 static bool test_bit(int nr, const volatile unsigned long *addr);
347 #endif
348 
349 #define test_bit(nr, addr)			\
350 	(__builtin_constant_p((nr))		\
351 	 ? constant_test_bit((nr), (addr))	\
352 	 : variable_test_bit((nr), (addr)))
353 
354 /**
355  * __ffs - find first set bit in word
356  * @word: The word to search
357  *
358  * Undefined if no bit exists, so code should check against 0 first.
359  */
360 static __always_inline unsigned long __ffs(unsigned long word)
361 {
362 	asm("rep; bsf %1,%0"
363 		: "=r" (word)
364 		: "rm" (word));
365 	return word;
366 }
367 
368 /**
369  * ffz - find first zero bit in word
370  * @word: The word to search
371  *
372  * Undefined if no zero exists, so code should check against ~0UL first.
373  */
374 static __always_inline unsigned long ffz(unsigned long word)
375 {
376 	asm("rep; bsf %1,%0"
377 		: "=r" (word)
378 		: "r" (~word));
379 	return word;
380 }
381 
382 /*
383  * __fls: find last set bit in word
384  * @word: The word to search
385  *
386  * Undefined if no set bit exists, so code should check against 0 first.
387  */
388 static __always_inline unsigned long __fls(unsigned long word)
389 {
390 	asm("bsr %1,%0"
391 	    : "=r" (word)
392 	    : "rm" (word));
393 	return word;
394 }
395 
396 #undef ADDR
397 
398 #ifdef __KERNEL__
399 /**
400  * ffs - find first set bit in word
401  * @x: the word to search
402  *
403  * This is defined the same way as the libc and compiler builtin ffs
404  * routines, therefore differs in spirit from the other bitops.
405  *
406  * ffs(value) returns 0 if value is 0 or the position of the first
407  * set bit if value is nonzero. The first (least significant) bit
408  * is at position 1.
409  */
410 static __always_inline int ffs(int x)
411 {
412 	int r;
413 
414 #ifdef CONFIG_X86_64
415 	/*
416 	 * AMD64 says BSFL won't clobber the dest reg if x==0; Intel64 says the
417 	 * dest reg is undefined if x==0, but their CPU architect says its
418 	 * value is written to set it to the same as before, except that the
419 	 * top 32 bits will be cleared.
420 	 *
421 	 * We cannot do this on 32 bits because at the very least some
422 	 * 486 CPUs did not behave this way.
423 	 */
424 	asm("bsfl %1,%0"
425 	    : "=r" (r)
426 	    : "rm" (x), "0" (-1));
427 #elif defined(CONFIG_X86_CMOV)
428 	asm("bsfl %1,%0\n\t"
429 	    "cmovzl %2,%0"
430 	    : "=&r" (r) : "rm" (x), "r" (-1));
431 #else
432 	asm("bsfl %1,%0\n\t"
433 	    "jnz 1f\n\t"
434 	    "movl $-1,%0\n"
435 	    "1:" : "=r" (r) : "rm" (x));
436 #endif
437 	return r + 1;
438 }
439 
440 /**
441  * fls - find last set bit in word
442  * @x: the word to search
443  *
444  * This is defined in a similar way as the libc and compiler builtin
445  * ffs, but returns the position of the most significant set bit.
446  *
447  * fls(value) returns 0 if value is 0 or the position of the last
448  * set bit if value is nonzero. The last (most significant) bit is
449  * at position 32.
450  */
451 static __always_inline int fls(int x)
452 {
453 	int r;
454 
455 #ifdef CONFIG_X86_64
456 	/*
457 	 * AMD64 says BSRL won't clobber the dest reg if x==0; Intel64 says the
458 	 * dest reg is undefined if x==0, but their CPU architect says its
459 	 * value is written to set it to the same as before, except that the
460 	 * top 32 bits will be cleared.
461 	 *
462 	 * We cannot do this on 32 bits because at the very least some
463 	 * 486 CPUs did not behave this way.
464 	 */
465 	asm("bsrl %1,%0"
466 	    : "=r" (r)
467 	    : "rm" (x), "0" (-1));
468 #elif defined(CONFIG_X86_CMOV)
469 	asm("bsrl %1,%0\n\t"
470 	    "cmovzl %2,%0"
471 	    : "=&r" (r) : "rm" (x), "rm" (-1));
472 #else
473 	asm("bsrl %1,%0\n\t"
474 	    "jnz 1f\n\t"
475 	    "movl $-1,%0\n"
476 	    "1:" : "=r" (r) : "rm" (x));
477 #endif
478 	return r + 1;
479 }
480 
481 /**
482  * fls64 - find last set bit in a 64-bit word
483  * @x: the word to search
484  *
485  * This is defined in a similar way as the libc and compiler builtin
486  * ffsll, but returns the position of the most significant set bit.
487  *
488  * fls64(value) returns 0 if value is 0 or the position of the last
489  * set bit if value is nonzero. The last (most significant) bit is
490  * at position 64.
491  */
492 #ifdef CONFIG_X86_64
493 static __always_inline int fls64(__u64 x)
494 {
495 	int bitpos = -1;
496 	/*
497 	 * AMD64 says BSRQ won't clobber the dest reg if x==0; Intel64 says the
498 	 * dest reg is undefined if x==0, but their CPU architect says its
499 	 * value is written to set it to the same as before.
500 	 */
501 	asm("bsrq %1,%q0"
502 	    : "+r" (bitpos)
503 	    : "rm" (x));
504 	return bitpos + 1;
505 }
506 #else
507 #include <asm-generic/bitops/fls64.h>
508 #endif
509 
510 #include <asm-generic/bitops/find.h>
511 
512 #include <asm-generic/bitops/sched.h>
513 
514 #include <asm/arch_hweight.h>
515 
516 #include <asm-generic/bitops/const_hweight.h>
517 
518 #include <asm-generic/bitops/le.h>
519 
520 #include <asm-generic/bitops/ext2-atomic-setbit.h>
521 
522 #endif /* __KERNEL__ */
523 #endif /* _ASM_X86_BITOPS_H */
524