xref: /openbmc/linux/arch/x86/include/asm/bitops.h (revision b8d312aa)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _ASM_X86_BITOPS_H
3 #define _ASM_X86_BITOPS_H
4 
5 /*
6  * Copyright 1992, Linus Torvalds.
7  *
8  * Note: inlines with more than a single statement should be marked
9  * __always_inline to avoid problems with older gcc's inlining heuristics.
10  */
11 
12 #ifndef _LINUX_BITOPS_H
13 #error only <linux/bitops.h> can be included directly
14 #endif
15 
16 #include <linux/compiler.h>
17 #include <asm/alternative.h>
18 #include <asm/rmwcc.h>
19 #include <asm/barrier.h>
20 
21 #if BITS_PER_LONG == 32
22 # define _BITOPS_LONG_SHIFT 5
23 #elif BITS_PER_LONG == 64
24 # define _BITOPS_LONG_SHIFT 6
25 #else
26 # error "Unexpected BITS_PER_LONG"
27 #endif
28 
29 #define BIT_64(n)			(U64_C(1) << (n))
30 
31 /*
32  * These have to be done with inline assembly: that way the bit-setting
33  * is guaranteed to be atomic. All bit operations return 0 if the bit
34  * was cleared before the operation and != 0 if it was not.
35  *
36  * bit 0 is the LSB of addr; bit 32 is the LSB of (addr+1).
37  */
38 
39 #define RLONG_ADDR(x)			 "m" (*(volatile long *) (x))
40 #define WBYTE_ADDR(x)			"+m" (*(volatile char *) (x))
41 
42 #define ADDR				RLONG_ADDR(addr)
43 
44 /*
45  * We do the locked ops that don't return the old value as
46  * a mask operation on a byte.
47  */
48 #define IS_IMMEDIATE(nr)		(__builtin_constant_p(nr))
49 #define CONST_MASK_ADDR(nr, addr)	WBYTE_ADDR((void *)(addr) + ((nr)>>3))
50 #define CONST_MASK(nr)			(1 << ((nr) & 7))
51 
52 static __always_inline void
53 arch_set_bit(long nr, volatile unsigned long *addr)
54 {
55 	if (IS_IMMEDIATE(nr)) {
56 		asm volatile(LOCK_PREFIX "orb %1,%0"
57 			: CONST_MASK_ADDR(nr, addr)
58 			: "iq" ((u8)CONST_MASK(nr))
59 			: "memory");
60 	} else {
61 		asm volatile(LOCK_PREFIX __ASM_SIZE(bts) " %1,%0"
62 			: : RLONG_ADDR(addr), "Ir" (nr) : "memory");
63 	}
64 }
65 
66 static __always_inline void
67 arch___set_bit(long nr, volatile unsigned long *addr)
68 {
69 	asm volatile(__ASM_SIZE(bts) " %1,%0" : : ADDR, "Ir" (nr) : "memory");
70 }
71 
72 static __always_inline void
73 arch_clear_bit(long nr, volatile unsigned long *addr)
74 {
75 	if (IS_IMMEDIATE(nr)) {
76 		asm volatile(LOCK_PREFIX "andb %1,%0"
77 			: CONST_MASK_ADDR(nr, addr)
78 			: "iq" ((u8)~CONST_MASK(nr)));
79 	} else {
80 		asm volatile(LOCK_PREFIX __ASM_SIZE(btr) " %1,%0"
81 			: : RLONG_ADDR(addr), "Ir" (nr) : "memory");
82 	}
83 }
84 
85 static __always_inline void
86 arch_clear_bit_unlock(long nr, volatile unsigned long *addr)
87 {
88 	barrier();
89 	arch_clear_bit(nr, addr);
90 }
91 
92 static __always_inline void
93 arch___clear_bit(long nr, volatile unsigned long *addr)
94 {
95 	asm volatile(__ASM_SIZE(btr) " %1,%0" : : ADDR, "Ir" (nr) : "memory");
96 }
97 
98 static __always_inline bool
99 arch_clear_bit_unlock_is_negative_byte(long nr, volatile unsigned long *addr)
100 {
101 	bool negative;
102 	asm volatile(LOCK_PREFIX "andb %2,%1"
103 		CC_SET(s)
104 		: CC_OUT(s) (negative), WBYTE_ADDR(addr)
105 		: "ir" ((char) ~(1 << nr)) : "memory");
106 	return negative;
107 }
108 #define arch_clear_bit_unlock_is_negative_byte                                 \
109 	arch_clear_bit_unlock_is_negative_byte
110 
111 static __always_inline void
112 arch___clear_bit_unlock(long nr, volatile unsigned long *addr)
113 {
114 	arch___clear_bit(nr, addr);
115 }
116 
117 static __always_inline void
118 arch___change_bit(long nr, volatile unsigned long *addr)
119 {
120 	asm volatile(__ASM_SIZE(btc) " %1,%0" : : ADDR, "Ir" (nr) : "memory");
121 }
122 
123 static __always_inline void
124 arch_change_bit(long nr, volatile unsigned long *addr)
125 {
126 	if (IS_IMMEDIATE(nr)) {
127 		asm volatile(LOCK_PREFIX "xorb %1,%0"
128 			: CONST_MASK_ADDR(nr, addr)
129 			: "iq" ((u8)CONST_MASK(nr)));
130 	} else {
131 		asm volatile(LOCK_PREFIX __ASM_SIZE(btc) " %1,%0"
132 			: : RLONG_ADDR(addr), "Ir" (nr) : "memory");
133 	}
134 }
135 
136 static __always_inline bool
137 arch_test_and_set_bit(long nr, volatile unsigned long *addr)
138 {
139 	return GEN_BINARY_RMWcc(LOCK_PREFIX __ASM_SIZE(bts), *addr, c, "Ir", nr);
140 }
141 
142 static __always_inline bool
143 arch_test_and_set_bit_lock(long nr, volatile unsigned long *addr)
144 {
145 	return arch_test_and_set_bit(nr, addr);
146 }
147 
148 static __always_inline bool
149 arch___test_and_set_bit(long nr, volatile unsigned long *addr)
150 {
151 	bool oldbit;
152 
153 	asm(__ASM_SIZE(bts) " %2,%1"
154 	    CC_SET(c)
155 	    : CC_OUT(c) (oldbit)
156 	    : ADDR, "Ir" (nr) : "memory");
157 	return oldbit;
158 }
159 
160 static __always_inline bool
161 arch_test_and_clear_bit(long nr, volatile unsigned long *addr)
162 {
163 	return GEN_BINARY_RMWcc(LOCK_PREFIX __ASM_SIZE(btr), *addr, c, "Ir", nr);
164 }
165 
166 /*
167  * Note: the operation is performed atomically with respect to
168  * the local CPU, but not other CPUs. Portable code should not
169  * rely on this behaviour.
170  * KVM relies on this behaviour on x86 for modifying memory that is also
171  * accessed from a hypervisor on the same CPU if running in a VM: don't change
172  * this without also updating arch/x86/kernel/kvm.c
173  */
174 static __always_inline bool
175 arch___test_and_clear_bit(long nr, volatile unsigned long *addr)
176 {
177 	bool oldbit;
178 
179 	asm volatile(__ASM_SIZE(btr) " %2,%1"
180 		     CC_SET(c)
181 		     : CC_OUT(c) (oldbit)
182 		     : ADDR, "Ir" (nr) : "memory");
183 	return oldbit;
184 }
185 
186 static __always_inline bool
187 arch___test_and_change_bit(long nr, volatile unsigned long *addr)
188 {
189 	bool oldbit;
190 
191 	asm volatile(__ASM_SIZE(btc) " %2,%1"
192 		     CC_SET(c)
193 		     : CC_OUT(c) (oldbit)
194 		     : ADDR, "Ir" (nr) : "memory");
195 
196 	return oldbit;
197 }
198 
199 static __always_inline bool
200 arch_test_and_change_bit(long nr, volatile unsigned long *addr)
201 {
202 	return GEN_BINARY_RMWcc(LOCK_PREFIX __ASM_SIZE(btc), *addr, c, "Ir", nr);
203 }
204 
205 static __always_inline bool constant_test_bit(long nr, const volatile unsigned long *addr)
206 {
207 	return ((1UL << (nr & (BITS_PER_LONG-1))) &
208 		(addr[nr >> _BITOPS_LONG_SHIFT])) != 0;
209 }
210 
211 static __always_inline bool variable_test_bit(long nr, volatile const unsigned long *addr)
212 {
213 	bool oldbit;
214 
215 	asm volatile(__ASM_SIZE(bt) " %2,%1"
216 		     CC_SET(c)
217 		     : CC_OUT(c) (oldbit)
218 		     : "m" (*(unsigned long *)addr), "Ir" (nr) : "memory");
219 
220 	return oldbit;
221 }
222 
223 #define arch_test_bit(nr, addr)			\
224 	(__builtin_constant_p((nr))		\
225 	 ? constant_test_bit((nr), (addr))	\
226 	 : variable_test_bit((nr), (addr)))
227 
228 /**
229  * __ffs - find first set bit in word
230  * @word: The word to search
231  *
232  * Undefined if no bit exists, so code should check against 0 first.
233  */
234 static __always_inline unsigned long __ffs(unsigned long word)
235 {
236 	asm("rep; bsf %1,%0"
237 		: "=r" (word)
238 		: "rm" (word));
239 	return word;
240 }
241 
242 /**
243  * ffz - find first zero bit in word
244  * @word: The word to search
245  *
246  * Undefined if no zero exists, so code should check against ~0UL first.
247  */
248 static __always_inline unsigned long ffz(unsigned long word)
249 {
250 	asm("rep; bsf %1,%0"
251 		: "=r" (word)
252 		: "r" (~word));
253 	return word;
254 }
255 
256 /*
257  * __fls: find last set bit in word
258  * @word: The word to search
259  *
260  * Undefined if no set bit exists, so code should check against 0 first.
261  */
262 static __always_inline unsigned long __fls(unsigned long word)
263 {
264 	asm("bsr %1,%0"
265 	    : "=r" (word)
266 	    : "rm" (word));
267 	return word;
268 }
269 
270 #undef ADDR
271 
272 #ifdef __KERNEL__
273 /**
274  * ffs - find first set bit in word
275  * @x: the word to search
276  *
277  * This is defined the same way as the libc and compiler builtin ffs
278  * routines, therefore differs in spirit from the other bitops.
279  *
280  * ffs(value) returns 0 if value is 0 or the position of the first
281  * set bit if value is nonzero. The first (least significant) bit
282  * is at position 1.
283  */
284 static __always_inline int ffs(int x)
285 {
286 	int r;
287 
288 #ifdef CONFIG_X86_64
289 	/*
290 	 * AMD64 says BSFL won't clobber the dest reg if x==0; Intel64 says the
291 	 * dest reg is undefined if x==0, but their CPU architect says its
292 	 * value is written to set it to the same as before, except that the
293 	 * top 32 bits will be cleared.
294 	 *
295 	 * We cannot do this on 32 bits because at the very least some
296 	 * 486 CPUs did not behave this way.
297 	 */
298 	asm("bsfl %1,%0"
299 	    : "=r" (r)
300 	    : "rm" (x), "0" (-1));
301 #elif defined(CONFIG_X86_CMOV)
302 	asm("bsfl %1,%0\n\t"
303 	    "cmovzl %2,%0"
304 	    : "=&r" (r) : "rm" (x), "r" (-1));
305 #else
306 	asm("bsfl %1,%0\n\t"
307 	    "jnz 1f\n\t"
308 	    "movl $-1,%0\n"
309 	    "1:" : "=r" (r) : "rm" (x));
310 #endif
311 	return r + 1;
312 }
313 
314 /**
315  * fls - find last set bit in word
316  * @x: the word to search
317  *
318  * This is defined in a similar way as the libc and compiler builtin
319  * ffs, but returns the position of the most significant set bit.
320  *
321  * fls(value) returns 0 if value is 0 or the position of the last
322  * set bit if value is nonzero. The last (most significant) bit is
323  * at position 32.
324  */
325 static __always_inline int fls(unsigned int x)
326 {
327 	int r;
328 
329 #ifdef CONFIG_X86_64
330 	/*
331 	 * AMD64 says BSRL won't clobber the dest reg if x==0; Intel64 says the
332 	 * dest reg is undefined if x==0, but their CPU architect says its
333 	 * value is written to set it to the same as before, except that the
334 	 * top 32 bits will be cleared.
335 	 *
336 	 * We cannot do this on 32 bits because at the very least some
337 	 * 486 CPUs did not behave this way.
338 	 */
339 	asm("bsrl %1,%0"
340 	    : "=r" (r)
341 	    : "rm" (x), "0" (-1));
342 #elif defined(CONFIG_X86_CMOV)
343 	asm("bsrl %1,%0\n\t"
344 	    "cmovzl %2,%0"
345 	    : "=&r" (r) : "rm" (x), "rm" (-1));
346 #else
347 	asm("bsrl %1,%0\n\t"
348 	    "jnz 1f\n\t"
349 	    "movl $-1,%0\n"
350 	    "1:" : "=r" (r) : "rm" (x));
351 #endif
352 	return r + 1;
353 }
354 
355 /**
356  * fls64 - find last set bit in a 64-bit word
357  * @x: the word to search
358  *
359  * This is defined in a similar way as the libc and compiler builtin
360  * ffsll, but returns the position of the most significant set bit.
361  *
362  * fls64(value) returns 0 if value is 0 or the position of the last
363  * set bit if value is nonzero. The last (most significant) bit is
364  * at position 64.
365  */
366 #ifdef CONFIG_X86_64
367 static __always_inline int fls64(__u64 x)
368 {
369 	int bitpos = -1;
370 	/*
371 	 * AMD64 says BSRQ won't clobber the dest reg if x==0; Intel64 says the
372 	 * dest reg is undefined if x==0, but their CPU architect says its
373 	 * value is written to set it to the same as before.
374 	 */
375 	asm("bsrq %1,%q0"
376 	    : "+r" (bitpos)
377 	    : "rm" (x));
378 	return bitpos + 1;
379 }
380 #else
381 #include <asm-generic/bitops/fls64.h>
382 #endif
383 
384 #include <asm-generic/bitops/find.h>
385 
386 #include <asm-generic/bitops/sched.h>
387 
388 #include <asm/arch_hweight.h>
389 
390 #include <asm-generic/bitops/const_hweight.h>
391 
392 #include <asm-generic/bitops-instrumented.h>
393 
394 #include <asm-generic/bitops/le.h>
395 
396 #include <asm-generic/bitops/ext2-atomic-setbit.h>
397 
398 #endif /* __KERNEL__ */
399 #endif /* _ASM_X86_BITOPS_H */
400