1 #ifndef _ASM_X86_BITOPS_H 2 #define _ASM_X86_BITOPS_H 3 4 /* 5 * Copyright 1992, Linus Torvalds. 6 * 7 * Note: inlines with more than a single statement should be marked 8 * __always_inline to avoid problems with older gcc's inlining heuristics. 9 */ 10 11 #ifndef _LINUX_BITOPS_H 12 #error only <linux/bitops.h> can be included directly 13 #endif 14 15 #include <linux/compiler.h> 16 #include <asm/alternative.h> 17 18 #if BITS_PER_LONG == 32 19 # define _BITOPS_LONG_SHIFT 5 20 #elif BITS_PER_LONG == 64 21 # define _BITOPS_LONG_SHIFT 6 22 #else 23 # error "Unexpected BITS_PER_LONG" 24 #endif 25 26 #define BIT_64(n) (U64_C(1) << (n)) 27 28 /* 29 * These have to be done with inline assembly: that way the bit-setting 30 * is guaranteed to be atomic. All bit operations return 0 if the bit 31 * was cleared before the operation and != 0 if it was not. 32 * 33 * bit 0 is the LSB of addr; bit 32 is the LSB of (addr+1). 34 */ 35 36 #if __GNUC__ < 4 || (__GNUC__ == 4 && __GNUC_MINOR__ < 1) 37 /* Technically wrong, but this avoids compilation errors on some gcc 38 versions. */ 39 #define BITOP_ADDR(x) "=m" (*(volatile long *) (x)) 40 #else 41 #define BITOP_ADDR(x) "+m" (*(volatile long *) (x)) 42 #endif 43 44 #define ADDR BITOP_ADDR(addr) 45 46 /* 47 * We do the locked ops that don't return the old value as 48 * a mask operation on a byte. 49 */ 50 #define IS_IMMEDIATE(nr) (__builtin_constant_p(nr)) 51 #define CONST_MASK_ADDR(nr, addr) BITOP_ADDR((void *)(addr) + ((nr)>>3)) 52 #define CONST_MASK(nr) (1 << ((nr) & 7)) 53 54 /** 55 * set_bit - Atomically set a bit in memory 56 * @nr: the bit to set 57 * @addr: the address to start counting from 58 * 59 * This function is atomic and may not be reordered. See __set_bit() 60 * if you do not require the atomic guarantees. 61 * 62 * Note: there are no guarantees that this function will not be reordered 63 * on non x86 architectures, so if you are writing portable code, 64 * make sure not to rely on its reordering guarantees. 65 * 66 * Note that @nr may be almost arbitrarily large; this function is not 67 * restricted to acting on a single-word quantity. 68 */ 69 static __always_inline void 70 set_bit(long nr, volatile unsigned long *addr) 71 { 72 if (IS_IMMEDIATE(nr)) { 73 asm volatile(LOCK_PREFIX "orb %1,%0" 74 : CONST_MASK_ADDR(nr, addr) 75 : "iq" ((u8)CONST_MASK(nr)) 76 : "memory"); 77 } else { 78 asm volatile(LOCK_PREFIX "bts %1,%0" 79 : BITOP_ADDR(addr) : "Ir" (nr) : "memory"); 80 } 81 } 82 83 /** 84 * __set_bit - Set a bit in memory 85 * @nr: the bit to set 86 * @addr: the address to start counting from 87 * 88 * Unlike set_bit(), this function is non-atomic and may be reordered. 89 * If it's called on the same region of memory simultaneously, the effect 90 * may be that only one operation succeeds. 91 */ 92 static inline void __set_bit(long nr, volatile unsigned long *addr) 93 { 94 asm volatile("bts %1,%0" : ADDR : "Ir" (nr) : "memory"); 95 } 96 97 /** 98 * clear_bit - Clears a bit in memory 99 * @nr: Bit to clear 100 * @addr: Address to start counting from 101 * 102 * clear_bit() is atomic and may not be reordered. However, it does 103 * not contain a memory barrier, so if it is used for locking purposes, 104 * you should call smp_mb__before_clear_bit() and/or smp_mb__after_clear_bit() 105 * in order to ensure changes are visible on other processors. 106 */ 107 static __always_inline void 108 clear_bit(long nr, volatile unsigned long *addr) 109 { 110 if (IS_IMMEDIATE(nr)) { 111 asm volatile(LOCK_PREFIX "andb %1,%0" 112 : CONST_MASK_ADDR(nr, addr) 113 : "iq" ((u8)~CONST_MASK(nr))); 114 } else { 115 asm volatile(LOCK_PREFIX "btr %1,%0" 116 : BITOP_ADDR(addr) 117 : "Ir" (nr)); 118 } 119 } 120 121 /* 122 * clear_bit_unlock - Clears a bit in memory 123 * @nr: Bit to clear 124 * @addr: Address to start counting from 125 * 126 * clear_bit() is atomic and implies release semantics before the memory 127 * operation. It can be used for an unlock. 128 */ 129 static inline void clear_bit_unlock(long nr, volatile unsigned long *addr) 130 { 131 barrier(); 132 clear_bit(nr, addr); 133 } 134 135 static inline void __clear_bit(long nr, volatile unsigned long *addr) 136 { 137 asm volatile("btr %1,%0" : ADDR : "Ir" (nr)); 138 } 139 140 /* 141 * __clear_bit_unlock - Clears a bit in memory 142 * @nr: Bit to clear 143 * @addr: Address to start counting from 144 * 145 * __clear_bit() is non-atomic and implies release semantics before the memory 146 * operation. It can be used for an unlock if no other CPUs can concurrently 147 * modify other bits in the word. 148 * 149 * No memory barrier is required here, because x86 cannot reorder stores past 150 * older loads. Same principle as spin_unlock. 151 */ 152 static inline void __clear_bit_unlock(long nr, volatile unsigned long *addr) 153 { 154 barrier(); 155 __clear_bit(nr, addr); 156 } 157 158 #define smp_mb__before_clear_bit() barrier() 159 #define smp_mb__after_clear_bit() barrier() 160 161 /** 162 * __change_bit - Toggle a bit in memory 163 * @nr: the bit to change 164 * @addr: the address to start counting from 165 * 166 * Unlike change_bit(), this function is non-atomic and may be reordered. 167 * If it's called on the same region of memory simultaneously, the effect 168 * may be that only one operation succeeds. 169 */ 170 static inline void __change_bit(long nr, volatile unsigned long *addr) 171 { 172 asm volatile("btc %1,%0" : ADDR : "Ir" (nr)); 173 } 174 175 /** 176 * change_bit - Toggle a bit in memory 177 * @nr: Bit to change 178 * @addr: Address to start counting from 179 * 180 * change_bit() is atomic and may not be reordered. 181 * Note that @nr may be almost arbitrarily large; this function is not 182 * restricted to acting on a single-word quantity. 183 */ 184 static inline void change_bit(long nr, volatile unsigned long *addr) 185 { 186 if (IS_IMMEDIATE(nr)) { 187 asm volatile(LOCK_PREFIX "xorb %1,%0" 188 : CONST_MASK_ADDR(nr, addr) 189 : "iq" ((u8)CONST_MASK(nr))); 190 } else { 191 asm volatile(LOCK_PREFIX "btc %1,%0" 192 : BITOP_ADDR(addr) 193 : "Ir" (nr)); 194 } 195 } 196 197 /** 198 * test_and_set_bit - Set a bit and return its old value 199 * @nr: Bit to set 200 * @addr: Address to count from 201 * 202 * This operation is atomic and cannot be reordered. 203 * It also implies a memory barrier. 204 */ 205 static inline int test_and_set_bit(long nr, volatile unsigned long *addr) 206 { 207 int oldbit; 208 209 asm volatile(LOCK_PREFIX "bts %2,%1\n\t" 210 "sbb %0,%0" : "=r" (oldbit), ADDR : "Ir" (nr) : "memory"); 211 212 return oldbit; 213 } 214 215 /** 216 * test_and_set_bit_lock - Set a bit and return its old value for lock 217 * @nr: Bit to set 218 * @addr: Address to count from 219 * 220 * This is the same as test_and_set_bit on x86. 221 */ 222 static __always_inline int 223 test_and_set_bit_lock(long nr, volatile unsigned long *addr) 224 { 225 return test_and_set_bit(nr, addr); 226 } 227 228 /** 229 * __test_and_set_bit - Set a bit and return its old value 230 * @nr: Bit to set 231 * @addr: Address to count from 232 * 233 * This operation is non-atomic and can be reordered. 234 * If two examples of this operation race, one can appear to succeed 235 * but actually fail. You must protect multiple accesses with a lock. 236 */ 237 static inline int __test_and_set_bit(long nr, volatile unsigned long *addr) 238 { 239 int oldbit; 240 241 asm("bts %2,%1\n\t" 242 "sbb %0,%0" 243 : "=r" (oldbit), ADDR 244 : "Ir" (nr)); 245 return oldbit; 246 } 247 248 /** 249 * test_and_clear_bit - Clear a bit and return its old value 250 * @nr: Bit to clear 251 * @addr: Address to count from 252 * 253 * This operation is atomic and cannot be reordered. 254 * It also implies a memory barrier. 255 */ 256 static inline int test_and_clear_bit(long nr, volatile unsigned long *addr) 257 { 258 int oldbit; 259 260 asm volatile(LOCK_PREFIX "btr %2,%1\n\t" 261 "sbb %0,%0" 262 : "=r" (oldbit), ADDR : "Ir" (nr) : "memory"); 263 264 return oldbit; 265 } 266 267 /** 268 * __test_and_clear_bit - Clear a bit and return its old value 269 * @nr: Bit to clear 270 * @addr: Address to count from 271 * 272 * This operation is non-atomic and can be reordered. 273 * If two examples of this operation race, one can appear to succeed 274 * but actually fail. You must protect multiple accesses with a lock. 275 * 276 * Note: the operation is performed atomically with respect to 277 * the local CPU, but not other CPUs. Portable code should not 278 * rely on this behaviour. 279 * KVM relies on this behaviour on x86 for modifying memory that is also 280 * accessed from a hypervisor on the same CPU if running in a VM: don't change 281 * this without also updating arch/x86/kernel/kvm.c 282 */ 283 static inline int __test_and_clear_bit(long nr, volatile unsigned long *addr) 284 { 285 int oldbit; 286 287 asm volatile("btr %2,%1\n\t" 288 "sbb %0,%0" 289 : "=r" (oldbit), ADDR 290 : "Ir" (nr)); 291 return oldbit; 292 } 293 294 /* WARNING: non atomic and it can be reordered! */ 295 static inline int __test_and_change_bit(long nr, volatile unsigned long *addr) 296 { 297 int oldbit; 298 299 asm volatile("btc %2,%1\n\t" 300 "sbb %0,%0" 301 : "=r" (oldbit), ADDR 302 : "Ir" (nr) : "memory"); 303 304 return oldbit; 305 } 306 307 /** 308 * test_and_change_bit - Change a bit and return its old value 309 * @nr: Bit to change 310 * @addr: Address to count from 311 * 312 * This operation is atomic and cannot be reordered. 313 * It also implies a memory barrier. 314 */ 315 static inline int test_and_change_bit(long nr, volatile unsigned long *addr) 316 { 317 int oldbit; 318 319 asm volatile(LOCK_PREFIX "btc %2,%1\n\t" 320 "sbb %0,%0" 321 : "=r" (oldbit), ADDR : "Ir" (nr) : "memory"); 322 323 return oldbit; 324 } 325 326 static __always_inline int constant_test_bit(long nr, const volatile unsigned long *addr) 327 { 328 return ((1UL << (nr & (BITS_PER_LONG-1))) & 329 (addr[nr >> _BITOPS_LONG_SHIFT])) != 0; 330 } 331 332 static inline int variable_test_bit(long nr, volatile const unsigned long *addr) 333 { 334 int oldbit; 335 336 asm volatile("bt %2,%1\n\t" 337 "sbb %0,%0" 338 : "=r" (oldbit) 339 : "m" (*(unsigned long *)addr), "Ir" (nr)); 340 341 return oldbit; 342 } 343 344 #if 0 /* Fool kernel-doc since it doesn't do macros yet */ 345 /** 346 * test_bit - Determine whether a bit is set 347 * @nr: bit number to test 348 * @addr: Address to start counting from 349 */ 350 static int test_bit(int nr, const volatile unsigned long *addr); 351 #endif 352 353 #define test_bit(nr, addr) \ 354 (__builtin_constant_p((nr)) \ 355 ? constant_test_bit((nr), (addr)) \ 356 : variable_test_bit((nr), (addr))) 357 358 /** 359 * __ffs - find first set bit in word 360 * @word: The word to search 361 * 362 * Undefined if no bit exists, so code should check against 0 first. 363 */ 364 static inline unsigned long __ffs(unsigned long word) 365 { 366 asm("rep; bsf %1,%0" 367 : "=r" (word) 368 : "rm" (word)); 369 return word; 370 } 371 372 /** 373 * ffz - find first zero bit in word 374 * @word: The word to search 375 * 376 * Undefined if no zero exists, so code should check against ~0UL first. 377 */ 378 static inline unsigned long ffz(unsigned long word) 379 { 380 asm("rep; bsf %1,%0" 381 : "=r" (word) 382 : "r" (~word)); 383 return word; 384 } 385 386 /* 387 * __fls: find last set bit in word 388 * @word: The word to search 389 * 390 * Undefined if no set bit exists, so code should check against 0 first. 391 */ 392 static inline unsigned long __fls(unsigned long word) 393 { 394 asm("bsr %1,%0" 395 : "=r" (word) 396 : "rm" (word)); 397 return word; 398 } 399 400 #undef ADDR 401 402 #ifdef __KERNEL__ 403 /** 404 * ffs - find first set bit in word 405 * @x: the word to search 406 * 407 * This is defined the same way as the libc and compiler builtin ffs 408 * routines, therefore differs in spirit from the other bitops. 409 * 410 * ffs(value) returns 0 if value is 0 or the position of the first 411 * set bit if value is nonzero. The first (least significant) bit 412 * is at position 1. 413 */ 414 static inline int ffs(int x) 415 { 416 int r; 417 418 #ifdef CONFIG_X86_64 419 /* 420 * AMD64 says BSFL won't clobber the dest reg if x==0; Intel64 says the 421 * dest reg is undefined if x==0, but their CPU architect says its 422 * value is written to set it to the same as before, except that the 423 * top 32 bits will be cleared. 424 * 425 * We cannot do this on 32 bits because at the very least some 426 * 486 CPUs did not behave this way. 427 */ 428 asm("bsfl %1,%0" 429 : "=r" (r) 430 : "rm" (x), "0" (-1)); 431 #elif defined(CONFIG_X86_CMOV) 432 asm("bsfl %1,%0\n\t" 433 "cmovzl %2,%0" 434 : "=&r" (r) : "rm" (x), "r" (-1)); 435 #else 436 asm("bsfl %1,%0\n\t" 437 "jnz 1f\n\t" 438 "movl $-1,%0\n" 439 "1:" : "=r" (r) : "rm" (x)); 440 #endif 441 return r + 1; 442 } 443 444 /** 445 * fls - find last set bit in word 446 * @x: the word to search 447 * 448 * This is defined in a similar way as the libc and compiler builtin 449 * ffs, but returns the position of the most significant set bit. 450 * 451 * fls(value) returns 0 if value is 0 or the position of the last 452 * set bit if value is nonzero. The last (most significant) bit is 453 * at position 32. 454 */ 455 static inline int fls(int x) 456 { 457 int r; 458 459 #ifdef CONFIG_X86_64 460 /* 461 * AMD64 says BSRL won't clobber the dest reg if x==0; Intel64 says the 462 * dest reg is undefined if x==0, but their CPU architect says its 463 * value is written to set it to the same as before, except that the 464 * top 32 bits will be cleared. 465 * 466 * We cannot do this on 32 bits because at the very least some 467 * 486 CPUs did not behave this way. 468 */ 469 asm("bsrl %1,%0" 470 : "=r" (r) 471 : "rm" (x), "0" (-1)); 472 #elif defined(CONFIG_X86_CMOV) 473 asm("bsrl %1,%0\n\t" 474 "cmovzl %2,%0" 475 : "=&r" (r) : "rm" (x), "rm" (-1)); 476 #else 477 asm("bsrl %1,%0\n\t" 478 "jnz 1f\n\t" 479 "movl $-1,%0\n" 480 "1:" : "=r" (r) : "rm" (x)); 481 #endif 482 return r + 1; 483 } 484 485 /** 486 * fls64 - find last set bit in a 64-bit word 487 * @x: the word to search 488 * 489 * This is defined in a similar way as the libc and compiler builtin 490 * ffsll, but returns the position of the most significant set bit. 491 * 492 * fls64(value) returns 0 if value is 0 or the position of the last 493 * set bit if value is nonzero. The last (most significant) bit is 494 * at position 64. 495 */ 496 #ifdef CONFIG_X86_64 497 static __always_inline int fls64(__u64 x) 498 { 499 int bitpos = -1; 500 /* 501 * AMD64 says BSRQ won't clobber the dest reg if x==0; Intel64 says the 502 * dest reg is undefined if x==0, but their CPU architect says its 503 * value is written to set it to the same as before. 504 */ 505 asm("bsrq %1,%q0" 506 : "+r" (bitpos) 507 : "rm" (x)); 508 return bitpos + 1; 509 } 510 #else 511 #include <asm-generic/bitops/fls64.h> 512 #endif 513 514 #include <asm-generic/bitops/find.h> 515 516 #include <asm-generic/bitops/sched.h> 517 518 #define ARCH_HAS_FAST_MULTIPLIER 1 519 520 #include <asm/arch_hweight.h> 521 522 #include <asm-generic/bitops/const_hweight.h> 523 524 #include <asm-generic/bitops/le.h> 525 526 #include <asm-generic/bitops/ext2-atomic-setbit.h> 527 528 #endif /* __KERNEL__ */ 529 #endif /* _ASM_X86_BITOPS_H */ 530